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Abstract: Decision implication is a form of decision knowledge represen-
tation, which is able to avoid generating attribute implications that occur
between condition attributes and between decision attributes. Compared with
other forms of decision knowledge representation, decision implication has a
stronger knowledge representation capability. Attribute granularization may
facilitate the knowledge extraction of different attribute granularity layers
and thus is of application significance. Decision implication canonical basis
(DICB) is the most compact set of decision implications, which can efficiently
represent all knowledge in the decision context. In order to mine all deci-
sion information on decision context under attribute granulating, this paper
proposes an updated method of DICB. To this end, the paper reduces the
update of DICB to the updates of decision premises after deleting an attribute
and after adding granulation attributes of some attributes. Based on this, the
paper analyzes the changes of decision premises, examines the properties of
decision premises, designs an algorithm for incrementally generating DICB,
and verifies its effectiveness through experiments. In real life, by using the
updated algorithm of DICB, users may obtain all decision knowledge on
decision context after attribute granularization.

Keywords: Decision context; attribute granulating; decision implication;
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1 Introduction

Formal Concept Analysis (FCA) is a data analysis and processing tool proposed by Prof. Wille
[1]. FCA has been widely studied [2–5] and applied in machine learning [6–8], data mining [9,10],
information retrieval [11,12], conflict analysis [13–15] and recommendation systems [16–18].

In FCA, a formal context is a two-dimensional table that reflects relationships between objects and
attributes. Attribute implication is a formal representation of knowledge in formal contexts. Since the
number of (attribute) implications extracted from formal context is very large, Qu et al. [19] proposed
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decision implication to reduce the implications that occur between condition attributes or between
decision attributes. Zhai et al. [20] studied the semantical and syntactical characteristics of decision
implication from a logical perspective. In particular, in the syntactical aspect, Zhai et al. [20] proposed
two inference rules, namely AUGMENTATION and COMBINATION, to perform knowledge
reasoning among decision implications. Zhai et al. [21] further investigated the influences of the order
and number of times of applying inference rules on knowledge reasoning and designed an optimal
reasoning strategy.

The number of decision implications in decision contexts, however, is still huge. Thus,
Zhai et al. [22] introduced decision premise and decision implication canonical basis (DICB), and
proved that DICB is a complete, non-redundant and optimal set of decision implications. In other
words, DICB can not only keep all the information in decision contexts (i.e., completeness), but also
contain the least number of decision implications among all complete sets of decision implications
(optimality). To generate DICB efficiently, Li et al. [23] proposed a true premise-based generation
algorithm for DICB, and Zhang et al. [24] proposed an incremental generation algorithm for DICB.

In fact, researchers have investigated other forms of knowledge representation and reasoning
besides decision implication, such as concept rules and granular rules [25,26]. Concept rules are
decision implications where both premises and consequences are intents [25], and granular rules
are decision implications where both premises and consequences are granular intents [25]. Based
on these works, Qin et al. [27] investigated attribute (object)-oriented decision rule acquisition;
Xie et al. [28] discussed decision rule acquisition in multi-granularity decision context; Zhi et al. [29]
proposed a fuzzy rule acquisition method based on granule description in fuzzy formal context;
Hu et al. [30] studied rules whose premises and consequences are dual (formal) concepts and formal
(dual) concepts. Zhang et al. [31] compared concept rule, granular rule and decision implication,
and found that concept rule has stronger knowledge representation capability than granular rule and
decision implication has stronger knowledge representation capability than granular rule and concept
rule, i.e., decision implication is the strongest form of knowledge representation and reasoning on
decision context. Thus, it is recommended in [21] that a knowledge representation and reasoning
system based on decision implication can be constructed in applications by using DICB as the
knowledge base and CON-COMBINATION and AUGMENTATION as the inference engine [21].

On the other hand, since granular computing [32] is able to solve complex problems with
multi-level structures and facilitate knowledge acquisition at different levels and granulations, many
granulation methods have been developed in FCA such as relational granulation [33,34], attribute
granulation [35–41], and object granulation [42]. This paper mainly focuses on knowledge discovery
on attribute granulating.

The existing attribute granulation methods mainly focus on how to update concept lattice after
transforming attribute granulation [35], aiming at reducing the complexity of regenerating concept
lattice. For example, Belohlavek et al., Wan et al. and Zou et al. proposed some algorithms to update
concept lattice on attribute granulating [35–37]; Shao et al. [38] proposed an algorithm to update
object(attribute)-oriented multi-granularity concept lattice.

The existing studies did not take into account knowledge discovery on attribute granulating.
Because decision implication is superior to concept rule and granular rule, the paper will examine
the update of decision implication on attribute granulating; in particular, since DICB can efficiently
represent all the information of decision implication [22], it is sufficient to examine the update of DICB.
Thus, the aim of the paper is to examine the relationship between DICBs before and after granulation
and find a more efficient method to generate the DICB of the granulation context.
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This paper is organized as follows. Section 2 reviews the related concepts and properties of decision
implication and DICB; Section 3 introduces granulation context and discusses the updates of decision
premises (the premises of DICB) on attribute granulating; Section 4 proposes an incremental method
for updating DICB; Section 5 concludes the paper.

2 Basic Notions

This section reviews the basic concepts and conclusions of decision implication and DICB; further
details can be found in [19,20].

Definition 1 [19]: Decision context K is a triple K = (G, C ∪ D, IC ∪ ID), where G denotes the set of
objects, C denotes the set of condition attributes, D denotes the set of decision attributes, C ∩D = ∅,
IC ⊆ G × C denotes the set of incidence relations between objects and condition attributes, and ID ⊆
G ×D denotes the set of incidence relations between objects and decision attributes. For g ∈ G, m ∈ C
or m ∈ D, (g, m) ∈ IC or (g, m) ∈ ID means “object g has attribute m”.

Definition 2 [19]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context. For A ⊆ G, B1 ⊆ C and
B2 ⊆ D, we define:

(1) AC = {m ∈ C| (g, m) ∈ IC, ∀g ∈ A}
(2) AD = {m ∈ D| (g, m) ∈ ID, ∀g ∈ A}
(3) B1

C = {g ∈ G|(g, m) ∈ IC, ∀m ∈ B1}
(4) B2

D = {g ∈ G|(g, m) ∈ ID, ∀m ∈ B2}
Proposition 1 [19]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context. For A1, A2 ⊆ C and B1, B2

⊆ D, we have:

(1) A1 ⊆ A2 �⇒ AC
2 ⊆ AC

1 , B1 ⊆ B2 �⇒ BD
2 ⊆ BD

1

(2) (A1 ∪ A2)
C = AC

1 ∩ AC
2 , (B1 ∪ B2)

D = BD
1 ∩ BD

2

(3) (A1 ∩ A2)
C ⊇ AC

1 ∪ AC
2 , (B1 ∩ B2)

D ⊇ BD
1 ∪ BD

2

Definition 3 [20]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context. For A ⊆ C and B ⊆ D, if
AC ⊆ BD, then A ⇒ B is called a decision implication of K, where A is the premise of A ⇒ B and B is
the conclusion of A ⇒ B.

Definition 4 [22]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context. A set A ⊆ C is called a
decision premise of K, if A satisfies the following conditions:

(1) A is minimal with respect to ACD, i.e., if Ai ⊂ A, then Ai
CD ⊆ ACD;

(2) A is proper, i.e.,

ACD ⊃ ∪ {ACD
i |Ai ⊂ A is a decision premise of K} = ∪{ACD

i |Ai ⊂ A} (1)

The set

K∗
D

= ∪{A ⇒ ACD|A is a decision premise of K} (2)

is called the decision implication canonical basis (DICB) of K.

Zhai et al. [22] proved that for any decision context, DICB is complete, non-redundant, and
optimal. In other words, DICB can be considered as a complete (completeness) and compact (non-
redundancy and optimality) knowledge representation in decision context. Furthermore, Li et al. [23]
proved that the properness of decision premise implies minimality, i.e., A is a decision premise if and
only if A is proper.
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3 DICB on Attribute Granulating

This section introduces granulation context based on attribute granularity refinement [39] and
studies the update of decision premises.

Definition 5: Let K = (G, C ∪ D, IC ∪ ID) be a formal context and a ∈ C. The attribute a can be
refined to a set of attributes {a1, a2, . . . , an}, where aC

i �= ∅, aC
i ∩ aC

j = ∅ for i �= j, and ∪n
i=1a

C
i = aC. The

decision context Ka = (
G, Ca ∪ D, Ia

C ∪ ID

)
is called a granulation context of K , where Ca = C\{a} ∪

{a1, a2, . . . , an} and Ia
C = {(g, m)|g ∈ G, m ∈ Ca, g ∈ mC}.

It can be seen from Definition 5 that the refinement of a divides a into n mutually exclusive
attributes {a1, a2, . . . , an}, and any object cannot have any two of them at the same time. In other
words, aC

i , i = 1, 2, . . . , n constitute a partition of aC. Obviously, we have 1 < n ≤ |aC|. In granulation
context, since the attribute a has been refined, Ca thus removes a from C and adds the refined attributes
{a1, a2, . . . , an}.

Example 1. A decision context for bank marketing is shown in Table 1, where G = {g1, g2, g3, g4, g5,
g6, g7, g8, g9} containing nine customers, and C = {a, b, c, d, e, f , g} and D = {h, i} representing the
features of the customers, where a stands for whether the customer has a job, b stands for whether the
customer is married, c stands for whether the customer has a bachelor’s degree or above, d stands for
whether the customer has a credit default, e stands for whether the customer has a home loan, f stands
for whether the customer has a personal loan, g stands for whether the customer has contacted other
customers within six months, h stands for whether the customer has applied for a loan, and i stands
for whether the customer will make a fixed deposit.

Table 1: Decision context for bank marketing

a b c d e f g h i

g1 1 1 1 0 0 0 1 0 1
g2 1 1 0 0 1 0 1 1 0
g3 1 0 1 0 1 0 0 1 0
g4 1 1 1 0 0 1 1 1 0
g5 1 0 1 0 0 0 0 0 1
g6 1 0 1 0 1 0 1 1 0
g7 1 0 1 0 1 0 0 0 0
g8 1 1 0 0 0 0 0 1 0
g9 0 1 0 1 1 0 0 0 0

When attribute a is granulated, “has a job” is granulated into “doctor”, “teacher”, “civil servant”,
“self-employed” and “other professions”, recorded as, a1: doctor, a2: teacher, a3: civil servant, a4: self-
employed, a5: other profession.

The granulation context is shown in Table 2, where G = {g1, g2, g3, g4, g5, g6, g7, g8, g9}, Ca = C\{a}∪
{a1, a2, a3, a4, a5} = {b, c, d, e, f , g} ∪ {a1, a2, a3, a4, a5} = {a1, a2, a3, a4, a5, b, c, d, e, f , g}, and D = {h, i}.
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Table 2: The granulation context

a1 a2 a3 a4 a5 b c d e f g h i

g1 1 0 0 0 0 1 1 0 0 0 1 0 1
g2 0 1 0 0 0 1 0 0 1 0 1 1 0
g3 0 0 1 0 0 0 1 0 1 0 0 1 0
g4 0 0 1 0 0 1 1 0 0 1 1 1 0
g5 0 0 0 0 1 0 1 0 0 0 0 0 1
g6 0 1 0 0 0 0 1 0 1 0 1 1 0
g7 1 0 0 0 0 0 1 0 1 0 0 0 0
g8 0 0 0 1 0 1 0 0 0 0 0 1 0
g9 0 0 0 0 0 1 0 1 1 0 0 0 0

According to [22], DICB can retain all the knowledge in decision context. Therefore, DICB after
attribute granulation can also retain all the knowledge in granulation context. Furthermore, since
decision premise determines DICB [22], the update of DICB can be reduced to the update of decision
premises.

To simplify discussion, this paper divides the updates of decision premises into two steps, namely,
the update of decision premises after deleting attribute a and the update of decision premises after
adding granulation attributes {a1, a2, . . . , an}.

3.1 The Updates of Decision Premises after Deleting Attribute
After attribute a is removed from K = (G, C ∪ D, IC ∪ ID), the new decision context is denoted as:

Ka = (G, Ca ∪ D, Ia ∪ ID) (3)

where Ca = C\{a} and Ia ⊆ G×Ca ∩IC. In order to avoid confusion, the operation (.)C in Ka is denoted
as (.)C. Since D does not change, (.)D is applicable in Ka.

Because decision premise is defined by the operator (.)CD, in order to examine the update of
decision premise from K to Ka, it is necessary to examine the update from ACD to ACD, i.e., from ACD

to ACD.

First, the following properties are given.

Proposition 2: For decision contexts K and Ka, let A ⊆ C. Then, the following conclusions hold:

(1) If a /∈ A, then AC = AC, namely ACD = ACD

(2) If a ∈ A, then ACD ∪ aCD ⊆ ACD

(3) ACD ⊆ ACD

Proof: (1) If a /∈ A, by the definitions of (.)C and (.)C, we can obtain AC = AC and thus ACD = ACD.

(2) If a ∈ A, by the definitions of (.)C and (.)C, we have AC = (A\{a} ∪ a)C = (A\{a})C ∩ aC =
AC ∩ aC. Thus, we obtain ACD = (AC ∩ aC)D ⊇ ACD ∪ aCD and thus ACD ∪ aCD ⊆ ACD.

(3) It follows from (1) and (2).
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In order to generate the decision premises of Ka by the decision premises of K, we classify the
changes of decision premises from K to Ka into three cases:

(1) If A is a decision premise of K and A is also a decision premise of Ka, A is an unchanged decision
premise.

(2) If A is a decision premise of K and A is not a decision premise of Ka, A is an invalid decision
premise.

(3) If A is not a decision premise of K and A is a decision premise of Ka, A is a new decision premise.

The following conclusion identifies the characteristics of unchanged decision premises.

Proposition 3: For decision contexts K and Ka, if A is a decision premise of K , then A is an
unchanged decision premise if and only if a /∈ A.

Proof: Sufficiency: By Proposition 2, if a /∈ A, then we have ACD = ACD. Furthermore, for Aj

such that Aj ⊂ A, since a /∈ Aj, we have ACD
j =ACD

j . Because A is a decision premise of K , we have
ACD = ACD ⊃ ∪ {

ACD
j |Aj ⊂ A

} = ∪ {
ACD

j |Aj ⊂ A
}
. According to Definition 4, A is a decision premise

of Ka.

Necessity: Since A is an unchanged decision premise, A is a decision premise of Ka.

The following conclusion identifies the characteristics of invalid decision premises.

Proposition 4: For decision contexts K and Ka, if A is a decision premise of K, then A is an invalid
decision premise if and only if a ∈ A.

Proof: If A is a decision premise of K, then A is an invalid decision premise or an unchanged
decision premise. In this case, if A is an invalid decision premise, A is not an unchanged decision
premise and by Proposition 3, we have a ∈ A. Conversely, if a ∈ A, by Proposition 3, A is not an
unchanged decision premise and A must be an invalid decision premise.

The following result shows that there does not exist new decision premise in Ka.

Proposition 5: For decision context Ka, there does not exist new decision premise.

Proof: Assume that A is a new decision premise of Ka. Since A is a decision premise of Ka, by the
definition of Ka, we have a /∈ A and by Proposition 2, we have AC = AC. Thus, there does not exist new
decision premise in Ka.

It can be seen from Proposition 5 that decision premises from K to Ka can be divided into two
categories: unchanged decision premise and invalid decision premise. Because the invalid decision
premises do not hold in Ka, the decision premises in Ka only contain the unchanged decision premises
of K. In other words, no new decision premises should be added after removing the condition attribute,
and new decision premises appear after adding granulation attributes.

3.2 The Updates of Decision Premise after Adding Granulation Attributes
This section examines the update of decision premise in Ka from decision premise in Ka after adding

the granulation attributes {a1, a2, . . . , an} to Ka.

Similarly, we classify the changes of decision premises from Ka to Ka into three cases:

(1) If A is a decision premise of Ka and A is also a decision premise of Ka, A is an unchanged
decision premise.

(2) If A is a decision premise of Ka and A is not a decision premise of Ka, A is an invalid decision
premise.
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(3) If A is not a decision premise of Ka and A is a decision premise of Ka, A is a new decision
premise.

In order to avoid confusion, the operation (.)C in Ka is denoted as (.)C̃. Since D does not change,
(.)D is applicable in Ka. The properties of (.)C and (.)C̃ in Ka and Ka are given below.

Proposition 6: For decision contexts Ka and Ka, and A ⊆ Ca, the following conclusions hold:

(1) If A ⊆ Ca, then AC = AC̃, ACD = AC̃D

(2) If A � Ca, then (A ∩ Ca)
CD ⊆ AC̃D.

Proof: (1) By the definitions of (.)C̃ and (.)C, it is obvious.

(2) By (1), we have (A ∩ Ca)
CD = (A ∩ Ca)

C̃D, and by A ∩ Ca ⊆ A, we have (A ∩ Ca)
C̃D ⊆ AC̃D and

thus (A ∩ Ca)
CD ⊆ AC̃D.

The following conclusion identifies the characteristics of unchanged and invalid decision premises
from Ka to Ka.

Proposition 7: For decision contexts Ka and Ka, if A is a decision premise of Ka, then A is a decision
premise of Ka.

Proof: Since A is a decision premise of Ka, we have A ⊆ Ca ⊆ Ca and by Proposition 6, we
have AC̃D = ACD; furthermore, for Aj satisfying Aj ⊂ A ⊆ Ca ⊆ Ca, we have AC̃D

j = ACD
j and thus

AC̃D = ACD ⊃ ⋃{
ACD

j |Aj ⊂ A
} = ⋃ {

AC̃D
j |Aj ⊂ A

}
. It can be seen from Definition 4 that A is a

decision premise of Ka.

Proposition 7 shows that all the decision premises of Ka are the unchanged decision premises of
Ka. Thus, according to the classification of decision premises of Ka, there does not exist invalid decision
premise from Ka to Ka.

Next, we discuss the new decision premises in Ka.

Proposition 8: If A is a new decision premise from Ka to Ka, then there exists only one ai ∈
{a1, a2, . . . , an} such that ai ∈ A.

Proof: First, we will prove that there exists ai ∈ {a1, a2, . . . , an} such that ai ∈ A. Since A is a new
decision premise from Ka to Ka, A is not a decision premise of Ka and A is a decision premise of Ka, i.e.,
we have ACD = ⋃ {

ACD
j |Aj ⊂ A

}
and AC̃D ⊃ ⋃ {

AC̃D
j |Aj ⊂ A

}
. If there does not exist ai ∈ {a1, a2, . . . , an}

such that ai ∈ A, we have A ⊆ Ca. By Proposition 6, we have AC̃D = ACD; similarly, for Aj satisfying
Aj ⊂ A ⊆ Ca ⊆ Ca, we have AC̃D

j = ACD
j and thus AC̃D = ACD = ⋃{

ACD
j |Aj ⊂ A

} = ⋃ {
AC̃D

j |Aj ⊂ A
}
,

which contradicts with AC̃D ⊃ ⋃ {
AC̃D

j |Aj ⊂ A
}
. Thus, we have A � Ca, and there must exist ai ∈

{a1, a2, . . . , an} such that ai ∈ A.

Next, suppose that more than one attribute in {a1, a2, . . . , an} may be contained in A, say,{
ai1

, ai2
, . . . , aik

} ⊆ A, 2 ≤ k ≤ n.

By the definition of redundant decision implication, a decision implication E ⇒ F is redundant
with respect to a set L of decision implications if and only if for any T ⊆ Ca ∪ D, if T satisfies L, then
T also satisfies E ⇒ F . Therefore, if any T ⊆ Ca ∪ D satisfies E ⇒ F , then E ⇒ F is redundant with
respect to any L.

For any T ⊆ Ca ∪ D, by the definition of granulation attributes, there exists at most one ak ∈
{a1, a2, . . . , an} such that ak ∈ T . Therefore, we have

{
ai1

, ai2
, . . . , aik

}
� T , and since

{
ai1

, ai2
, . . . , aik

} ⊆
A, we have A � T , i.e., T satisfies A ⇒ AC̃D. Thus, A ⇒ AC̃D is a redundant decision implication of
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Ka. Since DICB is non-redundant, A is not a decision premise, which contradicts with the fact that A
is a new decision premise of Ka.

By the discussion in Sections 3.1 and 3.2, for a decision premise A of K, if a /∈ A, by Proposition 3
and Proposition 7, A must be a decision premise of Ka and also a decision premise of Ka. In addition,
by Proposition 7 and 8, the decision premises of Ka also include the new decision premises of the form
{ai} ∪ E, where ai ∈ {a1, a2, . . . , an} and E ⊆ Ca, which can be generated based on true premise, as
shown in Section 4.

4 Algorithm for Updating DICB on Attribute Granulating

By Section 3, some decision premises of Ka can be directly obtained by judging whether the
attribute a is contained in the decision premises A of K, and other decision premises of Ka is of the form
{ai}∪E. By Definition 4, in order to determine whether {ai}∪E is a decision premise, it is necessary to
determine whether each subset of {ai}∪ E is a decision premise. Due to the complexity of enumerating
all the subsets of {ai} ∪ E, we propose a true premise [23] based algorithm for determining whether
{ai} ∪ E is a decision premise, as well as updating DICB.

Firstly, Definition 6 gives the definition of true premise.

Definition 6 [23]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context. For A ⊆ C and B ⊆ D, A is
a true premises of B, if A satisfies the following conditions:

(1) A is a premise of B (i.e., AC ⊆ BD).
(2) For any Ai ⊂ A, Ai is not a true premise of B.

The following theorem shows the equivalence of the decision premise and the true premise.

Theorem 1 [23]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context and A ⊆ C. Then, A is a
decision premise if and only if A is a true premise of some d ∈ ACD.

According to Theorem 1, we can determine whether {ai} ∪ E is a decision premise of Ka by
determining whether {ai} ∪ E is a true premise of some decision attributes. In other words, in order to
generate the decision premises of the form {ai} ∪ E, it is sufficient to generate all the true premise of
some d ∈ D that contains ai.

Definition 7 defines the symbols needed to calculate true premise.

Definition 7 [23]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context. For d ∈ D and g ∈ G, denote
d /∈ = {g ∈ G|d /∈ gD} and define g ↙ d if the following conditions are satisfied:

(1) g ∈ d /∈;
(2) For h ∈ G, if gC ⊂ hC, then d ∈ hD.

For d ∈ D, we denote �(d) = {g ∈ G|g ↙ d}.
Definition 8 gives the concepts of candidate premise and candidate true premise, which are used

in the process of generating true premise.

Definition 8 [23]: Let K = (G, C ∪ D, IC ∪ ID) is a decision context. For A ⊆ C, d ∈ D and
P ⊆ �(d), we define:

(1) If P = ∅, or for any g ∈ P, we have A � gC, then A is called a candidate premise of d under P,
denoted by A →P d; otherwise, we denote A �P d.

(2) If A →P d, and for any Ai ⊂ A, we have Ai �P d, then A is called a candidate true premise of
d under P, denoted by A· →P d; otherwise, we denote A· �P d.
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Proposition 9 [23]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context. For A ⊆ C and d ∈ D, we
have:

(1) If A →�(d) d, then A is a premise of d.
(2) If A·→�(d) d, then A is a true premise of d.

By Definition 7 and Proposition 9, true premise can be identified based on �(d) and on d /∈.
Since d /∈ is unchanged on attribute granulating, we need to discuss the change of �(d) on attribute
granulating. In Ka, � (d) is denoted as �′ (d).

Proposition 10: Let K = (G, C ∪ D, IC ∪ ID) be a decision context and Ka = (
G, Ca ∪ D, Ia

C ∪ ID

)

be a granulation context of K, and d ∈ D. Then we have:

(1) �(d) ⊆ �′ (d).
(2) �′ (d) = � (d) ∪ {g ∈ (aC ∩ d /∈)\�(d) |For any h ∈ d /∈such that hC ⊃ gC, there does not exist ai ∈

Casuch that {g, h} ⊆ ai
C̃}.

Proof: (1) By the definitions of �(d) and �′ (d), it is sufficient to prove that for g ∈ �(d), there
does not exist h ∈ d /∈ in Ka such that gC̃ ⊂ hC̃.

If g /∈ aC, by the granulation process of a in Definition 5, for any ai ∈ Ca, we have g /∈ ai
C̃, i.e.,

gC = gC̃. In Ka, for h ∈ d /∈, we need to consider two cases: (a) If for any ai ∈ Ca, we have h /∈ ai
C̃,

we obtain hC = hC̃. From g ∈ �(d), it follows that there does not exist h ∈ d /∈ such that gC ⊂ hC in
K, i.e., there does not exist h ∈ d /∈ such that gC̃ ⊂ hC̃. (b) If there exists ai ∈ Ca such that h ∈ ai

C̃, by
Definition 5, there exists only one ai ∈ Ca such that h ∈ ai

C̃. Then, we have hC̃ = hC\{a} ∪ {ai}. Assume
gC = gC̃ ⊂ hC̃. By g /∈ aC, it is easy to prove that gC ⊆ hC\{a} ⊂ hC. By the definition of �(d) and
g ∈ �(d), we have d ∈ hD and thus h /∈ d /∈, which contradicts with h ∈ d /∈. Therefore, there does not
exist h ∈ d /∈ such that gC̃ ⊂ hC̃.

If g ∈ aC, we assume g /∈ �′ (d), i.e., there exists h ∈ d /∈ in Ka such that gC̃ ⊂ hC̃. By g ∈ aC and
the granulation process of a, there exists only one ai ∈ Ca such that g ∈ ai

C̃, and since gC̃ ⊂ hC̃, we
have h ∈ ai

C̃ and thus {g, h} ⊆ ai
C̃. Since ai

C̃ ⊂ aC, we have {g, h} ⊂ aC. From hC̃ = hC\{a} ∪ {ai} and
gC̃ = gC\{a} ∪ {ai}, it follows hC\{a} ∪ {ai} ⊃ gC\{a} ∪ {ai}, i.e., hC ⊃ gC. By the definition of �(d) and
g ∈ �(d), we have d ∈ hD and thus h /∈ d /∈, which contradicts with h ∈ d /∈. Thus, there does not exist
h ∈ d /∈ such that gC̃ ⊂ hC̃.

(2) By the definition of �′ (d), we have �′ (d) = {g ∈ d /∈|for any h ∈ d /∈, there is hC̃ �⊂gC̃}. By
Conclusion (1), we have �(d) ⊆ �′ (d) ⊆ d /∈ and thus �′ (d) = �(d) ∪ {g ∈ d /∈\�(d) |for any h ∈ d /∈,
hC̃ ⊃ gC̃ holds}.

Next, we prove that for any g ∈ d /∈\�(d), we have a ∈ gC. Assume a /∈ gC, i.e., g /∈ aC. By
g /∈ �(d), there exists h ∈ d /∈ in K such that hC ⊃ gC. We need to consider two cases. (a) If h ∈ aC, by
the granulation process of a in Definition 5, there exists only one ai ∈ Ca such that h ∈ ai

C̃. In this case,
we have hC̃ = hC\{a}∪{ai}. By a /∈ gC, we have hC\{a} ⊇ gC and thus hC̃ ⊃ gC. By g /∈ aC and the proving
process of (1), it is easy to prove gC = gC̃, and we have hC̃ ⊃ gC̃, i.e., h satisfies hC̃ ⊃ gC̃ and h ∈ d /∈.
Thus, we have g /∈ �′ (d), which contradicts with g ∈ �′ (d). Thus, we obtain g ∈ aC. (b) If h /∈ aC, by
g /∈ aC and the proving process of (1), we have gC = gC̃ and hC = hC̃, and thus hC̃ = hC ⊃ gC = gC̃.
Since hC̃ ⊃ gC̃ and h ∈ d /∈, we have g /∈ �′ (d), which contradicts with g ∈ �′ (d). Thus, we obtain
g ∈ aC.

Combining with �′ (d) = � (d) ∪{g ∈ d /∈\�(d) |for any h ∈ d /∈, hC̃ �⊂gC̃holds}, we obtain �′ (d) =
�(d) ∪ {g ∈ (aC ∩ d /∈)\� (d) |for any h ∈ d /∈, hC̃ �⊂gC̃holds}. It is sufficient to prove that for g ∈
(aC ∩ d /∈)\�(d), the following two conditions are equivalent: Condition 1: For any h ∈ d /∈, h satisfies
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hC̃ �⊂gC̃, and Condition 2: For any h ∈ d /∈ such that hC ⊃ gC, there does not exist ai ∈ Ca such that
{g, h} ⊆ ai

C̃.

First, we prove that if g ∈ (
aC ∩ d /∈) \�(d) satisfies Condition 1, then g also satisfies Condition 2.

Assume that there exists h ∈ d /∈ such that hC ⊃ gC, and that there exists ai ∈ Ca such that {g, h} ⊆ ai
C̃.

By g ∈ aC, we have a ∈ gC ⊂ hC and thus {g, h} ⊆ aC. Combining {g, h} ⊆ aC, {g, h} ⊆ ai
C̃ with the

granulation process of a, we obtain hC̃ = hC\{a} ∪ {ai} and gC̃ = gC\{a} ∪ {ai}; since hC ⊃ gC, we have
hC̃ ⊃ gC̃. Thus, there is h ∈ d /∈ such that hC̃ ⊃ gC̃, which is contradictory to Condition 1.

Next, we prove that if g ∈ (
aC ∩ d /∈) \�(d) satisfies Condition 2, then g also satisfies Condition 1.

Assume h ∈ d /∈. If hC ⊃ gC, according to Condition 2, there does not exist ai ∈ Ca such that {g, h} ⊆ ai
C̃.

In this case, by g ∈ aC and h ∈ aC, according to the granulation process of a, there must exist aj,ak ∈ Ca

such that g ∈ aj
C̃ and h ∈ ak

C̃; because there does not exist ai ∈ Ca such that {g, h} ⊆ ai
C̃, we have

aj �= ak, g /∈ ak
C̃, and h /∈ aj

C̃, i.e., hC̃ �⊂gC̃. If hC �⊂gC, we have hC �⊂gC or hC = gC. If hC = gC, we have
hC̃ = gC̃, i.e., hC̃ �⊂gC̃. If hC �⊂gC, we will prove hC̃ �⊂gC̃ in two cases. (a) If a ∈ hC, since hC �⊂gC, there
must exist b1 ∈ C such that b1 �= a, b1 ∈ gC, and b1 /∈ hC. It is easy to prove hC̃ �⊂gC̃. (b) If a /∈ hC, by
the granulation process of a, there does not exist ai ∈ {a1, a2, . . . , an} such that ai ∈ hC̃. By g ∈ aC and
the granulation process of a, there is ai ∈ {a1, a2, . . . , an} such that ai ∈ gC̃. Thus, we have hC̃ �⊂gC̃.

Next, we will generate the true premises of d that contains ai, starting from determining whether
ai is a true premise of d.

Proposition 11: Let Ka = (
G, Ca ∪ D, Ia

C ∪ ID

)
be a granulation context, d ∈ D, and ai ∈

{a1, a2, . . . , an}. Setting P = �

‘

(d) \ai
C̃ �= ∅, then we have {ai}· →P d.

Proof: For any g ∈ P, we have ai /∈ gC̃, i.e, {ai} � gC̃, and thus {ai} →P d. Furthermore, since
{Ai|Ai ⊂ {ai}} = {∅} and ∅ ⊆ gC̃, i.e., ∅ �P d, by Definition 8, we have {ai}· →P d.

At this time, we obtain the candidate true premise {ai} of d under P according to Proposition 11.
Next, we need to gradually increase P to �(d) to determine whether {ai} is the true premise of d. In
the incremental process, reference [23] classified candidate true premises into three cases (Definition
9) and discussed their properties (Proposition 12).

Definition 9 [23]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context. For A ⊆ C, d ∈ D, P ⊆
�(d), and g ∈ �(d) \P, we define:

(1) If A· →P d and A· →P∪{g} d, then A is called an unchanged candidate true premise of d under
P ∪ {g}.

(2) If A· →P d and A· �P∪{g} d, then A is called an invalid candidate true premise of d under
P ∪ {g}.

(3) If A· �P d and A· →P∪{g} d, then A is called a new candidate true premise of d under P ∪ {g}.
Proposition 12 [23]: Let K = (G, C ∪ D, IC ∪ ID) be a decision context. For A ⊆ C, d ∈ D,

P ⊆ �(d) and g ∈ �(d) \P, we have:

(1) A is an unchanged candidate true premise of d under P∪{g} if and only if A· →P d and A � gC.
(2) A is an invalid candidate true premise of d under P ∪ {g} if and only if A· →P d and A ⊆ gC.
(3) A is a new candidate true premise of d under P ∪ {g} if and only if the following conditions

hold:
a) A· �P d
b) There exists an invalid candidate true premise Am satisfying A = Am ∪ {a} for a ∈ C − gC

c) For any Ai ⊂ A, we have Ai· �P ∪{g} d.
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By Definition 9 and Proposition 12, the objects in the set �′ (d) ∩ ai
C̃ can be gradually added into

P. If {ai}·→�′(d)d, then {ai} is a true premise of d; otherwise {ai} is not a true premise of d. After adding g
in �′ (d) ∩ai

C̃ to P, by Definition 9, {ai} may be an unchanged or an invalid candidate true premise of d
under g. If {ai} is an unchanged candidate truth premise, we can continue to add the remaining objects
in �′ (d) ∩ai

C̃ to P. If {ai} is an invalid candidate truth premise, by Proposition 12(3), A = {ai} ∪ {b}
can be generated, where b ∈ Ca − gC. In this case, it needs to further judge whether A = {ai, b} is
a new candidate true premise of d under P ∪ {g} by Proposition 12(3). If {ai, b} is a new candidate
true premise, the remaining objects in �′ (d) ∩ai

C̃ should be gradually added to P ∪ {g} to determine
whether {ai, b} · →�′(d)d holds according to the above process. By repeating the above process, one can
generate all the true premises of d of the form {ai} ∪ E.

The above process can be further optimized. For example, Proposition 13 shows that if ai satisfies
some conditions, ai is a true premise of d. In this case, except ai, all the sets of the form {ai} ∪ E (E �= ∅)
may not be the true premises of d, and there is no need to determine other sets {ai} ∪ E.

Proposition 13: Let Ka = (
G, Ca ∪ D, Ia

C ∪ ID

)
be a granulation context, d ∈ D, �

‘

(d) �= ∅ and

ai ∈ {a1, a2, . . . , an}. If ai
C̃ ∩ �

‘

(d) = ∅, then {ai} is a true premise of d.

Proof: Let P = {
g|g ∈ �′ (d) \ai

C̃
}
. If ai

C̃ ∩ �′ (d) = ∅, then we have P = �′ (d). By Proposition
12, we obtain {ai}· →P d, i.e., {ai}· →�′(d) d, and by Proposition 9, we know that ai is a true premise
of d.

A true premise-based incremental method can then be proposed for generating DICB under
attribute granulation, as shown in Algorithm 1.

Algorithm 1: True premise-based algorithm for generating DICB on attribute granulating

Input: Decision context K = (G, C ∪ D, IC ∪ ID), granulation context Ka = (
G, Ca ∪ D, Ia

C ∪ ID

)
, and

the set DPK of decision premises ofK
Output: The DICB OKa of Ka

1: OKa = ∅
2: for all A ∈ DPK do:
3: if a /∈ A then:
4: add A ⇒ AC̃Dto OKa

5: end if
6: end for
7: for all d ∈ D do:
8: �′

(d) = get_newgd(K , Ka, d)

9: for ai in {a1, a2, . . . , an}:
10: dpai

= {{ai}} //dpai
records the true premises of d in the form {ai} ∪ E

11: if ai
C̃ ∩ �′

(d) �= ∅ then:
12: dpai

= generator_newdp(ai, �
′
(d))

13: end if
14: for all A ∈ dpai

do:

15: if A ⇒ A
˜CD not in OKa then:

16: add A ⇒ AC̃D to OKa

17: end if
18: end for

(Continued)
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Algorithm 1: Continued
19: end for
20: end for
21: return OKa

In Algorithm 1, we first generate the unchanged decision premises by the decision premises of
K according to the results in Section 3 (Steps 2–6), and then generate the new decision premise
of Ka by generating the true premises of each d that contain ai (Steps 7–20). In Steps 7–20, for a
decision attribute d, we first generate �′ (d) by the function get_newgd (Step 8), then generate the
new decision premises {ai} ∪ E for each ai by generator_newdp (Steps 10–13), and finally generate the
decision implications of the new decision premises (Steps 14–18). In Steps 10–13, by Proposition 13, if
ai

C̃ ∩�′ (d) = ∅, only ai is a true premise of d in the sets {ai}∪E. Otherwise, it is necessary to gradually
add the objects in ai

C̃ ∩ �′ (d) by the function generator_newdp to obtain dpai , the set of all the true
premises of d of the form {ai} ∪ E.

Algorithm 2 presents the function get_newgd for generating �′ (d).

Algorithm 2: The function get_newgd

Input: Decision context K = (G, C ∪ D, IC ∪ ID), granulation context Ka = (
G, Ca ∪ D, Ia

C ∪ ID

)
, and

d ∈ D
Output: �′

(d)

1: �′
(d) = ∅

2: � (d) = getAll_gd(K , d)

3: if
(
aC ∩ d /∈) \� (d) == ∅ then:

4: �′
(d) = � (d)

5: else:
6: for all g ∈ aC ∩d /∈ && g /∈ � (d) do:
7: �′

(d) = � (d) ∪ {g}
8: for each h ∈ d /∈ && hC ⊃ gC :
9: if there exists ai ∈ Ca such that {g, h} ⊆ ai

C̃ then:
10: �′

(d) = �′
(d) \{g}

11: break
12: end if
13: end for
14: end for
15: end if
16: return �′

(d)

Algorithm 2 generates �′ (d) according to Proposition 10. After initializing �′ (d) (Step 1),
Algorithm 2 uses the function getAll_gd in [23] to generate �(d) of K (Step 2). If (aC ∩d /∈)\�(d) = ∅,
by Proposition 10(2), one should keep �′ (d) = �(d) (Step 4); otherwise �′ (d) should be generated
by Proposition 10 (Steps 6–14).

Algorithm 3 presents the function generator_newdp to generate all the true premises of d of the
form {ai} ∪ E.
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Algorithm 3: The function generator_newdp
Input: ai and �′

(d)

Output: dpai
1: dpai

= {{ai}}
2: P = �′

(d) \ai
C̃

3: for all g ∈ ai
C̃ ∩ �′

(d) do:
4: P = P ∪ {g}
5: for all A ∈ dpai

do:
6: if A ⊆ gC̃ then:
7: remove A from dpai

8: for each b ∈ Ca − gC̃ − {a1, a2, . . . , an}:
9: add A ∪ {b} to dpai
10: for all Ai ⊆ A ∪ {b} do:
11: if Ai· →P d then:
12: remove A ∪ {b} from dpai
13: break
14: end if
15: end for
16: end for
17: end if
18: end for
19: end for
20: return dpai

Algorithm 3 first initializes dpai to {{ai}} according to Proposition 13 (Step 1), and initializes P
to

{
g|g ∈ �′ (d) \ai

C̃
}

(Step 2). Then, Algorithm 3 adds the elements in ai
C̃ ∩ �′ (d) to P and judges

whether {ai} is a true premise of d according to Proposition 9 (Steps 3–19). In the process (Steps 3–
19), if {ai} � gC̃, by Proposition 12 and Definition 9, we have {ai} · →P∪{g} d, and continue to add the
elements in ai

C̃ ∩ �′ (d) and determine whether {ai} is a true premise of d. If {ai} ⊆ gC̃ (Step 6), by
Proposition 12, {ai} is an invalid candidate true premise of d under P ∪ {g}. By Definition 8(1) and
g ∈ �′ (d), we have {ai} ��′(d) d, and by Definition 8(2), we have {ai} · ��′(d) d. Thus, {ai} is not a true
premise of d (step 7). In this case, according to Definition 9, {ai} is an invalid candidate true premise,
and according to Proposition 12(3), a new candidate true premise with respect to g can be generated
based on {ai}. To this end, by Proposition 12(3)(b), b ∈ Ca − gC̃ can be added to {ai}. By Proposition 8,
the decision implications whose premises contain two or more granulation attributes are redundant.
Thus, it is sufficient to add Ca − gC̃ − {a1, a2, . . . , an} to {ai} (Steps 8–9). In order to determine whether
{ai} ∪ {b} is a new candidate true premise of d under P ∪ {g}, one should check whether Proposition
12(3)(a) and Proposition 12(3)(c) are true. For Condition (a), {ai} · →P d holds by {ai} ∈ dpai in Step 5,
and {ai} ∪ {b} · �P d holds by Definition 8 (otherwise, {ai} · �P d holds); in other words, Condition (a)
holds. Thus, Algorithm 3 simply checks whether Proposition 12(3)(c) holds in Steps 10–15. It should
be noted that P is equal to (�′ (d) \ai

C̃) ∪ {g} at this iteration.

For the candidate true premise {ai} ∪ {b} that satisfies Condition (c), by Proposition 12(3), {ai} ∪
{b} is a new candidate true premise of d under P ∪ {g} = (�′ (d) \ai

C̃) ∪ {g}, i.e., we have {ai} ∪
{b} · →

(�′(d)\aiC̃ )∪{g} d. Therefore, in the next iteration (Steps 3–19), we only need to gradually increase

the objects in ai
C̃ ∩�′ (d) \{g}. Similarly, in Steps 3-19, we should first determine whether A = {ai, b} is



1846 IASC, 2023, vol.37, no.2

an invalid candidate true premise of d under P∪{g} according to Proposition 12 (Step 6); if {ai, b} ⊆ gC̃,
{ai, b} is an invalid candidate true premise of d under P ∪ {g}, and should be deleted by Definitions
8(1) and 8(2) (Step 7). In this case, new candidate true premises can be generated by Steps 8–16.

Example 2. (Continuing Example 1) For the decision context K in Table 1 and the granulation
context Ka in Tables 2, 3 lists the DICB of K.

Table 3: DICB of K

{f } ⇒ {h} {a, b, e} ⇒ {h}
{e, g} ⇒ {h} {e, b, c} ⇒ {h, i}
{a, d} ⇒ {h, i} {e, f } ⇒ {h, i}
{c, d} ⇒ {h, i} {d, f } ⇒ {h, i}
{d, g} ⇒ {h.i}

According to Algorithm 1 (Steps 1–6), the unchanged decision premises can be computed as
{{f } , {e, g} , {c, d} , {d, g} , {e, b, c} , {e, f } , {d, f }}.

Next, we calculate the true premise of {ai} ∪ E for each decision attribute. Take the decision
attribute h as an example. Firstly, we need to calculate �′ (h) of Ka according to Algorithm 2. According
to Ka, we have h/∈ = {g1, g5, g7, g9}, �(h) = {g1, g7, g9}, and aC = {g1, g2, g3, g4, g5, g6, g7, g8}. By(
aC ∩ h/∈) \�(h) = {g5} and Algorithm 2, there does not exist ai ∈ Ca satisfying {g1, g5} ⊆ ai

C̃ or
{g7, g5} ⊆ ai

C̃, so we have �′ (h) = � (h) ∪ {g5} = {g1, g5, g7, g9}.
Next, we calculate the true premises of h with the form {ai} ∪ E. According to Table 2, we have

a1
C̃ = {g1, g7}, a2

C̃ = {g2, g6}, a3
C̃ = {g3, g4}, a4

C̃ = {g8} and a5
C̃ = {g5}, where a2

C̃ ∩�′ (h) = a3
C̃ ∩�′ (h) =

a4
C̃ ∩ �′ (h) = ∅. Thus, {a2},{a3} and {a4} are the true premises of h. For a5, according to Algorithm 3,

we can gradually increase a5
C̃ ∩ �′ (h) = {g5} to {a5}. Since {a5} ⊆ g5

C̃, we add Ca − g5
C̃ − {a1, a2, a3, a4}

to {a5} to obtain the candidate true premises {{a5, b}, {a5, d} , {a5, e} , {a5, f } , {a5, g}}. However, we
have {f }· →�′(h) h; therefore, the true premises of h containing a5 are {{a5, b}, {a5, d} , {a5, e} , {a5, g}}.
Similarly, it can be obtained that the true premises of h containing a1 are {{a1, d} , {a1, b, e}}.

Similarly, we can obtain the true premises of i with the form of {ai} ∪ E, i.e., {{a1, b} ,
{a1, f } , {a1, g} , {a2, e}, {a2, b, c} , {a3, c} , {a3, e, g} , {a3, e, b} , {a5, b} , {a5, d} , {a5, e} , {a5, g} , {a5}}.

Table 4 lists the DICB of Ka.

Table 4 DICB of Ka

{f } ⇒ {h} {e, b, c} ⇒ {h, i}
{e, g} ⇒ {h}
{a5, b} ⇒ {h, i}

{e, f } ⇒ {h, i}
{d, f } ⇒ {h, i}

{a5, d} ⇒ {h, i} {a1, b} ⇒ {i}
{a5, e} ⇒ {h, i} {a1, f } ⇒ {h, i}
{a5, g} ⇒ {h, i} {a1, g} ⇒ {i}
{a2} ⇒ {h} {a1, d} ⇒ {h, i}
{a3} ⇒ {h} {a2, e} ⇒ {h, i}
{a4} ⇒ {h} {a2, b, c} ⇒ {h, i}
{c, d} ⇒ {h, i} {a3, c} ⇒ {h, i}

(Continued)
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Table 4 Continued

{d, g} ⇒ {h, i} {a3, e, g} ⇒ {h, i}
{a5} ⇒ {i} {a3, e, b} ⇒ {h, i}

{a1, b, e} ⇒ {h, i}

5 Experimental Verification

In order to verify the effectiveness of the proposed method, we conduct some experiments in real
data sets. We selected four UCI data sets, performed preprocessing such as removing missing values
and normalizing continuous values, and generated the binary data sets according to the threshold of
0.5. Since the true premise-based algorithm (MBTP) in [23] is the most efficient method for generating
DICB, especially when |G|/|C| is less than 40, we select the MBTP algorithm as the baseline algorithm
for comparison. In order to produce a stable performance, the ratio of |G|/|C| is set to 20 and the
number of condition attributes can be derived accordingly, as shown in Table 5.

Table 5: Information of data sets

Data set Number of objects Number of attributes Number of condition attributes

bank8FM 480 27 24
Supermarket 560 99 28
Credit rating 546 273 27
Hypothyroid 1024 457 51

In the experiments, MBTP is used to directly generate the DICB of granulation context and the
proposed method, called the InCremental Method (ICM), is used to generate the DICB of granulation
context by updating the DICB of decision context. In order to analyze the influence of the number
of granulations on the experimental results, we randomly selected about one fifth of the number of
condition attributes and refined them into 2, 3 and 4 fine-grained attributes respectively.

The average consuming times of generate DICB for each refinement are summarized in Table 6.

Table 6: Average consuming times of generate DICB for each refinement

Data set Number of fine-grained
attributes

The average time of
MBTP(s)

The average time of
ICM(s)

2 14.43 5.63
bank8FM 3 16.30 6.51

4 18.39 7.12
2 961.27 501.19

Supermarket 3 1137.81 552.50
4 1245.00 569.93
2 58.59 32.48

Credit rating 3 62.53 34.23
4 66.91 38.70

(Continued)
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Table 6: Continued
Data set Number of fine-grained

attributes
The average time of
MBTP(s)

The average time of
ICM(s)

2 1333.86 662.99
Hypothyroid 3 1515.53 812.21

4 1698.19 962.10

According to Table 6, on the whole, ICM is more efficient than MBTP. For the data sets whose
DICB can be generated within about one minute, such as bank8FM and credit rating, the consuming
times may depend more on runtime environments than other data sets. Thus, the comparison results
may be unconvincing. For the other data sets, i.e., supermarket and hypothyroid, MBTP will take
about twenty minutes to generate DICB, whereas ICM only takes half the consuming time of MBTP,
i.e., about ten minutes to achieve the same goal.

It should be noted that the consuming time of ICM only contains the updating time from the DICB
of decision context to the DICB of granulation context, excluding the consuming time of generating
DICB of decision context. Thus, the comparison results above do not imply that ICM is more efficient
than MBTP in generating DICB. However, for one thing, since ICM presupposes the presence of DICB
of decision context, the comparison is reasonable; for another, since in reality, there may be a continual
requirement of attribute granulation, ICM will become more efficient than MBTP because the time of
generating DICB of decision context is consumed once and will be balanced finally by the subsequent
updating profit.

6 Conclusion and Further Works

In order to reduce the complexity of regenerating decision implications on attribute granulation,
this paper stated that the update of decision implications can be accomplished by the update of DICB.
Thus, the paper discussed the properties of DICB on attribute granulation and designed an incremental
method for updating DICB. Experiment results show that the update of DICB is more efficient than
generation from decision context.

It can also be observed that the proposed method has some limitations. For example, the proposed
method only considers the refinement of one condition attribute in the update of DICB. Although the
updates of multiple attributes can be completed by applying the proposed method to multiple attributes
many times, it may be inefficient.

In addition, this paper only examines the update of DICB after condition attribute granulation
and does not take decision attribute granulation into consideration. The results in [20,21] show that
condition attributes and decision attributes in decision implications are not symmetrical, as reflected
in the semantical and syntactical aspects of decision implication. For example, in the syntactical
aspect, by AUGMENTATION, one can augment the premises (condition attributes) and reduce the
consequences (decision attributes), implying that one cannot apply the proposed method in the paper
to the case of decision attribute granulation. Therefore, it is necessary to study the update of decision
implications under decision attribute granulation, not only for generating DICB but also for deeply
understanding the system of decision implications.
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Finally, the proposed method can also be combined with other applications [43]. For example,
through attribute refinement, some low-level features in image, such as texture, can be extracted
and refined into high-level features, such as texture direction and texture perimeter. By calculating a
compact knowledge base such as DICB, features with more semantical information can be obtained.
In other words, the information in image can be fully utilized to segment the images, thus improving
the accuracy and robustness of segmentation.
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