
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2023.039687
Article

Ensemble-Based Approach for Efficient Intrusion Detection in Network Traffic

Ammar Almomani1,2,*, Iman Akour3, Ahmed M. Manasrah4,5, Omar Almomani6,
Mohammad Alauthman7, Esra’a Abdullah1, Amaal Al Shwait1 and Razan Al Sharaa1

1School of Computing, Skyline University College, University City of Sharjah, P. O. Box 1797, Sharjah,
United Arab Emirates

2IT-Department-Al-Huson University College, Al-Balqa Applied University, P. O. Box 50, Irbid, Jordan
3Information Systems Department, College of Computing & Informatics, University of Sharjah, United Arab Emirates

4Comp. Info Sciences (CIS) Division, Higher Colleges of Technology, Sharjah, United Arab Emirates
5Computer Sciences Department, Yarmouk University, Irbid, Jordan

6Computer Network and Information Systems Department, The World Islamic Sciences and Education University,
Amman, 11947, Jordan

7Department of Information Security, Faculty of Information Technology, University of Petra, Amman, Jordan
*Corresponding Author: Ammar Almomani. Email: ammarnav6@bau.edu.jo
Received: 11 February 2023; Accepted: 18 May 2023; Published: 23 June 2023

Abstract: The exponential growth of Internet and network usage has neces-
sitated heightened security measures to protect against data and network
breaches. Intrusions, executed through network packets, pose a significant
challenge for firewalls to detect and prevent due to the similarity between legit-
imate and intrusion traffic. The vast network traffic volume also complicates
most network monitoring systems and algorithms. Several intrusion detection
methods have been proposed, with machine learning techniques regarded as
promising for dealing with these incidents. This study presents an Intrusion
Detection System Based on Stacking Ensemble Learning base (Random For-
est, Decision Tree, and k-Nearest-Neighbors). The proposed system employs
pre-processing techniques to enhance classification efficiency and integrates
seven machine learning algorithms. The stacking ensemble technique increases
performance by incorporating three base models (Random Forest, Decision
Tree, and k-Nearest-Neighbors) and a meta-model represented by the Logistic
Regression algorithm. Evaluated using the UNSW-NB15 dataset, the pro-
posed IDS gained an accuracy of 96.16% in the training phase and 97.95%
in the testing phase, with precision of 97.78%, and 98.40% for taring and
testing, respectively. The obtained results demonstrate improvements in other
measurement criteria.

Keywords: Intrusion detection system (IDS); machine learning techniques;
stacking ensemble; random forest; decision tree; k-nearest-neighbor

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.039687
https://www.techscience.com/doi/10.32604/iasc.2023.039687
mailto:ammarnav6@bau.edu.jo


2500 IASC, 2023, vol.37, no.2

1 Introduction

Network security has become vital to its successful operation with the emerging Internet and
communication technologies. Therefore, organizations are forced to invest in the security of their
sensitive information and functions by adopting different security controls such as firewalls, anti-
virus software, and Intrusion Detection Systems (IDS) to ensure the security of the network and
all associated assets. The IDS is essential for identifying abnormal traffic and notifying the network
administrator [1].

Machine learning techniques have garnered substantial popularity in network security over the
last decade due to their ability to learn relevant features from network data and perform accurate
categorization based on learned patterns [2]. Furthermore, due to its deep architecture, Deep Learning
(DL)-based IDS rely on the automated learning of intricate characteristics from raw data [3].

Ensemble learning, on the other hand, is a machine learning paradigm in which several models,
such as classifiers or experts, are developed and integrated strategies to address a specific compu-
tational intelligence issue. Ensemble learning is primarily used to improve a model’s performance
(Classification, prediction, function approximation, etc.) or to lessen the risk of an unintentional poor
model selection. The architecture of the ensemble model is depicted in Fig. 1.

Figure 1: The basic architecture of ensemble classifiers

This paper proposes an IDS that utilizes a diversity of individual experts to analyze network
traffic requests and responses. The system tracks the activity from when it enters the network to
when it causes harm or performs unauthorized actions. The system achieves classifier diversity by
employing different training parameters for each classifier, allowing individual classifiers to produce
various decision boundaries. Combining these diverse errors leads to a lower overall error and higher
accuracy than other A.I. and DL algorithms.

The research aims to develop an effective and efficient IDS (IDS) for detecting security breaches
in complex network traffic. The objectives of this research are:

• To evaluate the performance of several machine learning algorithms for intrusion detection.
• To use stacking ensemble learning to improve the performance of the IDS.
• To evaluate the proposed IDS system using the UNSW-NB15 dataset and to compare its

performance with other existing IDS.



IASC, 2023, vol.37, no.2 2501

The contributions of this research are:

• The proposed IDS system uses the stacking ensemble learning technique to improve the
performance of intrusion detection.

• The system is evaluated using the UNSW-NB15 dataset and shows high accuracy and improved
performance compared to other IDS.

• The study provides valuable insights into using machine learning algorithms and stacking
ensemble learning for intrusion detection, which can contribute to advancing this field.

This paper is organized as follows: Section 2 presents the related work. Section 3 proposed an
intrusion detection model to which different machine learning techniques are applied is described.
While Section 4 provides the Implementation, and the results are discussed. Finally, Section 5
concludes the paper and presents future work.

2 Related Work

Jim Anderson first proposed the idea of IDS in 1980 [4]. Since then, many IDS products have
been developed and matured to meet network security needs [5]. A combination of “intrusion” and
“detection systems” is known as an IDS. The term “intrusion” refers to unlawful access to computer
systems or a network’s internal data to compromise its integrity, confidentiality, or availability [6]. In
contrast, the detection system serves as a safeguard against illicit activities. Because of this, IDS is a
security tool that constantly monitors host and network traffic to detect any suspicious behavior that
violates the security policy and compromises the network’s confidentiality, integrity, and availability.
It is connected to a network adapter configured with port mirroring technology, as shown in Fig. 1.

The IDS will flag the host or network administrator’s malicious behavior. Scientists have investi-
gated machine learning and DL approaches to meet the needs of successful IDS. Aiming to acquire
meaningful information from large datasets, both Machine Learning (ML) and DL) are being
explored. Over the past decade, the development of extremely powerful Graphics Processing Units
(GPUs) has led to the widespread adoption of these technologies in network security [7,8]. ML
and DL are powerful methods for network traffic analysis and traffic prediction. To derive valuable
information from network traffic, ML-based IDS significantly relies on engineering features [2]. In
contrast, DL-based IDS relies on automatically learning complex features from raw data due to its
deep architecture [3].

When designing an IDS, four functional modules,1-Event-boxes; 2-Database-boxes; 3-Analysis-
boxes; and 4-Routine boxes, are used to build the overall architecture, as shown in Fig. 2. For the most
part, Event-Boxes are sensors that monitor the system and gather data for subsequent analysis. This
gathered data must be kept for processing. Data-base-box elements serve this purpose by storing the
information received from the event-Boxes. The Analysis-boxes processing module is where harmful
conduct is detected by examining events. The most critical step is to stop the hostile conduct once it
has been identified. On the other hand, the Response-boxes take action immediately if any intrusion is
detected. In Fig. 2, an example of the IDS framework is shown [1]. A Host-Based IDS (HIDS) and a
Network-based IDS (NIDS) can be characterized by information source Event-Boxes (NIDS). System
calls and process identifiers are the focus of HIDS, while network events are the focus of NIDS (I.P.
address, protocols, service ports, traffic volume, etc.). IDS can be divided into signature-based IDS
(misuse-based) and anomaly-based IDS based on the analysis done in Analysis-boxes. (Signature-
based IDS) SIDS utilizes a database of known attack signatures to detect intrusions by comparing
captured data against the database [9]. Only known assaults can be detected using this method; new



2502 IASC, 2023, vol.37, no.2

threats cannot be detected using this method (previously unseen attacks). Signature-based IDS has a
significantly reduced false-positive rate.

On the other hand, Anomaly-based IDS (AIDS) aims to understand the system’s usual behavior
and establishes a threshold. An anomaly alarm is sounded when a certain observation deviates from
its regular pattern [10]. Anomaly-based IDS is useful for detecting previously unnoticed assaults since
it seeks to find unusual occurrences. In contrast to SIDS, AIDS has a greater false-positive rate for
intrusion detection [1].

To effectively detect network-based attacks, many researchers attempted to combine Stack ensem-
ble learning, a collection of ML algorithms. For example, the stacked ensemble technique presented
was assessed using.

The performance of the suggested method was compared to that of other well-known ML
algorithms such as Artificial neural network ANN, CART, random forest, and Support vector
machines SVM. The experimental results show that stacked ensemble learning is a proper technique for
classifying network-based attacks. Similarly, the authors in [8] applied a group of learning algorithms
over the UNSW-NB15 dataset using the stacking classifier method. The mixed method for feature
selection also includes Lasso regression using SVM. The accuracy of the Lasso was evaluated using
the R2 score evaluation, which was 59%. Similar to the research in [11], Gao et al. [12] analyze the NSL-
KDD dataset by exploring different training ratios and creating multiple decision trees to conclude
their MultiTree detection algorithm with adaptive voting in multiple classifier algorithms. Fig. 2 shows
the IDS for network traffic monitoring, and Fig. 3 show IDS Architecture.

Figure 2: IDS(IDS)—monitors network traffic [13]

For this reason, the authors adopted different classifiers, including Decision trees, random forests,
K-Nearest Neighbors KNN, DNN. The adaptive voting algorithm increases the detection accuracy
from 84.1% to 85.2%. Therefore, Larriva-Novo et al. [14] suggested using a Dynamic classifier
multiclass to obtain the best capabilities for each cyber-attack detection model. They tested their
approach on a UNSW-NB15 dataset, in which the dataset was split into training data (75%) and tests
(25%). The dynamic classifier improved results by 5.3% and 2.3% compared to the best static model for
the balanced and unbalanced datasets. Their work is achieving a noticeable increase in performance
in terms of detection rate for IDS based on multiple classes of attacks.



IASC, 2023, vol.37, no.2 2503

Figure 3: Common intrusion detection architecture for IDS [1]

Slay [15] proposed using a Hyper-Clique-based Improved Binary Gravitational Algorithm (HC-
IBGSA) to identify the optimal model parameters and feature set for SVM. The proposed approach
was evaluated using two benchmark intrusion datasets, the NSL-KDD CUP and the UNSW-NB15
dataset. The evaluation was carried out over two feature sets for SVM training: (1) SVM trained
with all features and (2) SVM trained with the optimal features obtained from HC-IBGSA. The
proposed approach shows a 94.11% classification accuracy using the UNSW NB15 dataset with
features extracted using the HC-IBGSA algorithms. Similarly, Slay [15] presents a feature selection
for rare cyber-attacks based on the UNSW-NB15 dataset using the Random Committee technique.
The proposed approach evaluation of the multiclass Classification obtains an accuracy of 99.94%.
However, the high accuracy rate was reported as the best case for a work attack.

Consequently, Correctly classifying network flows as benign or malicious traffic is the way the
authors [16] have adopted. Their approach depends on classifying network traffic flows using R.F.,
MLP, and LSTM. The proposed approach evaluations using the CIDDS-001 dataset yield 99.94%
accuracy. As a result, many researchers have started to adopt various classifiers into their intrusion
detection techniques to accommodate the different types of input data. For instance, In [17] the
authors attempted to unite the strengths of SIDS and an AIDS-based IDS into a new hybrid IDS
system (HIDS). The new HIDS combines the C5 decision tree classifier and a single class support
vector machine (OC-SVM). Using the Network Security Lab Knowledge Discovery in databases
(NSL-KDD) and Australian Defense Force Academy (ADFA) datasets, the authors confirm that they
achieve low alarm rates.

To summarize, proposing an intrusion detection model would entail using multiple datasets to
demonstrate detection capability and extensibility in various environmental settings. Table 1 shows
that the NSL-KDD, KDD Cup 99, and UNSW-NB15 datasets are widely used in IDS research.



2504 IASC, 2023, vol.37, no.2

Table 1: Summary of selected studies utilizing ensemble methods for IDSs

Reference Algorithm Accuracy Classifier Dataset Adv. Limitation

Jing
et al. [18]

SVM 85.99%
75.77%

Binary
Multiclass

UNSW-NB15 The proposed SVM
method accuracy
outperforms the
Naive Bayes (N.B.)
method with a score
of 75.77%.

Compared to the
UNSW-NB15
dataset, the
KDDCUP99 dataset
lacks some common
examples for NIDS
evaluation.

Ahmad
et al. [19]

SVM
RF
ELM

99%
97.5%
99.5%

Binary NSL–KDD These techniques are
well-known for their
classifiers, and ELM
outperforms other
approaches (SVM,
R.F.).

SVM outperforms
other approaches on
small datasets,
whereas EML
outperforms others
on large datasets.

Rajadurai
et al. [11]

Ensemble
ANN
RF
Naïve Bayes
SVM

91.06%
97.74%
74.00%
74.40%
74.00%

Binary NSL-KDD Staked ensemble
learning is suitable
for classifying
attacks, and the
proposed system
outperforms other
intrusion detection
models in terms of
accuracy.

The precision and
recall values of the
RNN and ANN
approaches are
significantly lower
than those of the
proposed approach.

Abirami
et al. [8]

RF
SVM
Naive Bayes
Logistic
regression

93%
85%
79%
80%

Binary KDD Cup99
NSK-KDD
Kyoto2006

The clustering
classifier and
ensemble algorithm
yielded better results.

The decision tree
classification
algorithm and the
regression algorithms
achieved less
precision.

Gao
et al. [12]

DeciTree
RF
LR
KNN
DNN
Adaboost
SVM

73.58%
79.71%
74.09%
76.02%
81.6%

Binary NSL-KDD The ensemble model
significantly
improves detection
accuracy.

The deep neural
network has some
advantages in
detection, but it takes
time.

Ring
et al. [20]

NBTree
Fuzzy
SVM
FS+GAR-
forest
TDTC
FSSL
EM-FS
FSSL-EL
TSE-IDS
NBTree
FSSL
FSSL-EL
TSE-IDS

82.02%
82.74%
82.37%
85.05%
84.86%
84.25%
84.54%
85.79%
66.16%
68.82%
71.29%
72.52%
87.37%
73.57%

Binary NSL-KDD
UNSW-NB15

Under several
criteria, the proposed
CFS-BA-Ensemble
method outperforms
other relevant
techniques.

Difficult to identify
high attack detection
rates (ADR) while
minimizing false
alarm rates (FAR).

(Continued)



IASC, 2023, vol.37, no.2 2505

Table 1: Continued
Reference Algorithm Accuracy Classifier Dataset Adv. Limitation

Bamakan
et al. [21]

XGBoost
KNN
Logistic
Regression
Stacking

83.54%
84.00%
63.54%
85.42%

Binary
Multiclass

MLPAT
ELM

APT attacks are
conducted with high
planning levels and a
high degree of target
recognition.

The cost of
implementing APT is
too high.

Larriva-Novo
et al. [14]

Dynamic
Classifier

87.6% Binary
Multiclass

UNSW-NB15 The dynamic
classifier model
improves the
detection accuracy
of each model.

TPR can be reduced
by up to 40% using
category exploit.

Pang
et al. [22]

CFS-BA 99.81% Binary
Multiclass

NSL-KDD
AWID
ClC-
IDS2017

The proposed
CFS-BA-Ensemble
method outperforms
other approaches on
different metrics.

Efficient while
keeping FAR under
control

Sindhu
et al. [23]

XGBoost
KNN
Logistic
Regression
Stacking

83%
84%
52%
85%

Binary KDD’99 The stack classifier
achieved the best
result compared to
otherclassifiers.

Logisticregression is
the worst inaccuracy.

Lee
et al. [24]

DNN
SHAP
BRCG
CEM

90.82%
87.96%
82.71%
92.82%

Binary NSL-KDD
ClC-
IDS2017
KDDT

It gives a much better
insight to the security
analyst on why the
alert was flagged.

The model may learn
that demand leads to
poverty performance.

Raman
et al. [25]

C4.5
Naïve Bayes
RF
Multilayer
Perception
SVM
CART
KNN

81%
76.56%
80.67%
77.41%
69.52%
80.3%
79.4%

Binary
Multiclass

NSL-KDD
CIDDS-
001

Possibility of gaining
access to a high level
of electronic
resilience against
malicious activity
and unauthorized
identification.

These technologies
may be incapable of
generating and
updating a new
malware signal due
to high alarms or low
detection rates.

Raman
et al. [26]

HC-IBGSA 94.11% Binary
Multiclass

NSL-KDD,
UNSW-NB15

Using more recent
IDS datasets to
assess algorithm
performance before
and after feature
selection

Not using different
classifiers, only SVM

Slay [15] Feedforward
NN

99.94% Binary
Multiclass

UNSW-NB15 The DL model
achieves very high
accuracy.

Traditional
MLalgorithms are
inefficient at
classifying Network
Intrusions.

Khraisat
et al. [16]

RF
MLP
LSTM

99.94% Attack type CIDDS-001 The multi-flow
method is
appropriate for
detecting anomalies
in the CIDDS-001
dataset.

As the length of the
sequence increases,
the radiofrequency
decreases
dramatically.

(Continued)



2506 IASC, 2023, vol.37, no.2

Table 1: Continued
Reference Algorithm Accuracy Classifier Dataset Adv. Limitation

Rashid
et al. [27]

k-NN
Naïve Bayes
SVM
NN
DNN
Auto-encoders

99.80%
98.60%
100%
99.90%
99.90%
98.60%

Binary NSL-KDD
CIDDS-001

SVM, DNN, and
k-NN classifiers all
perform similarly.

Since the multiclass
Classification was
not addressed, the
types of attacks in the
CIDDS-001 dataset
cannot be discovered.

Rababah
et al. [17]

C4.5
Naïve Bayes
SVM
CART
KNN

81%
76.56%
80.67%
69.52%
80.3%

Binary NSL-KDD Compared to SIDS
and AIDS, HIDS has
a higher detection
rate and lower alarm
rate.

Single algorithms
give in accurate
results.

Yang
et al. [28]

RBFN
Naïve Bayes
DT
RI
K-NN

92.17%
91.23%
91.38%
91.81%
91.24%

Binary
Multiclass

CIDDS-
001

Correlation rules and
group analysis are
used to detect illegal
activities in database
usage patterns.

The emphasis was on
reducing false alarms
rather than
increasing the
detection rate.

Gautam
et al. [29]

KNN
SVM
DT
RF
ET
XGBoost
Stacking
FSXGBoost
FS Stacking

96.6%
98.01%
99.72%
98.37%
93.43%
99.78%
99.86%
99.7%
99.82%

Binary NSL-KDD
CIDDS-001

The proposed system
has a high detection
rate and a low
computing cost.

Require high
computation and
storage requirements.

3 Data Acquisition (Collection, Information Gathering)

To test and evaluate the proposed approach, we have used the UNSW-NB15 dataset from ACCS
[15], a modern NIDS benchmark data set for Network IDS. The dataset has 2.5 million records that are
divided into 45 features. We have modified the original UNSW-NB15 dataset to reduce the number
of features to 43 instead of 45, including flow-based and packet-based features. These features are
further subdivided into four categories: content, fundamental, flow, and time-based features. The
number of selected data instances from the UNSW-NB15 dataset is 257,673, divided into training
data instances (175,341 records) and testing data instances (82,332 records). The record distribution
and class distribution of the UNSW-NB15 dataset are shown in Fig. 4 [30].

Figure 4: UNSW-NB15 dataset distribution



IASC, 2023, vol.37, no.2 2507

The UNSW-NB15 dataset provides two labeled features (i.e., cat-attack and label). Label charac-
teristics were only utilized when the data was either normal or attacked (binary data). The features list
and their names are given in Table 2.

Table 2: Features of the UNSW-NB15 [15]

No. Name T group Description

1 dur F Basic Total record length
2 Proto N Flow Transaction protocol
3 service N Basic HTTP, FTP, SSH, DNS .., else (-)
4 state N Basic The state and its dependent protocol, e.g., ACC, CLO,

else (-)
5 spkts I Basic Count of packets sent from the source to the

destination
6 dpkts I Basic Count of packets from source to destination
7 sbytes I Basic Bytes from the source to the destination
8 dbytes I Basic Source bytes to destination bytes
9 Rate Basic This term is in the training/test sets but not defined

anywhere.
10 sttl I Basic Source to live time of destination.
11 dttl I Basic Time to live in the destination.
12 sload F Basic Bits of source per second.
13 dload F Basic Bits per second destination.
14 sloss I Basic Retransmitted or dropped source packets.
15 dloss I Basic Retransmitted or dropped destination packets.
16 sintpkt F Time Time of arrival for the interpacket source (mSec).
17 dintpkt F Time Time of arrival between packets (mSec).
18 sjit F Time Jitter Source (mSec).
19 djit F Time Jitter Destination (mSec).
20 swin I Content Advertising Content Source TCP window.
21 dwin I Content Advertisement in the TCP window for the destination
22 stcpb I Content TCP sequence number from the source
23 dtcpb I Content TCP sequence number for the destination
24 tcprtt F Time The TCP’s ‘synack’ and ‘ackdat’ are added together.
25 synack F Time The interval between the TCP packets SYN and SYN

ACK.
26 ackdat F Time The interval between the TCP’s SYN ACK and ACK

packets.
27 smeansz I Content Means the flow packet’s src size.
28 dmeansz I Content The average size of the dst sent flow packets.
29 trans_depth I Content The connection’s depth in the http request/response

transaction.
30 res_bdy_len I Content The magnitude of the data transmitted by the server’s

http service.

(Continued)



2508 IASC, 2023, vol.37, no.2

Table 2: Continued
No. Name T group Description

31 ct_srv_src I Connection No, this is the 100th time in 100 connections with the
same service and source address.

32 ct_state_ttl I General No, for each state, based on a defined
source/destination value range. to live.

33 ct_dst_ltm I Connection No. connections of the same destination address Last
time in 100 connections.

34 ct_src_dport_ltm I Connection No Last time there were no connections with the same
source address and destination port at 100 connections.

35 ct_dst_sport_ltm I Connection No of the Last time in 100 connections no connections
of the same destination address and source port.

36 ct_dst_src_ltm I Connection No of the Last time there were 100 connections with
the same source and destination address.

37 is_ftp_login B General If a user and password are used for the ftp session,
then another 1 is 0.

38 ct_ftp_cmd I General There are no flows with ftp command.
39 ct_flw_http_mthd I General No. flows with methods like Get and Post in HTTP.
40 ct_src_ltm I Connection The number of connections with the same source

address in the last time 100 connections.
41 ct_srv_dst I Connection No. of the Last time connections of the same source

address in 100 connections.
42 is_sm_ips_ports B General This variable will have a value of 1 other 0 if the source

is identical to destination I.P. and port numbers.
43 attack_cat N Every type of assault is given a name. This data

collection has nine categories (e.g., Fussers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, and Worms).

44 Label B Normal records have a value of 0 while attack records
have a value of 1.

Note: Type (T.), N: nominal, I: integer, F: float, T: timestamp, and B: binary.

The table above shows the different types of available features. These are called nominal features
and are grouped into proto, service, state, and attack_cat features. The proto feature has 133 values
related to the TCP and UDP protocols. The service feature has 13 values related to the different
network services, such as DNS, HTTP, SMTP, FTP data, FTP, SSH, POP3, DHCP, SNMP, SSL, IRC,
and radius, as illustrated in Fig. 5. The state feature has 9 values related to different transport layer
protocol flags such as INT, FIN, CON, REQ, RST, ECO, PAR, no, and URN, as illustrated in Fig. 6.
The other category has a “-”followed by a long DNS name. For the conversion of nominal features into
a numerical format, we employed one-hot encoding. This method represents each category as a binary
vector, which is compatible with our feature selection process and the machine learning algorithms
used in this study.



IASC, 2023, vol.37, no.2 2509

Figure 5: The distribution of the service feature

Figure 6: The distribution of the state feature

4 Proposed Ensemble Learning System Description

Ensemble learning is a widely used machine learning technique that combines the capabilities of
individual classifiers to create a classification model with superior overall Classification or predictive
power. In the context of intrusion detection systems (IDS), ensemble learning has demonstrated better
performance compared to standalone classifiers. This study aims to develop a robust network intrusion
detection system using an ensemble classifier approach. The proposed solution requires pre-processing
of datasets for training purposes. In this work, we primarily focus on the UNSW-NB15 dataset, which
comprises 45 features, including four nominal and 41 numerical features, after converting them to
numerical values. Data normalization is essential, as the dimensions and units used in data collection
vary, necessitating the scaling of different feature values within a specific range. In this study, we employ
the maximum and minimum algorithms to normalize the data. The MinMaxScaler algorithm scales
and translates each feature individually to lie between a given minimum and maximum value (typically
between zero and one), as described in Eq. (1).

y = x − min
max − min

(1)

The primary objective of this work is to detect network intrusions effectively. The proposed
approach is structured into two main layers: the Base-learner layer and the Combining-Module layer,
as depicted in Fig. 6. The Base-learner layer consists of multiple classifiers that learn from the data



2510 IASC, 2023, vol.37, no.2

to identify intrusion patterns. In contrast, the Combining-Module layer serves as an aggregator that
combines the output from the individual base classifiers, thereby enhancing the overall predictive
performance. This layered architecture helps improve intrusion detection accuracy by leveraging the
strengths of different classifiers and ensuring a more robust and reliable outcome.

In the first layer, we have selected three base binary classifiers to create a base module for
the proposed system: (1) the random forest classifier (R.F.) [31], a method of combining multiple
classifiers to tackle complex problems by using several decision trees on different subsets of a dataset
and averaging the results to increase prediction accuracy; (2) the decision tree classifier (D.T.) [32],
which identifies valuable information from large amounts of random data through predicting values,
requiring a training dataset to create a tree and a test dataset to assess the decision tree’s accuracy; and
finally, (3) the K-NN classifier (K-Nearest Neighbors), a data classification method that calculates the
probability of a data point being part of the nearest group, as depicted in the literature.

The ensemble output serves as input to the meta-classifier through the stack generalization
process, ultimately yielding the final decision based on logistic regression to predict the probability
of a specific class or event (e.g., pass/fail, win/lose). Ensemble learning can be categorized into three
main types: bagging, boosting, and stacking. Bagging is the most prevalent method for predicting
test outcomes. During the boosting training phase, models are rigorously trained on misclassified
data. Stacking, or stacked generalization, is a highly-regarded ensemble technique for enhancing
classification performance by combining multiple classifiers, as shown in Fig. 7.

In contrast to bagging and boosting, stacking comprises two levels: the base learner (level 0) and
the meta-learner (level 1) [33]. At the first level, heterogeneous classification models learn from the
training data, and their outputs generate a new dataset for the stacking learner. Each new instance
in the dataset is assigned to the correct one. Class to be predicted (with a level 0 prediction as an
attribute). The meta-learner then utilizes the newly formed dataset to produce the outcome [34], as
illustrated in Fig. 8.

5 Experimental Results and Analysis

This section presents and analyses the suggested IDS findings based on ML methodologies
and approaches. After applying seven algorithms to the UNSW-NB15 dataset, we used numerous
assessment criteria to determine the efficacy of the proposed IDS system. The following assessment
and performance metrics are used to evaluate the proposed IDS’ performance. The anticipated
outcomes are between 0 and 1. Accuracy, Precision, Recall, AUC, F1-Measure, and Mean squared
error (MSE) [35] are used the evaluate the proposed approach.

• Accuracy is the number of correct predictions per classifier.

Accuracy = TP + TN
TP + TN + FP + FN

(2)

• Precision: is a measure of genuine positive results derived from all positive findings in the dataset
during Classification.

Precision = TP
TP + FP

(3)



IASC, 2023, vol.37, no.2 2511

Figure 7: IDS based on stacking (schematic overview)



2512 IASC, 2023, vol.37, no.2

Figure 8: Stacking Classifiers [36]

• Recall: is the measurement of data points predicted to be positive by all the classifiers.

Recall = TP
TP + FN

(4)

• AUC—ROC curve: is a performance metric for classification tasks at various threshold levels.
It is defined as the chance that the model rates a random positive sample higher than a random
negative sample.

TPR = TP
TP + FN

(5)

FPR = FP
FP + TN

(6)

• F1-Measure: It is the harmonic relationship between Precision and Recall. F1 score is regarded
as a superior performance statistic to accuracy. The greater F1-Score rate indicates that the
MLmodel is doing better.

F1 − Measure = 2 × Precision × Rrcall
Precision + Rrcall

(7)

• Mean squared error (MSE): represents the expected value of the squared error loss. It is never
negative; therefore, numbers close to zero are preferred.

MSE = 1
n

n∑

i=1

(
Yi − Yi∧

)2
(8)

Collaboratory (Colab) was used for all evaluations, a cloud service based on Jupyter Notebooks
for distributing ML teaching and research [37]. The models, pre-processing processes, and measure-
ments were all implemented using the Python programming language in the same Colab environment.
The system was running at high speed, and it could be classified the full data quickly so that it could



IASC, 2023, vol.37, no.2 2513

be implemented as a real-world system in the future. We can improve the level of speed if we use collab
pro [38] The fastest GPUs are reserved for Colab Pro and Pro+ customers.

Seven classifiers were examined to assess the performance of the proposed method: Naïve Bayes
(N.B.), linear Support Vector Machine (SVM), SVM with Radial Basis Function (RBF) kernel, k-
Nearest Neighbors (KNN), Logistic Regression (L.R.), Decision Tree (D.T.), and Random Forest
(R.F.). The proposed method’s accuracy was evaluated on the UNSW-NB15 dataset with a full feature
space (42 features) for binary Classification. Stratified 10-fold cross-validation was employed to train
all models on the training dataset. The 10-fold cross-validation process divides the dataset into ten
subsets, with nine used for training the classifiers and one for testing.

Table 3 presents the accuracy, precision, recall, F1-Score, AUC, and MSE results of the proposed
ML algorithms on the training dataset. R.F. achieves the highest accuracy of 96.12%. Linear SVM
exhibits the highest precision score of 99.79% but the lowest recall score of 91.21%. While NB has a
recall score of 93.41%, its accuracy is considerably lower. Conversely, D.T. demonstrates the highest
recall value of 96.38% and minimal variance in its accuracy and recall values, resulting in a higher F1
score than the N.B. model. The R.F. algorithm yields the highest F1 score of 97.18% and the lowest
MSE error of 0.0388. To enhance performance, we employed the stacking ensemble method, which
comprises two or more base models (level-0 models) and a meta-model that aggregates the base models’
predictions (level-1 model). The base models include R.F., D.T., and KNN, with the L.R. algorithm
as the meta-model. The stacking ensemble achieves 96.16% accuracy.

Table 3: Performance comparison of ML classifiers on the training dataset

Method Accuracy Precision Recall F1-score AUC MSE

SVM (RBF) 93.60 99.63 91.69 95.49 95.36 0.0640
Random forest RF 96.12 97.98 96.38 97.18 95.96 0.0388
Logistic regression LR 93.40 99.13 91.83 95.34 94.79 0.0660
Linear SVM 93.31 99.79 91.21 95.31 95.33 0.0669
Naïve Bayes NB 81.38 78.16 93.41 85.10 79.44 0.1862
Decision tree DT 95.00 96.27 96.38 96.33 94.23 0.0500
KNN 93.76 95.90 94.98 95.44 93.02 0.0624
Stacking ensemble 96.16 97.78 96.62 97.20 95.88 0.0384

The test dataset results for accuracy, precision, recall, F1-Score, AUC, and MSE of the proposed
ML algorithms are displayed in Table 4. R.F. obtains the highest values for accuracy, precision, recall,
F1-score, and AUC, with 97.94%, 98.52%, 97.72%, 98.12%, and 97.96%, respectively. D.T. follows
with values of 96.74% for accuracy, 96.98% for precision, 97.11% for recall, 97.04% for F1-score, and
96.70% for AUC. KNN ranks third with values of 93.33% for accuracy, 95.56% for precision, 92.17%
for recall, 93.84% for F1-score, and 93.46% for AUC. R.F. achieves the best MSE error of 0.0206,
followed by D.T. at 0.0326 and KNN at 0.0667. The stacking ensemble attains 97.95% accuracy.

More details can be shown clearly in Fig. 9, which discusses the Performance comparison of ML
classifiers on the test dataset.



2514 IASC, 2023, vol.37, no.2

Table 4: Performance comparison of ML classifiers on the test dataset

Method Accuracy Precision Recall F1-score AUC MSE

SVM (RBF) 93.10 92.65 95.01 93.81 92.89 0.0690
Random forest RF 97.94 98.52 97.72 98.12 97.96 0.0206
Logistic regression LR 90.70 91.54 91.58 91.56 90.61 0.0930
Linear SVM 91.04 92.70 90.89 91.78 91.06 0.0896
Naïve Bayes NB 76.43 86.28 68.02 76.07 77.38 0.2357
Decision tree DT 96.74 96.98 97.11 97.04 96.70 0.0326
KNN 93.33 95.56 92.17 93.84 93.46 0.0667
Stacking ensemble 97.95 98.40 97.87 98.13 97.96 0.0205

Figure 9: Performance comparison of ML classifiers on the test dataset

In conclusion, this study addresses the challenge of identifying the most suitable classifier for
a specific classification task, such as intrusion detection in network data. The research compares the
performance of various classifiers, including Multilayer Perceptron (MLP), SVM, Decision Trees, and
Naïve Bayes. The findings reveal that employing an ensemble approach, which combines multiple
classifiers, mitigates the risk of suboptimal selection compared to relying on a single classifier. The
study applies the stacking ensemble technique with base models Random Forest (R.F.), Decision Tree
(D.T.), k-Nearest Neighbors (KNN), and the meta-model.

6 Conclusion and Future Work

In conclusion, this study has addressed the issue of determining the best classifier for a specific
classification task, such as intrusion detection in network data. The study has compared the perfor-
mance of several classifiers, including Multilayer Perceptron (MLP), SVM (SVM), Decision Trees, and
Naive Bayes. The results indicate that an ensemble approach, combining multiple classifiers, reduces
the risk of making a poor selection compared to relying on a single classifier. The study has applied
the stacking ensemble technique using the base models Random Forest (R.F.), Decision Tree (D.T.), k-
Nearest Neighbors (KNN), and the meta-model Logistic Regression (L.R.), and achieved an accuracy
of 97.95% in the testing phase. For future research, it is recommended to explore the applicability
of this technology in real-world production systems. Additionally, further studies could investigate



IASC, 2023, vol.37, no.2 2515

the combination of different pre-processing techniques and various ensembles to improve the overall
performance of IDS.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare they have no conflicts of interest to report regarding the
present study.

References
[1] R. A. Disha and S. Waheed, “Performance analysis of machine learning models for intrusion detection

system using gini impurity-based weighted random forest (GIWRF) feature selection technique,” Cyberse-
curity, vol. 5, no. 1, pp. 1–22, 2022. https://doi.org/10.1186/s42400-021-00103-8

[2] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald et al., “Deep learning applications
and challenges in big data analytics,” Journal of Big Data, vol. 2, no. 1, pp. 1–21, 2015. https://doi.
org/10.1186/s40537-014-0007-7

[3] B. Dong and X. Wang, “Comparison deep learning method to traditional methods using for network
intrusion detection,” in 8th IEEE Int. Conf. on Communication Software and Networks (ICCSN), Beijing,
China, pp. 581–585, 2016.

[4] J. P. Anderson, “Computer security threat monitoring and surveillance,” Technical Report, James P.
Anderson Company, 1980.

[5] H. Debar, M. Dacier and A. Wespi, “Towards a taxonomy of intrusion-detection systems,” Computer
Networks, vol. 31, no. 8, pp. 805–822, 1999. https://doi.org/10.1016/S1389-1286(98)00017-6

[6] S. Mukkamala, G. Janoski and A. Sung, “Intrusion detection using neural networks and support vector
machines,” in 2002 Int. Joint Conf. on Neural Networks. IJCNN’02 (Cat. No. 02CH37290), Honolulu, HI,
USA, vol. 15, pp. 1702–1707, 2002.

[7] J. Lew, D. A. Shah, S. Pati, S. Cattell, M. Zhang et al., “Analyzing machine learning workloads using a
detailed GPU simulator,” in IEEE Int. Symp. on Performance Analysis of Systems and Software (ISPASS),
Madison, WI, USA, pp. 151–152, 2019.

[8] M. Abirami, U. Yash and S. Singh, “Building an ensemble learning based algorithm for improving
intrusion detection system,” In: M. Abirami (Ed.), Artificial Intelligence and Evolutionary Computations
in Engineering Systems, pp. 635–649, Singapore: Springer, 2020.

[9] A. Khraisat, I. Gondal, P. Vamplew and J. Kamruzzaman, “Survey of intrusion detection systems:
Techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019. https://doi.org/10.1186/
s42400-019-0038-7

[10] J. H. Liao, C. H. R. Lin, Y. C. Lin and K. Y. Tung, “Intrusion detection system: A comprehensive review,”
Journal of Network and Computer Applications, vol. 36, no. 1, pp. 16–24, 2013. https://doi.org/10.1016/j.
jnca.2012.09.004

[11] H. Rajadurai and U. D. Gandhi, “A stacked ensemble learning model for intrusion detection in wireless
network,” Neural Computing and Applications, pp. 1–9, 2020.

[12] X. Gao, C. Shan, C. Hu, Z. Niu and Z. Liu, “An adaptive ensemble machine learning model for intrusion
detection,” IEEE Access, vol. 7, pp. 82512–82521, 2019. https://doi.org/10.1109/ACCESS.2019.2923640

[13] B. Lutkevich, What is an intrusion detection system (IDS)? USA: Techtarget, 2020. [Online]. Available:
https://www.techtarget.com/searchsecurity/definition/intrusion-detection-system

[14] X. Larriva-Novo, C. Sánchez-Zas, V. A. Villagrá, M. Vega-Barbas and D. Rivera, “An approach for the
application of a dynamic multi-class classifier for network intrusion detection systems,” Electronics, vol. 9,
no. 11, pp. 1759, 2020. https://doi.org/10.3390/electronics9111759

[15] M. Slay, “UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15
network data set),” in IEEE Military Communications and Information Systems Conf. (MilCIS), Canberra,
ACT, Australia, pp. 1–6, 2015.

https://doi.org/10.1186/s42400-021-00103-8
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1016/S1389-1286(98)00017-6
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1109/ACCESS.2019.2923640
https://www.techtarget.com/searchsecurity/definition/intrusion-detection-system
https://doi.org/10.3390/electronics9111759


2516 IASC, 2023, vol.37, no.2

[16] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman and A. Alazab, “Hybrid intrusion detection system
based on the stacking ensemble of c5 decision tree classifier and one class support vector machine,”
Electronics, vol. 9, no. 1, pp. 173, 2020. https://doi.org/10.3390/electronics9010173

[17] B. Rababah and S. Srivastava, “Hybrid model for intrusion detection systems,” ArXiv Preprint
arXiv:2003.08585, 2020.

[18] D. Jing and H. -B. Chen, “SVM based network intrusion detection for the UNSW-NB15 dataset,” in IEEE
13th Int. Conf. on ASIC (ASICON), Chongqing, China, pp. 1–4, 2019.

[19] I. Ahmad, M. Basheri, M. J. Iqbal and A. Rahim, “Performance comparison of support vector machine,
random forest, and extreme learning machine for intrusion detection,” IEEE Access, vol. 6, pp. 33789–
33795, 2018. https://doi.org/10.1109/ACCESS.2018.2841987

[20] M. Ring, S. Wunderlich, D. Scheuring, D. Landes and A. Hotho, “A survey of network-based intrusion
detection data sets,” Computers & Security, vol. 86, no. 1, pp. 147–167, 2019. https://doi.org/10.1016/j.
cose.2019.06.005

[21] S. M. H. Bamakan, H. Wang, T. Yingjie and Y. Shi, “An effective intrusion detection framework based on
mclp/svm optimized by time-varying chaos particle swarm optimization,” Neurocomputing, vol. 199, no.
10, pp. 90–102, 2016. https://doi.org/10.1016/j.neucom.2016.03.031

[22] Z. -H. Pang, G. -P. Liu, D. Zhou, F. Hou and D. Sun, “Two-channel false data injection attacks against
output tracking control of networked systems,” IEEE Transactions on Industrial Electronics, vol. 63, no. 5,
pp. 3242–3251, 2016. https://doi.org/10.1109/TIE.2016.2535119

[23] S. S. S. Sindhu, S. Geetha and A. Kannan, “Decision tree based light weight intrusion detection using
a wrapper approach,” Expert Systems with Applications, vol. 39, no. 1, pp. 129–141, 2012. https://doi.
org/10.1016/j.eswa.2011.06.013

[24] W. Lee, S. J. Stolfo and K. W. Mok, “A data mining framework for building intrusion detection models,”
in IEEE Symp. on Security and Privacy (Cat. No. 99CB36344), Oakland, CA, USA, pp. 120–132, 1999.

[25] M. G. Raman, N. Somu, K. Kirthivasan, R. Liscano and V. S. Sriram, “An efficient intrusion detection
system based on hypergraph-genetic algorithm for parameter optimization and feature selection in support
vector machine,” Knowledge-Based Systems, vol. 134, no. 5, pp. 1–12, 2017. https://doi.org/10.1016/j.
knosys.2017.07.005

[26] M. G. Raman, N. Somu, S. Jagarapu, T. Manghnani, T. Selvam et al., “An efficient intrusion detection
technique based on support vector machine and improved binary gravitational search algorithm,” Artificial
Intelligence Review, vol. 53, no. 5, pp. 1–32, 2019.

[27] A. Rashid, M. J. Siddique and S. M. Ahmed, “Machine and deep learning based comparative analysis using
hybrid approaches for intrusion detection system,” in 3rd Int. Conf. on Advancements in Computational
Sciences (ICACS), Lahore, Pakistan, pp. 1–9, 2020.

[28] H. Yang, G. Qin and L. Ye, “Combined wireless network intrusion detection model based on deep learning,”
IEEE Access, vol. 7, pp. 82624–82632, 2019. https://doi.org/10.1109/ACCESS.2019.2923814

[29] R. K. S. Gautam and E. A. Doegar, “An ensemble approach for intrusion detection system using machine
learning algorithms,” in 2018 8th Int. Conf. on Cloud Computing, Data Science & Engineering (Confluence),
Noida, India, pp. 14–15, 2018.

[30] Z. Zoghi and G. Serpen, “UNSW-NB15 computer security dataset: Analysis through visualization,” arXiv
preprint arXiv:2101.05067, 2021.

[31] S. S. Nikam, “A comparative study of classification techniques in data mining algorithms,” Oriental Journal
of Computer Science and Technology, vol. 8, no. 1, pp. 13–19, 2015.

[32] S. Kaur and H. Kaur, “Review of decision tree data mining algorithms: Cart and c4. 5,” International
Journal of Advanced Research in Computer Science, vol. 8, no. 4, pp. 436–439, 2017.

[33] I. Syarif, E. Zaluska, A. Prugel-Bennett and G. Wills, “Application of bagging, boosting and stacking to
intrusion detection,” in Int. Workshop on Machine Learning and Data Mining in Pattern Recognition, Berlin,
Germany, pp. 593–602, 2012.

https://doi.org/10.3390/electronics9010173
https://doi.org/10.1109/ACCESS.2018.2841987
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.1016/j.neucom.2016.03.031
https://doi.org/10.1109/TIE.2016.2535119
https://doi.org/10.1016/j.eswa.2011.06.013
https://doi.org/10.1016/j.eswa.2011.06.013
https://doi.org/10.1016/j.knosys.2017.07.005
https://doi.org/10.1016/j.knosys.2017.07.005
https://doi.org/10.1109/ACCESS.2019.2923814


IASC, 2023, vol.37, no.2 2517

[34] M. Graczyk, T. Lasota, B. Trawiński and K. Trawiński, “Comparison of bagging, boosting and stacking
ensembles applied to real estate appraisal,” in Asian Conf. on Intelligent Information and Database Systems,
Hue, Vietnam, pp. 340–350, 2010.

[35] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine Learning (No. 4). New York, USA:
Springer, 2006.

[36] F. Ceballos, Stacking classifiers for higher predictive performance. USA: Medium, 2022. [Online]. Available:
https://towardsdatascience.com/stacking-classifiers-for-higher-predictive-performance-566f963e4840

[37] J. Introne, R. Laubacher, G. Olson and T. Malone, “The climate colab: Large scale model-based collabo-
rative planning,” in Int. Conf. on Collaboration Technologies and Systems (CTS), Philadelphia, PA, USA,
pp. 40–47, 2011.

[38] E. Bisong, “Google colaboratory,” in Building Machine Learning and Deep Learning Models on Google
Cloud Platform: A Comprehensive Guide for Beginners, Berkeley, CA: Apress, pp. 59–64, 2019.

https://towardsdatascience.com/stacking-classifiers-for-higher-predictive-performance-566f963e4840

	Ensemble-Based Approach for Efficient Intrusion Detection in Network Traffic
	1 Introduction
	2 Related Work
	3 Data Acquisition Collection, Information Gathering
	4 Proposed Ensemble Learning System Description
	5 Experimental Results and Analysis
	6 Conclusion and Future Work
	References


