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Abstract: Recently, the importance of data analysis has increased significantly
due to the rapid data increase. In particular, vehicle communication data,
considered a significant challenge in Intelligent Transportation Systems (ITS),
has spatiotemporal characteristics and many missing values. High missing
values in data lead to the decreased predictive performance of models. Existing
missing value imputation models ignore the topology of transportation net-
works due to the structural connection of road networks, although physical
distances are close in spatiotemporal image data. Additionally, the learning
process of missing value imputation models requires complete data, but there
are limitations in securing complete vehicle communication data. This study
proposes a missing value imputation model based on adversarial autoencoder
using spatiotemporal feature extraction to address these issues. The proposed
method replaces missing values by reflecting spatiotemporal characteristics
of transportation data using temporal convolution and spatial convolution.
Experimental results show that the proposed model has the lowest error rate of
5.92%, demonstrating excellent predictive accuracy. Through this, it is possible
to solve the data sparsity problem and improve traffic safety by showing
superior predictive performance.

Keywords: Missing value; adversarial autoencoder; spatiotemporal feature
extraction

1 Introduction

A lot of data is being generated due to the internet of things and sensors, the increase in tracking
and collection of customer data by enterprises, the increase in unstructured data caused by the
spread of social network services, the development of storage media technology and the fall in prices.
Currently, there is active research on big data, Artificial Intelligence (AI), machine learning, and deep
learning, in which data plays a key role among the representative technologies of the 4th industrial
revolution [1–3]. In such studies, the performance of the model is determined by the quantity and
quality of the data, but the quantitative aspect of the data is being resolved, but the quality of the data
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is inferior because there are many cases where values are missing or strange values are stored for a series
of reasons (e.g., malfunction of equipment, refusal to respond to surveys, etc.) in the collection process
in reality. This leads to difficulties in data analysis, an unbalanced data structure, and a decrease in the
predictive performance of the model [4,5]. Therefore, research through the application of algorithms
and statistical methods to impute missing values is actively underway. There are statistical methods
that remove missing values or impute them with mean, median, and mode, and alternative methods
that utilize k-recent neighbor search, a machine learning algorithm. In the case of these methods,
however, if the proportion of data including missing values is small compared to the size of the entire
data, which will affect statistical analysis results and algorithm performance degradation. In addition,
the reliability of the imputed value is low because the imputation is made without considering the
characteristics or variance of the data, and the correlation between the attributes and the attributes.
If there are many missing values, when statistical methods are used, the data are generalized, which
adversely affects the performance of the model. Therefore, research on missing value imputation
based on deep learning has been actively conducted in recent years. Deep learning-based learning
methods include supervised learning and unsupervised learning. However, there is a disadvantage
that it is difficult to use a supervised learning model that requires correct answer data to impute
data with missing. Therefore, we use the missing imputation method based on unsupervised learning.
Existing unsupervised learning-based methods include Graph Imputation Neural Network (GINN)
[6], Generative Adversarial Imputation Nets (GAIN) [7], and Multiple Imputation using Denoising
Auto encoders (MIDA) [8].

Spinelli et al. [6] proposed data missing imputation using an adversarial trained graph convolution
network. This encodes the similarity between the two patterns through each edge of the graph. The
auto encoder model is used through the encoded graph to impute the data missing from the data set.
In addition, Wasserstein metrics is used to improve training speed and performance. Yoon et al. [7]
proposed a method of replacing missing data based on Generative Adversarial Network (GAN), a
model mainly used for data generation. The generator observes the construction of the actual data
vector and outputs the completed vector with the missing components imputed. In addition, the
discriminator uses the hint vector reflecting a mask vector as an input value to generate the imputed
vector as a meaningful value. Gondara et al. [8] proposed MIDA to minimize missing data bias. This
is a multiple imputation model based on the denoising auto encoders model. Also, various data types
and missing patterns, missing distributions, and ratios can be processed.

In this study, we conduct a study on the imputation of traffic missing data, which is a serious
task in the Intelligent Transportation System (ITS) [9]. Therefore, the above research method cannot
be regarded as a suitable model because it does not take into account the temporal and spatial
characteristics of traffic data. Traffic data show high randomness and uncertainty as it is influenced
by road users’ usage patterns, movement habits, environmental factors, accidents and others. In many
cases, the collected data is lost due to various factors, failing to reflect actual traffic conditions. Traffic
data on U.S. highways show a loss rate of approximately 15%, traffic data collected from ITS in Beijing,
China shows a loss rate of 10%, while in the case of PeMS provided by caltrans, more than 5% of data
appears to be lost [9]. To solve this problem, this study proposes an adversarial autoencoder-based
missing value imputation model using spatiotemporal feature extraction. In order to learn temporal
features, a temporal feature map is extracted through the Gated Recurrent Units (GRU) layer using
1d convolution, and a spatial feature map is extracted through the Graph Convolution Network
(GCN) layer to learn spatial features. Adversarial Auto Encoder (AAE) is constructed through the
combination of each layer. We train the missing data through AAE and proceed with imputation.
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The study is structured as follows: Chapter 2 describes research related to missing data imputation
methodology and graph data learning based on graph convolution network. Chapter 3 describes
methods for data collection and analysis, data preprocessing, and model design for missing imputation
of traffic data. Chapter 4 describes the experimental method and results for evaluating the model
performance. Chapter 5 provides the conclusion of this study.

2 Related Work
2.1 Missing Data Imputation Methodology

There are three statistical criteria for data missing. We need to know the types of missing data
because different approaches are required depending on the type. Missing data include missing
Completely At Random (MCAR), Missing At Random (MAR), Missing At Not Random (MNAR)
[10]. Fig. 1 shows the types of data missing. In Fig. 1, MCAR means a case where missing from data
variables is not correlated with another variable. This is the case with the highest level of randomness
and no correlation between variables. It is also the type of missing that is the background of the missing
value imputation study. Next, MAR represents an intermediate level of randomness. This is a case
in which missing data is correlated with a specific variable, but does not affect the outcome of that
variable. For example, men are less likely to fill out a depression questionnaire, which is not correlated
with the degree of depression. Finally, MNAR is a missing type with the lowest randomness, meaning
that a specific variable affects the result of values in other variables. For example, traffic jams are likely
to occur due to bad weather. It is a case in which MCAR is the background for the study on missing
value imputation, and in this study, the missing data for the type of missing is also imputed.

Figure 1: Types of data missing

Methods of missing imputation include statistical methods, machine learning algorithms, and
deep learning-based missing imputation methods. Statistical methods include mean, median, and
mode, but if there are many missing data, the values will be biased. There is a k-NN (k-Nearest
Neighborhood) method, which is a machine learning algorithm [11]. This sets k points and imputes
missing values by numerically calculating the distance between points through Euclidean. Despite its
advantage of being able to impute all missing values in a variety of ways by running the function
only once, no new values are created, but missing values are filled with existing values. In addition,
there is a disadvantage that only continuous data can be used and it cannot be used for factor type
variables. In this case, the missing imputation of Multivariate Imputation by Chained Equations
(MICE) method can be used [12]. This creates a model with the mice function and completes the
data with the complete function. Expectation Maximization (EM) and multiple imputation calculates
Maximum Likelihood Estimation (MLE) that maximizes the incomplete likehood function of the data
[13]. Based on estimated MLE, the expected value of the missing value is derived to impute the missing
value. However, the EM method has a disadvantage that it can be used only when the data have been
generated from a normal distribution. The last of the machine learning methods is MissForest [14]. It
first estimates missing values through imputation methods such as mean and median. Each variable is
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used as a dependent variable for fitting a random forest. And the value is obtained through prediction.
The error is reduced through the obtained value and the actual missing value. This is repeated until
the criterion gamma, which is the threshold, is satisfied. The following is a missing imputation method
using a deep learning technique. MIDA is a method to minimize missing data bias [8]. This is a multiple
imputation model based on the denoising auto encoders model. In addition, various data types and
missing patterns, missing distributions, and ratios can be processed. Next, there is the GAIN method
[7]. The generator observes the construction of the actual data vector and outputs the completed vector
with the missing components imputed. In addition, the discriminator uses the hint vector reflecting a
mask vector as an input value to generate the imputed vector as a meaningful value. Finally, there is
the GINN method. It encodes the similarity between the two patterns through each edge of the graph.
It uses an auto encoder model through the encoded graph to impute data missing from the data set.
In addition, Wasserstein metrics is used to improve training speed and performance.

2.2 Graph Data Learning Based On Graph Convolution Network
Since the Fully Connected layer (FC layer) used in general deep learning performs learning by

arranging data in one dimension, spatial features are ignored [15,16]. Therefore, Convolutional Neural
Network (CNN) which is a convolutional operation, is used, and a general image exists in the form
of a grid in Euclidean space [17]. However, data in the form of graphs (molecular structure, social
network, transportation network, etc.) does not exist in Euclidean space. Therefore, data having a
graph structure is unstructured data, and it is difficult to apply convolution used for images and images
composed of general grids. Also, the disadvantage is that the graph data should be formalized into a
tensor suitable for convolution in order to use convolution. Therefore, graph convolution is used to
learn the spatial characteristics of graph data well. GCN is an artificial neural network model that uses
graph-structured data as input data [18]. Fig. 2 shows the graph structure and the input configuration
of GCN.

Figure 2: Graph structure and GCN input configuration

In Fig. 2, the structure of the graph (G = (V , E)) consists of a set of nodes (Vertex) and a set of
edges (Edge). GCN receives feature matrix and adjacency matrix as inputs to calculate data in graph
form. The feature matrix consists of the number of nodes (N) and the size of the feature dimension
(F(n)) in each node. The adjacency matrix (adj) is a method of expressing the connection of nodes
constituted by an edge as an array. This is expressed as adj (i, j), and (i, j) is expressed as 0 or 1 if there
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is a connection between the two nodes V i and V j. Fig. 3 shows the process of delivering the node’s
feature value to the hidden layer.

Figure 3: The process of delivering the node’s feature value to the hidden layer

In Fig. 3, information of the feature matrix (H) and the adjacency matrix is delivered to the hidden
layer. Hi means the feature matrix of the i-th layer, and Wi means the weight matrix of the i-th layer. In
the Hi and Wi calculation process, the weight is shared across all nodes through weight sharing. This
updates the F(i) dimension feature in the i-th layer to the F(i+1) dimension and extracts the feature.
Also, through the calculation process of HiWi and Adj, only the relationship with the connection to
Adj is extracted. Eq. (1) shows the propagation rule of GCN.

H (l+1) = f
(
H (l), A

) = σ(AH (l)W (l) + b(l)) (1)

In Eq. (1), H refers to the feature matrix, A refers to the adjacency matrix, W refers to the weight
of the hidden layer, and σ to the activation function. In this way, it is possible to construct a neural
network by collecting information of each node and adjacent nodes in the graph and applying a
shared learning variable and a nonlinear function. Cui et al. [19] proposes traffic graphic Convolution-
Long-Short Term Memory (TGC-LSTM) for traffic prediction in traffic networks. It is a model that
combines GCN and Long Short-Term Memory (LSTM). This was proposed to solve the problem that
it is difficult to predict time and space due to complex spatial dependency on road networks. It learns
the interactions between roads in a traffic network and defines traffic graph convolution based on the
overall network traffic state and physical network topology.

3 Missing Value Imputation Model Based on Spatiotemporal Feature Extraction Layer

The proposal model consists of the traffic data preprocessing, the spatiotemporal feature extrac-
tion in auto encoders, and the data missing imputation using adversarial auto encoders. Fig. 4 shows
the process block diagram of the missing value imputation method.
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Figure 4: Process diagram of missing value imputation method

The first step in Fig. 4 involves traffic data collection (node, link, speed) and preprocessing.
Data from the Ministry of Land, Infrastructure and transport are collected [20]. In addition, since
the difference in scale according to the features of the data is biased during learning of the model,
preprocessing is performed through Min-Max regularization. The feature matrix is created with pre-
processed data to be used as model input, and distance-based adjacency matrix is created for use of
graph convolution. In the second step, a temporal convolution layer is configured to capture and learn
temporal features, while a spatial convolution layer is configured to capture and learn spatial features.
In general, the models of Recurrent Neural Network (RNN) series used for time series learning have
the disadvantage of slow learning time due to its disadvantage of relying on previous data. Therefore,
the layer is configured through casual convolution and Gate Linear Unit (GLU). In addition, it is
difficult to use a general CNN structure because the data composed of graphs does not exist in the
Euclidean space. Therefore, a layer using GCN is constructed. Finally, the third step is the process
of imputing missing data. It is constructed using the AAE model created by combining only the
advantages of GAN and VAE. A spatio convolution layer is stacked on the encoder of AAE. Learning
is carried out through the configured model, and the mask matrix representing the missing part and
the imputed matrix generated by inserting the missing value matrix as an input through the learned
model are used as a hadamard product. Complete data is created by adding the calculated matrix and
missing value matrix.

3.1 Collection and Preprocessing of Time Series Data
The data used in this study collects node and link data and traffic speed data provided by ITS

of the Ministry of Land, Infrastructure and Transport [20]. The node data is the point at which the
speed change occurs when the vehicle travels on the road. This includes intersections, the beginning
and end points of overpasses, beginning and end points of bridges, beginning and end points of
roads, administrative boundaries, and IC (Interchange)/JC (Junction). Table 1 shows the node data
configuration.

Table 1: Node data configuration

FIELD NODE_ID NODE_TYPE NODE_NAME TURN_P

Feature 1390011200 101 Intersection 1

In Table 1, NODE_ID, NODE_TYPE, NODE_NAME and TURN_P indicate the unique num-
ber of the node, the type of the node, the name of the node, and whether rotation is restricted. In
addition, the link data is a line connecting a node that is a speed change point and a node, and
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represents an actual road. This includes roads, overpasses, bridges, underpasses, and tunnels. Table 2
shows the link data configuration.

Table 2: Link data configuration

FIELD LINK_ID F_NODE T_NODE LANES

FEATURE 1210007602 1210015000 1210000700 4
FIELD ROAD_RANK ROAD_TYPE ROAD_NO ROAD_NAME
FEATURE 104 000 – Gangnam-daero
FIELD MULTI_LINK CONNECT MAX_SPD
FEATURE 0 000 50km/h

In Table 2, LINK_ID is the unique number of the link, F_NODE is the ID of the starting
node, T_NODE is the ID of the ending node, LANES is the number of lanes, ROAD_RANK is the
rank of the road, ROAD_TYPE is the type of the road, ROAD_NAME is the name of the road,
MULTI_LINK indicates whether there is an intermediate section, CONNECT indicates the code of
the link road, and MAX_SPD indicates the maximum speed limit of the road. Traffic speed data
is collected through devices or equipment installed on the road. It is collected based on Location,
Days, and Interval, and data missing exists according to the criteria. Fig. 5 shows the multidimensional
matrix for the missing types and criteria for which traffic speed data are collected.

Figure 5: Multidimensional matrix for types with missing

In Fig. 5, speed data is collected based on three criteria. It is collected based on Day, Location,
and Intervals. Missing exists in three types: Interval missing if traffic data should be collected every 5
min, but the entire data is not collected for that 5 min, Location missing if there are parts that cannot
be collected by road, and Days missing if the entire day is not collected. In addition, if the size of
the data feature is significantly different for each variable, the performance of the model becomes a
problem, so data normalization is performed. There are two types of regularization methods: Min-
Max regularization and Z-score regularization [21,22].

Min-Max regularization finds the minimum and maximum values for all features and sets them
to 0 and 1, respectively. Values that exist between the minimum and maximum values are converted to
values between 0 and 1. This has the disadvantage of being vulnerable to outliers, al-though all features
have the same scale. Since velocity data contains a large amount of outliers, outliers are removed
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through the median absolute deviation and Min-Max normalization is performed. Eq. (2) shows the
Min-Max regularization equation.

Min − Max = x − Min
Max − Min

(2)

In Eq. (2), x represents data, Min represents the minimum value of data, and max the maximum
value of data. The denominator specifies the range of data by subtracting the largest and smallest
values in the data. It also subtracts each data x and the minimum value from the numerator to
determine where to place the data in the specified range. The Z-Score regularization method is a
regularization method that can avoid the outlier problem. However, since each data value is not
accurately normalized to the same scale, Min-Max normalization is performed on the values from
which outliers are removed in this study.

3.2 Extraction of Spatiotemporal Features Using Spatial Temporal Layer
Traffic data has time series and spatial features. Therefore, the temporal convolution layer is

used to capture and learn temporal features, and the spatio convolution layer is used to learn spatial
features. In general, LSTM and GRU of RNN series are used to learn temporal features [23,24]. The
disadvantage of LSTM, which is typically used, is slow learning time. Due to the nature of LSTM, the
output of the model depends on previous data, so parallelization cannot be performed.

Thus, the amount of calculation increases according to the number of data during the calculation
process, which slows down the calculation. Therefore, this study has an advantage in learning speed
by enabling parallelization by using casual convolution and GLU activation function [25,26]. Fig. 6
shows the structure of the temporal convolution layer. In Fig. 6, casual convolution is a convolution
operation used for data with temporal features. This makes the output value dependent only on the
current input and past data at every step when performing the convolution operation. Also, to pass the
GLU activation function, the dimension is doubled. By dividing the amplified tensor in half, sigmoid
operation is performed for one part, while the Hadamard product for each element for the other
part. It is the result of GLU operation and alleviates the vanishing gradient problem through linear
operation while maintaining the non-linear function. In addition, GLU is more stable than Rectified
Linear Unit (ReLU) and can learn faster than sigmoid. Eq. (3) shows the equation of GLU.

Figure 6: Structure of temporal convolution layer

v
(
[AB]

) = A ⊗ σ(B) (3)

In Eq. (3), v means linear mapping, and σ means sigmoid activation. A and B represent the input
values divided by half, and linear mapping is performed on them. A sigmoid operation is performed
on the divided side. In addition, it means element-wise Hadamard product, and an element-wise
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Hadamard product is performed on a part different from the value of the sigmoid operation. During
the GLU operation, the previous value is added to the remaining part that does not pass the sigmoid
through the residual connection. This solves the tendency of network performance degradation as the
number of network layers increases, that is, the learning set loss gradually decreases as the number
of network layers increases and then becomes saturated. Temporal convolution layer is easier to learn
than RNN and other models, has a simpler structure, and can be used for time series data. In addition,
parallelization is possible and if layers of the CNN structure are stacked, the number of nonlinearities
is reduced, solving the vanishing gradient problem compared to RNN. Next, the spatio convolution
layer is used to learn spatial features. In general, data in graph form does not exist in Euclidean space.
Therefore, it is difficult to apply learning using CNN. Therefore, a GCN that receives graph-type data
as an input is used. In general, the adjacency matrix used in GCN expresses only the connection with
the neighbor node, so its own information in the convolution operation is not considered when the
latent feature vector is created. In this study, therefore, when implementing GCN, a self-loop is added
to the adjacency matrix. Eq. (4) shows the operation expression of the graph convolution layer.

H (l+1) = σ(D̃− 1
2 AD̃− 1

2 H (l)W (l)) (4)

In Eq. (4), Hl is the hidden state of the l-th layer, and H0 = X (initial feature of the graph node). Is,
the addition of a self-loop to the adjacency matrix. Also, since the adjacency matrix is not normalized,
the size of the feature vector may be unstable when multiplying the feature vector and adjacency matrix.
Therefore, normalization is necessary. This creates a degree matrix according to the number of edges
connected to each node and normalizes the adjacency matrix (A) to. In this case, is the degree matrix
of the adjacency matrix. W(l) is a parameter of the l-th layer, and σ is a nonlinear function that uses
the ReLU function.

3.3 Traffic Communication Data Missing Imputation Model Using Adversarial Auto Encoders
The structure of the Adversarial Auto Encoder (AAE) model, which combines the Variational

Auto Encoder (VAE) and the GAN model, is used to impute missing of time series data. General GAN
has the disadvantage that it is more difficult to learn the generator than the discriminator. Therefore,
in this study, the AAE structure is used to promote the stability of learning. Fig. 7 shows the network
configuration of the adversarial auto encoder-based missing imputation model.

In the Fig. 7, the model consists of four modules: an encoder, a decoder, and two discriminators.
Temporal convolution layer and spatio convolution layer are added to the encoder performing feature
extraction to learn spatiotemporal features of data. In order to extract each feature, calculation is
performed through a block that combines features by stacking layers. In order to input data to the
model, it is necessary to fill the missing present in the data. To fill the missing, a real number between
0 and 0.01 is generated from the sample data and the sample is filled in the missing position through a
mask matrix that defines the location of the missing. Fig. 8 shows the data input configuration of the
model for missing imputation.

In Fig. 8, in order to compose the input value, the missing data (x), the mask (m) that displays
the missing part, and the sample data (z) for learning by filling in the missing part are prepared. The
existing data and the sample data (z) are combined through a mask. A mask is a matrix composed
of 0 and 1. 0 means the missing part and 1 is defined as the presence of existing data. The mask data
is multiplied by x, and the missing position is positioned as the sample data through the (1 − m)
operation. The generated input data is input to the model. For the input data, learning is carried
out through the model. The input data is subjected to feature extraction through the encoder. For
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the encoder part of the generator model, the feature extraction is performed through the temporal
convolution layer and the spatio convolution layer. A latent distribution is created through the
extracted data. The created latent distribution is input to the decoder to restore and generate data.
Fig. 9 shows loss calculation process of generator model.

Figure 7: Network configuration for the adversarial auto encoder-based missing imputation models

Figure 8: Configure the data input of the model for missing imputation

Figure 9: Loss calculation process of generator model
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In the Fig. 9, the data generated through the generator model and the existing data are combined.
Through the mask data, the existing data is left and only the generated data is put in the missing posi-
tion. In addition, the generated data for the generator’s loss calculation is input to the discriminator
model 1. For loss of the generator model, Mean Squared Error (MSE) loss operation is performed on
generated by the generator and the existing data. Also, by inputting to discriminator model 1, cross
entropy loss operation is performed with the mask data. Loss calculation of the generator model is
performed through MSE operation and cross entropy operation. In the discriminator 1 model, cross
entropy loss calculates the loss of the generated value and induces the generated value to be generated
better, and induces existing values that have been subjected to MSE operation to be learned in a form
similar to the existing form [26–28]. Fig. 10 shows the loss calculation process of the discriminator
model through the latent vector.

Figure 10: Loss calculation process of discriminator model through latent vector

In the Fig. 10, the latent distribution and target distribution generated through the encoder are
input to discriminator model 2 to perform the cross-entropy loss operation. The difference between
discriminator models is that discriminator model 1 is directly involved in the loss of the generator
model to help with data generation. In discriminator model 2, however, the discriminator model learns
the difference between the actual value and the generated value to create an adversarial relationship,
helping with learning of the generator model.

4 Experiment and Performance Evaluation

In this study, a system of Ubuntu 16.04, Intel Xeon Gold 5120 2.2 Ghz, 20TFlOPS GPU (NVIDIA
Tesla V100 2 Way) is used as the experimental environment for performing the missing value correction
experiment. In addition, traffic speed data are collected to carry out the experiment. As Traffic speed
data, domestic ITS data and data provided by the California Highway System (PeMSD7) in the
United States are collected from two sources. This is because domestic ITS data has a high missing
rate, so it is not possible to conduct an experiment according to the missing rate. Therefore, through
PeMSD7, an experiment according to the missing rate is conducted to evaluate the performance, and
the effectiveness of the domestic data is proved [29,30]. For the spatial range of domestic data, 144
links in the Gangnam area are collected, while for the temporal range, weekday data from 2020/11
to 2020/12 are collected. Each data is the data for each link with a 5-minute period equally collected
for 24 h a day. For the PeMSD7 data, data from 288 detectors in District 7 of California as a spatial
extent are collected, and the temporal range is the same. Performance evaluation is carried out in
three ways: Accuracy evaluation is carried out through performance comparison evaluation with
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existing data imputation method according to the missing rate, data imputation result graph according
to the missing imputation method, and traffic congestion measurement according to the missing
imputation algorithm. As evaluation indicators used for performance evaluation, Root Mean Squared
Error (RMSE) and Mean Absolute Percentage Error (MAPE) are used for performance evaluation,
respectively [31,32,33].

4.1 Performance Comparison Evaluation with Existing Data Imputation Methods According to the
Missing Rate

The performance with that existing models is compared according to the missing rate. To evaluate
the performance of the model according to the missing rate, 10–50% of the missing rate of the data is
randomly removed to generate the missing in the data set. As data, California highway system data
is used, and the evaluation index is RMSE. The lower, the better the performance. Table 3 shows the
performance comparison results with existing models according to the missing rate [7,8,11,12].

Table 3: Comparison of performance with existing models according to the missing rate

10% 20% 30% 40% 50%

Mean 0.0632 0.0884 0.1079 0.1242 0.1388
Malarvizhi et al. [11] 0.0673 0.0896 0.1188 0.1341 0.1681
Buuren et al. [12] 0.0201 0.0315 0.0677 0.0811 0.1165
Gondara et al. [8] 0.0223 0.0281 0.0651 0.0913 0.1242
Yoon et al. [7] 0.0596 0.0622 0.0633 0.0672 0.0753
Our 0.0489 0.0524 0.0583 0.0623 0.0721

In Table 3, each of the existing research models shows better performance between missing rates of
10% to 20%, but the proposed model has the better performance between 30% and 50%. In addition,
the existing studies, which showed good performance at missing rates of 10% to 20%, show that the
results diverge greatly from the results of 30%, but the results of the proposed model show stable
performance from start to finish. It is analyzed that the data was imputed relatively well compared to
the existing studies despite the large number of missing rates because it fills the missing by creating it
through the data distribution, which is the feature of the model.

4.2 Data Imputation Result Graph According to Missing Imputation
The second performance evaluation confirms the pattern of each result value by expressing the

data completed through the missing imputation model as a graph. It is compared with the adversarial
generative neural network-based GAIN model, which has shown stable performance [9]. A qualitative
comparison is carried out through graphs by imputing data with missing values with complete data
through the model. The data used consists of US data with a missing rate of 30%. Fig. 11 shows a
graph comparing actual data and missing data. In Fig. 11, the red line indicates the missing part and
the actual value, and the green indicates the non-missing part. Fig. 12 shows the data imputation result
graph according to the imputation method.
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Figure 11: Comparison graph of real data and missing data

Figure 12: Data imputation result graph according to missing imputation method

In the graph, the X-axis represents time and means the interval of 5 seconds per point, while the
y-axis represents speed. In the graph in Fig. 12, the blue dotted line is the result value of GAIN, and
the black solid line is the result value of the proposed study. In Fig. 12, the red line, where the missing
part exists, is compared with the result graph of the imputation model to check whether the data of
the missing point is well generated. The graph shows that the graph of the proposed model as a whole
generates a relatively good pattern at the missing point. It is analyzed that the spatiotemporal feature
extraction layer added to the encoder part of the model correctly learned the features of the data.
However, the graph shows in detail that the pattern of the actual data is generated relatively similar to
that of GAIN, but there is a part where the value bounces.

4.3 Accuracy Evaluation Through Traffic Congestion Measurement According to Missing Imputation
As a final performance evaluation, time series performance is identified using data with missing

imputed through the models of existing studies [33]. Time series prediction is performed after complete
data generation through missing imputation models. The data used at this time consists of domestic
ITS data (data missing 30%). In addition, the post-missing traffic congestion measurement model uses
the RNN family of LSTMs, which are used for time series prediction. The output value configuration
is designed to predict road speed after 5 minutes from the current time of the link. The performance
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evaluation index is MAPE, and the lower, the better the performance. Fig. 13 shows the comparison
results of time series prediction performance according to the missing imputation method.

Figure 13: Comparison of time series prediction performance according to missing imputation method

In Fig. 13, the model replacing the missing value through the average shows the lowest perfor-
mance. Next, Malarvizhi et al. [11] with k-NN shows a performance of 12.42, and Gondara et al. [8]
with Imputation using a denoising autoencoder shows results of 8.56. Next, Buuren et al. [12],
which substitutes missing values through Multivariate Imposition by Chained Equations, shows a
performance of 8.23. Yoon et al. [7], who substituted missing values using adversarial artificial neural
networks, is 6.45, showing the best performance among existing studies. However, the proposed
model’s performance is considered the best compared to existing studies. Thus, the data pattern is well
generated, which can be analyzed to demonstrate the effectiveness of time-to-time feature extraction.

5 Conclusions

In this study, we proposed the imputation of missing values by reflecting the temporal and spatial
characteristics of traffic data using temporal convolution and spatial convolution. The experiments
showed that outliers and missing values in traffic data affect the results when making predictions.
In order to improve the performance of the model when predicting congestion and speed through
traffic data, missing values were imputed and outliers were removed from the collected data. The
AAE model was used as the basis for the data imputation model. This is a model that complements
the shortcomings of GAN and AE. In addition, temporal characteristics of traffic data are important,
but spatial characteristics are important as well. Therefore, graph convolution was used to learn
spatial features, and temporal features were constructed using causal convolution and gated linear
unit activation functions. In order to verify the performance of the model, the performance evaluation
is performed through three methods. It consists of performance comparison with the existing data
imputation method according to the missing rate, data imputation graph results according to the
missing imputation method, and time series prediction performance comparison according to the
missing imputation method. In the first performance evaluation, each existing research model showed
better performance with missing rates of 10% to 20%, but in the case of the performance between 30%
and 50%, the proposed model showed relatively good results. The second performance evaluation
identifies the pattern of each result value by expressing the data completed through the missing
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imputation model as a graph. It was found that the graph of the proposed model shows a good shape at
the relatively missing point. Finally, in the third performance evaluation, the time series performance
is verified using the data with missing imputed through the models of existing studies. The model
imputed through the average shows the worst performance of 15.64%, the GAN-based model shows a
relatively good performance of 6.45%, and the performance of the proposed model is relatively good,
5.92%, leading to the analysis that the pattern of the data has been well generated. Through this study,
the problem of data sparseness was solved and the performance of the predictive model was improved.
As a future study, we plan to conduct a model study so that missing imputation can be performed well
even with a large number of missing rates, and a traffic congestion prediction model study through the
imputed data.

Funding Statement: This research was supported by the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-0-
01405) supervised by the IITP (Institute for Information & Communications Technology Planning &
Evaluation).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. E. Ryu, D. H. Shin and K. Chung, “Prediction model of dementia risk based on XGBoost using derived

variable extraction and hyper parameter optimization,” IEEE Access, vol. 8, pp. 177708–177720, 2020.
[2] D. H. Shin, R. C. Park and K. Chung, “Decision boundary-based anomaly detection model using improved

AnoGAN from ECG data,” IEEE Access, vol. 8, pp. 108664–108674, 2020.
[3] H. J. Kwon, M. J. Kim, J. W. Baek and K. Chung, “Voice frequency synthesis using VAW-GAN based

amplitude scaling for emotion transformation,” KSII Transactions on Internet and Information Systems,
vol. 16, no. 2, pp. 713–725, 2022.

[4] C. M. Musil, C. B. Warner, P. K. Yobas and S. L. Jones, “A comparison of imputation techniques for
handling missing data,” Western Journal of Nursing Research, vol. 24, no. 7, pp. 815–829, 2002.

[5] P. A. Patrician, “Multiple imputation for missing data,” Research in Nursing & Health, vol. 25, no. 1, pp.
76–84, 2002.

[6] I. Spinelli, S. Scardapane and A. Uncini, “Missing data imputation with adversarially-trained graph
convolutional networks,” Neural Networks, vol. 129, no. 1, pp. 249–260, 2020.

[7] J. Yoon, J. Jordon and M. Schaar, “Gain: Missing data imputation using generative adversarial nets,” in
Int. Conf. on Machine Learning, Stockholm, Sweden, pp. 5689–5698, 2018.

[8] L. Gondara and K. Wang, “Mida: Multiple imputation using denoising autoencoders,” in Pacific-Asia
Conf. on Knowledge Discovery and Data Mining, Cham, Springer, pp. 260–272, 2018.

[9] P. Wu, L. Xu and Z. Huang, “Imputation methods used in missing traffic data: A literature review,” in Int.
Symp. on Intelligence Computation and Applications, Singapore, Springer, pp. 662–677, 2020.

[10] A. B. Pedersen, E. M. Mikkelsen, D. C. Fenton, N. R. Kristensen, T. M. Pham et al., “Missing data and
multiple imputation in clinical epidemiological research,” Clinical Epidemiology, vol. 9, pp. 157, 2017.

[11] R. Malarvizhi and A. S. Thanamani, “K-nearest neighbor in missing data imputation,” International
Journal of Engineering Research and Development, vol. 5, no. 1, pp. 5–7, 2012.

[12] S. Van Buuren and K. Groothuis-Oudshoorn, “MICE: Multivariate imputation by chained equations in
R,” Journal of Statistical Software, vol. 45, no. 3, pp. 1–67, 2011.

[13] T. H. Lin, “A comparison of multiple imputation with EM algorithm and MCMC method for quality of
life missing data,” Quality & Quantity, vol. 44, no. 2, pp. 277–287, 2010.



1940 IASC, 2023, vol.37, no.2

[14] D. J. Stekhoven and P. Bühlmann, “MissForest-non-parametric missing value imputation for mixed-type
data,” Bioinformatics, vol. 28, no. 1, pp. 112–118, 2012.

[15] A. G. Schwing and R. Urtasun, “Fully connected deep structured networks,” arXiv preprint arXiv:
1503.02351, 2015.

[16] M. Lin, Q. Chen and S. Yan, “Network in network,” arXiv preprint arXiv: 1312.4400, 2013.
[17] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” The Handbook of

Brain Theory and Neural Networks, vol. 3361, no. 10, pp. 1995, 1995.
[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv

preprint arXiv: 1609.02907, 2016.
[19] Z. Cui, K. Henrickson, R. Ke, Z. Pu and Y. Wang, “Traffic graph convolutional recurrent neural network:

A deep learning framework for network-scale traffic learning and forecasting,” arXiv preprint arXiv:
1802.07007v3, 2018.

[20] S. Patro and K. K. Sahu, “Normalization: A preprocessing stage,” arXiv preprint arXiv: 1503.06462, 2015.
[21] S. Bhanja and A. Das, “Impact of data normalization on deep neural network for time series forecasting,”

arXiv preprint arXiv: 1812.05519, 2018.
[22] D. H. Shin, “Spatiotemporal feature extraction based missing value imputation model for predicting time

series data,” M.S. Thesis, Department of Computer Science, Kyonggi University, Suwon-Si, South Korea,
2021.

[23] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares et al., “Learning phrase represen-
tations using RNN encoder-decoder for statistical machine translation,” arXiv preprint arXiv: 1406.1078,
2014.

[24] T. J. Brazil, “Causal-convolution—A new method for the transient analysis of linear systems at microwave
frequencies,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 2, pp. 315–323, 1995.

[25] J. Veness, T. Lattimore, D. Budden, A. Bhoopchand, C. Mattern et al., “Gated linear networks,” in Proc.
of the AAAI Conf. on Artificial Intelligence, Palo Alto, California, USA, pp. 10015–10023, 2021.

[26] H. K. Khang and S. B. Kim, “Missing data imputation with adversarial autoencoders,” in Proc. of the
Korean Institute of Industrial Engineers Fall Conf., Seoul, Korea, pp. 1867–1895, 2019.

[27] H. Marmolin, “Subjective MSE measures,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 16,
no. 3, pp. 486–489, 1986.

[28] U. Sara, M. Akter and M. S. Uddin, “Image quality assessment through FSIM, SSIM, MSE and PSNR—A
comparative study,” Journal of Computer and Communications, vol. 7, no. 3, pp. 8–18, 2019.

[29] California Department of Transportation, 2020. [Online]. Available: https://pems.dot.ca.gov/
[30] Q. Shao, Y. Zhang, D. Chen and W. Yu, “GLGAT: Global-local graph attention network for traffic fore-

casting,” in 2020 7th Int. Conf. on Information, Cybernetics, and Computational Social Systems (ICCSS),
Guangzhou, China, pp. 705–709, 2020.

[31] C. O. Plumpton, T. Morris, D. A. Hughes and I. R. White, “Multiple imputation of multiple multi-item
scales when a full imputation model is infeasible,” BMC Research Notes, vol. 9, no. 1, pp. 1–15, 2016.

[32] S. Kaffash, A. T. Nguyen and J. Zhu, “Big data algorithms and applications in intelligent transportation
system: A review and bibliometric analysis,” International Journal of Production Economics, vol. 231, no. 3,
pp. 107868, 2021.

[33] B. U. Jeon and K. Chung, “CutPaste-based anomaly detection model using multi-scale feature extraction in
time series streaming data,” KSII Transactions on Internet and Information Systems (TIIS), vol. 16, no. 8,
pp. 2787–2800, 2022.

https://pems.dot.ca.gov/

	Missing Value Imputation Model Based on Adversarial Autoencoder Using Spatiotemporal Feature Extraction
	1 Introduction
	2 Related Work
	3 Missing Value Imputation Model Based on Spatiotemporal Feature Extraction Layer
	4 Experiment and Performance Evaluation
	5 Conclusions
	References


