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Abstract: Image processing is becoming more popular because images are
being used increasingly in medical diagnosis, biometric monitoring, and
character recognition. But these images are frequently contaminated with
noise, which can corrupt subsequent image processing stages. Therefore, in
this paper, we propose a novel nonlinear filter for removing “salt and pepper”
impulsive noise from a complex color image. The new filter is called the
Modified Vector Directional Filter (MVDF). The suggested method is based
on the traditional Vector Directional Filter (VDF). However, before the can-
didate pixel is processed by the VDF, the MVDF employs a threshold and the
neighboring pixels of the candidate pixel in a 3 x 3 filter window to determine
whether it is noise-corrupted or noise-free. Several reference color images
corrupted by impulsive noise with intensities ranging from 3% to 20% are
used to assess the MVDEF’s effectiveness. The results of the experiments show
that the MVDF is better than the VDF and the Generalized VDF (GVDF) in
terms of the PSNR (Peak Signal-to-Noise Ratio), NCD (Normalized Color
Difference), and execution time for the denoised image. In fact, the PSNR
is increased by 6.554% and 12.624%, the NCD is decreased by 20.273% and
44.147%, and the execution time is reduced by approximately a factor of 3
for the MVDF relative to the VDF and GVDF, respectively. These results
prove the efficiency of the proposed filter. Furthermore, a hardware design
is proposed for the MVDF using the High-Level Synthesis (HLS) flow in
order to increase its performance. This design, which is implemented on the
Xilinx Zynq XCZU9EG Field-Programmable Gate Array (FPGA), allows the
restoration of a 256 x 256-pixel image in 2 milliseconds (ms) only.

Keywords: Nonlinear filter; impulsive noise; noise reduction; software/
hardware optimization; color image; HLS; FPGA

1 Introduction

Noise frequently degrades image quality and can come from a variety of sources, including
electrical disturbances, communication issues, noisy sensors, etc. This noise causes problems in digital
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image processing. Moreover, denoising and enhancement of images while preserving edge sharpness
and image details are essential operations before using them for other image processing techniques.

Nonlinear filters [1] are useful for removing noise from images, as they can effectively preserve
the edges and details of the image while smoothing out the noise. They are a type of image filtering
technique that involves modifying the pixel values of an image based on their local environment.
Some commonly used nonlinear filters include the median filter, the bilateral filter, and the adaptive
filter. These filters are widely used in image processing applications such as computer vision, medical
imaging, and remote sensing. The Vector Directional Filter (VDF) [2,3] is a type of nonlinear filter
that is used to remove noise from color images. Unlike traditional color filters that process each
color channel independently, VDF operates on the color vector space, taking into account the spatial
correlations between different color channels. This filter employs the angle between the image vectors
as an ordering criterion, which allows it to provide an optimal directional estimator. In this case, the
vectors of the image with directions atypical in RGB space are removed, and the best estimations of the
chromaticity are attained. But the VDF has some limitations, especially when some noisy pixels are not
identified or non-noisy pixels are classified as noise. However, in the first scenario, the pixels remain
unchanged. For the second scenario, the pixels will be replaced. As a result, these two scenarios may
have negative effects, such as blurring fine details or destroying the edges of the reconstructed image.

In this context, to improve the performance of the VDEF, a new filter is proposed, which is the
Modified VDF (MVDF). Besides, a hardware architecture is suggested for this filter for real-time
processing. Nevertheless, to design a hardware architecture, the Low-Level Synthesis (LLS) flow can
be used through a hardware description language such as Verilog. But, the LLS needs a high level
of skill and much time to design any hardware architecture, especially for complex algorithms [4-6].
For that, in the last decade, a High-Level Synthesis (HLS) flow was established to generate several
hardware designs for any algorithm in a few times from a high-level programming language like C or
C++ [7-9] and realize the space exploration to select the best design. Thereby, in this work, the HLS
flow is used to create an efficient hardware architecture for the MVDF and implement it in the Zynq
XCZU9EG Xilinx Field-Programmable Gate Array (FPGA).

The following is the structure of the paper: The related works are illustrated in Section 2. Section 3
gives an overview of the VDF and the theory of the proposed MVDF. In Section 4, several experiments
are realized to select the best parameters for the proposed filter, and a comparative study is conducted.
A real-time MVDF hardware architecture is designed in Section 5. The paper concludes with Section 6.

2 Related Works

A commonly encountered noise in color images is a “salt and pepper” impulsive noise [10].
However, in the literature, several filters are proposed to remove this noise. In fact, for reducing
impulse noise from color images, a basic vector filter [11,12] is provided. The vector ordering approach
is utilized in these filters. Furthermore, weighted vector filters are suggested in [13—17], where each
pixel of the filter window is given a non-negative weight in order to eliminate outliers. In addition,
[18,19] provide a hybrid vector filter, which employs several subfilters and produces an output that is a
composite of the samples of the input vector. Moreover, fuzzy vector filters are introduced in [20-22].
In this kind of filter, the fuzzy functions created by various distance functions are utilized to determine
the weights of a nonlinear adaptive filter. In recent years, popular techniques based on convolutional
neural network architecture and deep learning have been suggested to improve the restoration of image
quality [23-25].
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The most important filters used to preserve the chromaticity of the restored color image and
suitable for real-time implementation in the basic vector filter family are the VDF and Generalized
VDF [26]. In order for these filters to restore the image, a filter window must be applied to each pixel
in the image. This process is carried out without differentiating between a non-noisy pixel and a noisy
pixel, which can lead to a poor-quality image. Moreover, these filters require a large amount of time
to filter the image and have a high level of computational complexity.

However, in the literature, some solutions are proposed to reduce the computational complexity
of these filters. In fact, the authors of [27] suggest a real-time hardware implementation for the
VDE. Therefore, the nonlinear function in the VDF is approximated to provide a flexible hardware
architecture. But, this approximation leads to a loss in the quality of the restored image. In [28],
the authors propose a floating-point implementation of the VDF on the Texas Instruments DSP
TMS320C6711. This solution allows filtering a 320 x 320 image in 1342 ms at 150 MHz. Reference
[29] introduces some approximations to implement VDF on an Intel Pentium® processor running at
2.66 GHz. These approximations allow a reduction in the processing time but a decrease in the filtered
image quality.

In this study, the MVDF is suggested to enhance the quality of the denoised image without
increasing the computational complexity relative to the VDF and GVDF filters. In fact, the principle
of the MVDF is to detect, through a threshold and neighborhood pixels of the central pixel in the 3 x 3
filter window, whether the selected pixel in the image is corrupted by noise or not before processing it
by the VDF. Besides, for real-time execution of the MVDF, the hardware architecture is designed for
this filter via the HLS flow.

3 Materials and Methods
3.1 VDF Overview

The VDF allows optimization of the vector direction variation related to the pixel chrominance.
Hence, the VDF permits minimizing the angular distance.

Consider x: Z* — Z" which presents the multichannel signal, where a is the image dimension and b
is the color channel in the image. However, « =2 and » = 3 for the RGB color image. Besides, consider
V ={x, € Z%j=1,..., M} which illustrates the size of the filter window. In fact, x,, x,, ... x,, is the
noisy pixels in the filter window. x,.,,), 1s the central pixel in the filter window and allows to determine
its position. The angular distance for the input x; of the filter window is determined by Eq. (1).

X 1
T ZAWS (nx I ||) v

The Arccos function determines the angular distance between two channels x; = (R, G;, B)). and
x; = (R;, G, B).

Assuming that o, oG,..., o are the sum of the aggregated angular distances, the function
Argmin, presented in Eq. (2), permits to find the minimum angle in the filter window W allowing to
minimize the angle with other pixels.

Vypr = Argmin (o<,-) 2)

So, the output of the VDF filter is the vector x, from the input vectors in the filter window.
Nevertheless, the vector x, is determined by x;, < x, < ... < x,,which is related to the lowest
weighted angular distance o, € {o¢, < X < ... <X}
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3.2 Proposed Filter

The problem with the VDF is that it works with a fixed filter window. This causes a loss in the
details of the image and creates a blurred image while filtering the noisy pixels. For that, our purpose
is to minimize error in the VDF output and increase its performance by estimating if the selected pixel
in the image is corrupted by noise or not before it is processed by the VDF. For that, a threshold (7))
and the relationship with neighborhood pixels (RWNP) of the candidate pixel, which is the central
pixel x 11, in the filter window (W), are used to classify if the candidate pixel is corrupted by noise
or free of noise. In fact, if the RWNP is greater than or equal to 7, then the central pixel X1, 1S
considered a corrupted pixel and should be processed by the VDF filter to determine the denoising
pixel. Otherwise, the central pixel is considered free of noise and stays unchanged. This is the principle
of our proposed MVDF.

But in the MVDF, there is an extra filter that checks if the central pixel is noisy or not. This
filter is based on the computation of the RWNP value. In fact, in the filter window, the minimum
order pixels of the VDF output and their closest neighborhoods contain comparable values of the
calculated angle relative to another input pixel. So, the RIWNP is computed as the distance between the
central pixel x /.1, and the lowest first (f') pixels x,), Xa), . . . , X, related to the lowest weighted angle
K1y K5 - - - » Xy determined by the VDF in the filter window. Nevertheless, the /* highest similarity
input pixels (xq, Xa), . . . , Xy) provides a high measurement of the noise in the center pixel. Thus, the
RWNP is calculated by Eq. (3), where f should be less than or equal to M.

M

1

- E X; — X+

A ’ 2
j=1

So, the output pixel of the MVDF is specified per Eq. (4).
[x(l) if RWNP > T
Ymvor =

RWNP = (3)

. “4)
X, Otherwise

Indeed, from Fig. 1, we can see that for the 3 x 3 filter window nine angular distances are
calculated. Then, these distances are arranged in ascending order to determine the /" highest similarity
input pixels x,), X, . . . , X, Based on these results, we compute the RWNP value in order to determine
the output RGB pixel of the MVDEF. Thus, referring to Eq. (4), the output of the yyypr is equal to
xgqywhen the RWNP > T. This means that the central pixel x,,.,,, is probably corrupted by impulsive
noise, and it is replaced by x;,. On the other hand, the output of the y\ypr 1s equal to x,., ), when the
RWNP < T. This means that the central pixel x,,,,, is free of noise and can stay unchanged.
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Figure 1: MVDF block diagram

4 Results and Discussion

The performance of our proposed MVDF depends on the / and T parameters. In fact, we have to
select the correct values for these parameters to preserve the details of the filtered image and achieve
a high visual quality in the restored color image, irrespective of the intensity of the impulsive noise.
To realize this study, two standard images are used, which are Lena and Sailboat. These images have a
resolution of 256 x 256 pixels and are contaminated by “salt and pepper” impulsive noise of intensities
10% and 20%. This noise is produced by the imnoise function given by the MATLAB tool. The NCD
(Normalized Color Difference) and PSNR (Peak Signal-to-Noise Ratio) metrics are used to measure
the color image quality objectively. Indeed, the PSNR and NCD metrics are computed through Egs. (5)
and (8), respectively.

255°
PSNR = 101log (MSE) %)
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where the Mean Squared Error (MSE) for three image components R (Red), G (Green), and B (Blue)
is calculated based on Eq. (6)

MSE; + MSE; + MSE, ©)
3

However, the MSE for each channel in the color image is determined by Eq. (7). j presents the
image channel (R, G, and B). X and Y provide the height and the length of the image, respectively.
But, O, and /; indicate the restored and the input images, respectively.

MSE =

[ ,
MSE = — ; Zmzl (0, (n,m) — I, (n,m)) (7)

Z:,=]ZL=1\/(L0 (l’l, m) - Li (l’l, m))2 + (uo (l’l, m) —U; (l’l, m))2 + (Vo (7’[, m) —V (na m))2
S VL, (n,m)) A+ (u, (n,m)) A+ (v, (n,m))

where, the L, and L, represent the luminance component of the restored and input images, respectively.
But, (u,, v,) and (u;, v;) are the restored and the input images for the chrominance components,
respectively.

NCD =

(®)

The MVDF code is written in the programming language C, and it is made with the help of
Microsoft Visual Studio Community 2019. The CoreTM 17-1165G7@2.80 GHz Intel processor is
used to run the C code for MVDF on the computer. The Timer of the Intel processor is employed
to calculate the processing time of our MVDF code. Figs. 2 and 3 illustrate the curves of the PSNR
and NCD values in terms of T (from 5to 90) and ' (1, 3, 5, 7, and 9) for the Lena and Sailboat images,
respectively. In fact, for each value of f, we have drawn a curve by varying the value of 7. Our study
was conducted with two intensity levels of impulsive noise, equal to 10% and 20%. Our goal is to study
the behavior of the MVDF and select the best values of the f and T parameters in order to provide an
excellent restoration of the noisy color image with our proposed MVDF.

—4—f=1 —W—f=3 =5 f=7 —Wmf=9 —f=]  —flf=3 f=5 =7 =—Hemf=9

27.80 0.07

0.06

&
3

0.05

PSNR (dB)
MO RN
e
8588
NCD

88

0.04

0.03

& 5
88

25.00 0.0z
5 1015 202530354045505560657075808590 5 10 15 20 2530 35 40 4550 55 60 65 70 75 80 85 90

T T
(a) Impulsive Noise (10%)

Figure 2: (Continued)
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Figure 2: Measurement of the PSNR and NCD of the restored Lena image with MVDF for various f
and T values and noise intensity (10% and 20%)
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Figure 3: Measurement of the PSNR and NCD of the restored Sailboat image with MVDF for various
f and T values and noise intensity (10% and 20%)

It is clear from Figs. 2a and 3a that the MVDF provides the best performance in terms of the
PSNR and NCD when f=35, 7, or 9 and T'= 50 for Lena and Sailboat images, which are corrupted by
10% of impulsive noise. On the other hand, if we increase the level of noise to 20% for Lena and
Sailboat images, we can see from Figs. 2b and 3b, respectively, that the MVDF provides the best
performance when only f=9 and 7= 50. Thus, we can notice from the above findings that when the
noise level is increased, it is worth using the nine input pixels (x., Xq), . . . , X)) from the 3 x 3 filter
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window to calculate the RWNP parameter for MVDF. This allows a high measurement of the noise
in the center pixel and minimizes the error in the output of the MVDEFE. Consequently, to reduce the
computational complexity of the MVDF and increase its performance to restore the color image with
the best quality while preserving the image details, we select as values for f and 7 parameters 9 and 50,
respectively. Accordingly, the block diagram of the MVDF is became as depicted in Fig. 4. However,
in the beginning, the RWNP parameter is computed for f=9. Then, we compare the RWNP with
T=50. In fact, if RWNP < 50, the candidate pixel is determined to be noise-free and then the MVDF
result is equal to x.1),. Otherwise, it is considered noise-corrupted, and the VDF is used to identify
the filtered pixel that is equal to x;, corresponding to minimum angular distance (cx;).

The performance of our proposed MVDF is compared with that of VDF and GVDF. Indeed,
Fig. 5 illustrates the performance comparison in terms of PSNR and NCD metrics for VDF, GVDF,
and MVDF. This study is realized for indoor scenes such as Lena (Fig. 5a) and outdoor scenes such
as Sailboat (Fig. 5b). These images are contaminated with 3%, 5%, 10%, 15%, and 20% of “salt and
pepper” impulsive noise. Nevertheless, we can notice from Fig. 5 that the MVDF provides a better
performance compared to the VDF and GVDF in terms of PSNR and NCD metrics, especially for
low and medium levels of noise. Besides, we can observe from Fig. 6, which illustrates the execution
time in milliseconds (ms) of the VDF, GVDF, and MVDF, that the MVDF reduces the computational
complexity relative to the VDF and GVDF. In fact, the MVDF gives a reduction in the execution time
of 64.088% and 67.172% relative to the VDF and GVDF, respectively. In light of the above findings,
our proposed MVDF is superior to other filters in terms of the quality of the restored image and the

reduction of its computational complexity.

Filter
Window

| Computing RWNP ‘

No

RWNP > 50

Yes

| Angular distance(a) ‘

|

| Compare (o)) ‘

Determine (xs) based on
min (o)

v
YmMvDF=X(M+1)2 Ymvor=X(1)

Figure 4: Block diagram of the MVDF for f=9 and T=50
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Figure 5: PSNR and NCD comparison of the restored images ((a) Lena and (b) Sailboat) by the VDF,
GVDEF, and MVDF
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Figure 6: Comparison of the execution time (ms) between VDF, GVDEF, and MVDF

To evaluate the efficiency of our proposed MVDF, we extended our study by using more standard
test images. By the way, Table | presents the performance comparison of the VDF, GVDF, and MVDF
for five test images (Lena, Sailboat, Flower, Barbara, and Peppers). This comparison is realized in
terms of objective measurement through the PSNR and NCD metrics for impulsive noise intensity
between 3% and 20%. Furthermore, Figs. 7 and 8 depict the performance comparison of the subjective
measurement of the restored image by the VDF, GVDF, and MVDF for 3% and 10% of the impulsive
noise level, respectively. From Table 1, it is worth noting that the MVDF enhances the PSNR by
6.554% and 12.624% and reduces the NCD by 20.273% and 44.147% relative to the VDF and GVDF,
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respectively. These findings are supported by the subjective evaluations shown in Figs. 7 and &, which
clearly show that the visual quality of the restored image by MVDF is superior to that restored by
VDF and GVDF. In fact, we can see that the MVDF preserves the image details and provides a sharper
image. But the VDF and GVDF provide a blurred image.

Table 1: Performance evaluation of VDF, GVDEFE, and MVDF in terms of PSNR and NCD

VDF GVDF MVDF
Image Noise PSNR NCD PSNR NCD PSNR NCD
3% 29.716 0.039 27.954 0.049 32.763 0.010
5% 28.750 0.041 27.131 0.051 30.781 0.015
Lena 10% 26.475 0.049 25.047 0.060 27.552 0.029
15% 24.214 0.059 22.737 0.078 24.921 0.044
20% 21.224 0.083 19.573 0.122 21.670 0.072
Average  26.076 0.054 24.488 0.072 27.537 0.034
3% 25.868 0.101 24.830 0.114 30.985 0.020
5% 25.410 0.103 24.380 0.117 29.201 0.032
Sail boat 10% 24.268 0.110 23.017 0.127 26.252 0.060
15% 22.411 0.122 20.991 0.148 23.553 0.088
20% 20.247 0.145 18.304 0.195 20.891 0.121
Average  23.641 0.116 22.304 0.140 26.176 0.064
3% 27.200 0.035 25.437 0.045 30.325 0.014
5% 26.466 0.037 24.794 0.048 28.813 0.020
Flower 10% 24.790 0.045 23.303 0.059 26.228 0.034
15% 22.723 0.059 20.926 0.084 23.616 0.051
20% 20.386 0.083 18.300 0.136 20.948 0.077
Average 24.313 0.052 22.552 0.074 25.986 0.039
3% 26.412 0.029 25.243 0.038 30.542 0.013
5% 25.868 0.030 24.842 0.040 29.000 0.020
Barbara 10% 24.798 0.037 23.676 0.047 26.512 0.035
15% 23.002 0.049 21.566 0.069 23.974 0.049
20% 20.504 0.077 18.830 0.123 21.117 0.077
Average  24.117 0.044 22.831 0.063 26.229 0.039
3% 32.286 0.024 29.744 0.038 34.577 0.017
5% 30.857 0.026 28.769 0.041 31.983 0.028
Peppers 10% 27.841 0.035 25.841 0.054 28.332 0.048
15% 24.819 0.050 22.629 0.079 25.282 0.065
20% 21.010 0.081 18.792 0.139 21.283 0.096

Average  27.363 0.043 25.155 0.070 28.291 0.051
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Figure 7: Comparison of the visual image quality between (a) original image, (b) contaminated image
with 3% of impulsive noise and restored image with (c) VDF, (d) GVDF and (¢) MVDF

Figure 8: (Continued)
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(a)

Figure 8: Comparison of the visual image quality between (a) original image, (b) contaminated image
with 10% of impulsive noise and restored image with (c) VDF, (d) GVDF and (¢) MVDF

5 MVDF Hardware Architecture

The HLS represents a powerful tool allowing to develop a hardware architecture through high-
level languages like C and C++ [30]. In this context, the Vivado HLS is developed by Xilinx to aid
engineers in exploring design architecture in the shortest amount of time. In fact, this exploration
is realized through the selection of the appropriate Paragma such as PARTITION, PIPELINE,
RESOURCE provided by the Vivado HLS environment.

By the way, an optimized hardware architecture for the MVDF is designed through the Vivado
HLS 18.1 tool. Fig. 9 depicts the structure of the C code provided as input to this tool. This code reads
three image lines to construct the 3 x 3 RGB filter window, which is used to compute the RWNP value.
From this value, the MVDF code can keep the central pixel unchanged or determine the filtered pixel
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through the process presented in Fig. 9. The provided RGB pixel is stored in the internal memory to
restore the filtered image.

3x3 RGB Window
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valR = ((x1[@] + x1[3] + x1[6] + x1[9] + x1[12] + x1[15] + x1[18] + x1[21] + x1[24]) / 9.0 - x1[12]);
valG = ((x1[1] + x1[4] + x1[7] + x1[10] + x1[13] + x1[16] + x1[19] + x1[22] + x1[25]) / 9.6 - x1[13]);
valB = ((x1[2] + x1[5] + x1[8] + x1[11] + x1[14] + x1[17] + x1[20] + x1[23] + x1[26]) / 9.0 - x1[14]);
RWNP = sqrt(valR * valR + valG * valG + valB * valB);
No
RWNP > 50
Yes
for (s =0; s < 27; s =5s + 3)
{
alpha[ii] = @;
a = ((x1[s] * x1[s]) + (x1[s + 1] * x1[s + 1]) + (x1[s + 2] * x1[s + 2]));
norme_a = sqrt(a);
for (r=0; r<27; r=r+ 3)
{
if (s == r) continue;
v b = ((x1[r] * x1[r]) + (x1[r + 1] * x1[r + 1]) + (X1[r + 2] * x1[r + 2]));
norme_b = sqrt(b);
v[e] = x1[12]; c = ((x1[s] * x1[r]) + (x1[s + 1] * x1[r + 1]) + (x1[s + 2] * x1[r + 2]));
V[1] = x1[13]; teta = acos(c / ((norme_a) * (norme_b)));
V[2] = x1[14]; alpha[ii] += teta;
}
VR [V.B |V.G tab[ii][@] = alpha[il;
tab[ii][1] = x1[s];
tab[ii][2] = x1[s + 1];
tab[ii][3] = x1[s + 2];
ii++;
}
Sort in ascending order of alpha[i] to determine X1 which will be stored in tab[@]
V[@] = (unsigned char)tab[0][1];
V[1] = (unsigned char)tab[@][2];
V[2] = (unsigned char)tab[@][3];

»
s 4

Memory for
NxN pixels

Figure 9: Structure of the MVDF C code

The MVDF C code is synthesized without adding any Pragma through the Vivado HLS 18.1
tool to be implemented on the Zynq XCZU9EG Xilinx FPGA. Table 2 illustrates the HLS synthesis
results of our code. From this table, we can notice that Design 1 uses 8% of Look-up-Table (LUTs),
2% of Flip-Flops (FFs), 7% of BRAM blocks, and 1% of DSP blocks, and needs 1722 ms to restore a
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256 x 256 color image at 125 MHz. Therefore, the processing time should be reduced to reach a real-
time throughput with the MVDF design. The PARTITION and PIPELINE Pragmas are applied to
the C code to process the data in the pipeline. After adding these pragmas, we can observe that the
processing time of Design 3 is reduced by 99% relative to Design 1 and that it can restore a 256 x 256
color image in 1 ms at 125 MHz. But, Design 3 uses more FPGA resources, with 88% of LUTs, 84% of
FFs, and 89% of DSPs compared to Design 1. Thus, we have employed the RESOURCE Paragma to
optimize the FPGA resources. Consequently, we can conclude from Table 2 that Design 4 through the
RESOURCE Paragma permits us to reduce the number of LUTs by 44% and FFs by 34% compared
to Design 3 and restore a 256 x 256 color image in 2 ms at 125 MHz. However, from these results, it
is clear that Design 4 presents high data throughput compared to the CoreTM 17-1165G7@2.80 GHz
intel processor, which needs 65 ms to restore a 256 x 256 color image. These results are given for the
same image quality between the software and hardware implementations of the MVDF.

Table 2: HLS synthesis results on the Zynq XCZU9EG FPGA

LUTs FFs BRAM_18K DSP48E Cycles Pragmas

Designl 24233 (8%)  11242(2%) 138 (7%) 49 (1%) 2152098822  Without

Design2 25462 (9%)  13282(2%) 108 (5%) 55 (2%) 2140477378 PARTITION
Design3 196005 (71%) 71357 (13%) 122 (6%) 459 (18%) 1299687 PIPELINE
Designd 109246 (39%) 47101 (8%) 121 (6%) 439 (17%) 2470088 RESOURCE

6 Conclusion

In this paper, a new nonlinear filter is proposed for efficient color image restoration. This filter
is called MVDF, and it allows to check if a pixel in the image is corrupted or not by noise before
changing it to a denoising pixel. For that, the MVDF uses a threshold and the neighborhood pixels of
the central pixel in 3 x 3 filter window to make the decision whether to change the central pixel or not.
One of the important features of this filter is that, compared to VDF and GVDF, it provides a smooth
and clear image without increasing the computational complexity or execution time. Moreover, it can
be used for a wide range of applications, like satellite images, character and face recognition, medical
imaging, and so on. In fact, the experimental results show that the proposed filter gives better image
quality than VDF and GVDF in terms of both objective (PSNR and NCD) and subjective measures,
with an average decrease of 65.63% in the execution time. These results are given in particular for
color images with lower and moderate “salt and pepper” impulsive noise densities ranging from 3%
to 20%. For real-time processing, the hardware architecture is proposed for the MVDF through HLS
flow, which allows to restore the image in 2ms at 125 MHz instead of 65 ms under the CoreTM i7-
1165G7@?2.80 GHz Intel processor.

Our future work will focus on using deep learning techniques to improve image quality restoration,
especially for high levels of “salt and pepper” impulsive noise [31].
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