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Abstract: Spondylolisthesis is a chronic disease, and a timely diagnosis of
it may help in avoiding surgery. Disease identification in x-ray radiographs
is very challenging. Strengthening the feature extraction tool in VGG16 has
improved the classification rate. But the fully connected layers of VGG16
are not efficient at capturing the positional structure of an object in images.
Capsule network (CapsNet) works with capsules (neuron clusters) rather than
a single neuron to grasp the properties of the provided image to match the
pattern. In this study, an integrated model that is a combination of VGG16
and CapsNet (S-VCNet) is proposed. In the model, VGG16 is used as a feature
extractor. After feature extraction, the output is fed to CapsNet for disease
identification. A private dataset is used that contains 466 X-ray radiographs,
including 186 images displaying a spine with spondylolisthesis and 280 images
depicting a normal spine. The suggested model is the first step towards
developing a web-based radiological diagnosis tool that can be utilized in
outpatient clinics where there are not enough qualified medical professionals.
Experimental results demonstrate that the developed model outperformed
the other models that are used for lumbar spondylolisthesis diagnosis with
98% accuracy. After the performance check, the model has been successfully
deployed on the Gradio web app platform to produce the outcome in less than
20 s.
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1 Introduction

Spondylolisthesis is the term for the displacement of a vertebrae over the next one [1]. It is a chronic
disease that is caused by continuous stress (either by load bearing or bad posture) on the lumbar
vertebrae (pars interarticularis). It affects persons of all ages, and a recent study shows that nowadays
it is found most commonly in school going children (6%–7%), adults (18%), and elite athletes (7%–8%)
[2,3]. According to a study, approximately 50% of low back pain problems in athletes are caused by
spondylolisthesis due to hyperextension [4]. 85%–95% of the time, lumbar spondylolisthesis is found
between the fifth lumbar vertebrae (L5) and the first sacral vertebrae (S1). The L5-S1 motion segment
is the most common region [5,6]. Fig. 1 highlights both regions where lumbar spondylolisthesis may
occur.

Figure 1: Lumbar spondylolisthesis region

Spondylolisthesis diagnosis requires radiological images produced by using Magnetic Resonance
Images (MRI), Computer Tomography (CT), and X-ray radiography technologies [7]. But the iden-
tification is commonly done qualitatively in today’s clinical practice. Although Meyerding grading
provides for a better quantitative assessment of spondylolisthesis, it still relies on time-consuming and
inaccurate physical measurements [8].

A CT scan and an MRI require an expert person but an X-ray can be done by a technician, and
it is also the first line of investigation [9,10], i.e., before proceeding with any investigation, the doctor
prescribed X-ray first. If there is any doubt about in X-rays, then only CT or MRI scans are prescribed.
These scans are not easily available in rural areas and very costly [11,12].
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Modern healthcare systems make extensive use of Machine Learning (ML) technology for
automated solutions that may improve the accuracy and repeatability of crucial job execution [13,14].
The Deep Learning (DL) model learns features from pictures in datasets rather than from explicit
programs that must be written for each task [15]. It integrates computational statistics and data mining
techniques. DL focuses on teaching computers to learn from data in the same way that humans learn
from experiences [16,17].

Multidisciplinary collaboration in technology has produced unique DL models with significant
potential and good results to study spondylolisthesis related concerns. A Computer Automated
Diagnosis (CAD) system can interpret the number of cases immediately, and reproducible results
can be generated using them. This makes an automated spondylolisthesis diagnostic technique
appealing for treatment planning and follow-up This mechanism is greatly increasing measurement
effectiveness [18].

Convolutional Neural Networks (CNNs) are best suited for image classification tasks. Due to
CNN’s strength in recording structure and spatial information, it is used for medical images. Visual
Geometry Group (VGG) is a well-known tool of CNN for resolving medical image categorization
challenges. It is a strong model having a two-dimensional (2D) architecture for feature detection
at different positions on targeted images. The transfer learning feature of these models made them
popular among researchers. It requires less training, and modification and needs less time to produce
results. It is seen in many studies that VGG has achieved results with remarkable accuracy.

Out of various variants of VGG-Net, VGG-16, and VGG-19 were the best performing models,
and made public. A few models (MobileNet and ResNets) had many parameters and required a huge
number of training images. When evaluated against the VGG16 model, the MobileNet and ResNets
models were unable to match the accuracy it provided. It proves the superiority of the VGG16 model
over other models. Even though VGG16 is ideally adapted for visual categorization but it has the
following constraints:

• VGG16 lost the entity’s positional information while max pooling. It ignores a few local struc-
tures between simpler objects. However, due to down sampling, VGG16 has some limitations
in terms of view invariance and information loss.

• For rotated, tilted, or other abnormal image orientations, VGG16 performs poorly.
• VGG16 proved to be time-consuming as well as requiring a lot of computing resources.

This raises issues related to developing improved disease detection techniques. Capsule network
(also known as CapsNet) [19] is one of the most advanced algorithms to resolve these logical
restrictions in terms of its generative and deterministic characteristics. CapsNet algorithm uses vectors,
which makes it more image-sensitive than the VGG16 that had previously been used. It is a novel
approach for capturing the properties and spatial relationships of features in images that has shown
promise in image classification [20,21]. Multiple convolutional layers are squashed into capsules by
these networks, which are subsequently exposed to nonlinearity.

Vector-based models perform poorly at getting features from images. The original capsule network
is inadequate for the classification tasks that involve sophisticated internal representations. To resolve
these issues, an integrated model (a combination of VGG16 and CapsNet) named S-VCNet is proposed
to predict lumbar spondylolisthesis in X-ray images with better accuracy and loss minimization [22,23].

The proposed model is deployed to the Gradio web app for real time diagnosis of the disease.
Furthermore, the results obtained were compared to radiologists’ manual observations. This finding
directs doctors and practitioners in the proper direction for disease prediction, which can protect many
susceptible people and reduce disease rates.
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The following are the key goals of this paper:

• To evaluate the performance of VGG16 for lumbar spondylolisthesis diagnosis.
• To design and implement a novel hybrid model (S-VCNet) and compare its performance with

VGG16.
• To implement a Gradio-based web interface for real-time diagnosis of lumbar spondylolisthesis

quickly and accurately.

The subsection of article include: A review of previously available work is discussed in Section 2,
model architecture is described in Section 3, details of the dataset used and the applied methodology
are discussed in Section 4, result analysis and discussion are covered in Section 5, and a conclusion is
given in Section 6.

2 Literature Review

This section discusses the methods used by various practitioners to identify the existence of
medical disease in humans based on X-ray radiographs.

Tiwari et al. [24] have proposed the VGG-CapsNet model for COVID-19 detection in x-ray images.
Experimental results suggest that VGG-CapsNet outperforms CapsNet. By integrating CNN with
CapsNet, the authors overcome the problems in CNN-based decision support.

Mittal et al. [25] developed two models by integrating “convolutions with capsules” and “ensemble
convolutions with capsules” for pneumonia detection using x-ray radiographs. The models have
achieved a good accuracy rate.

Yousra et al. [26] presented a useful image categorization model for chest X-rays (CNN-CapsNet).
Where feature extractor VGG19 was completely trained on the ImageNet dataset, and the output is
passed to CapsNet’s initial feature maps to get the final classification result.

Bharati et al. [27] developed a novel integrated model (VGG + data augmentation + spatial
transformer network) with CNN for lung disease diagnosis. According to the findings of this study,
the integrated model takes less training time and outperforms the standalone model.

DRISTI (Diabetic Retinopathy classIfication by analyzing reTinal Images) is a study that pro-
poses a hybrid model containing VGG16 and CapsNet to classify diabetic retinopathy. This model is
developed for the detection of visual loss earlier and timely treatment of the disease [28].

Nguyen et al. [29] have compared various methods for colorectal tissue classification. The
soft voting ensemble model, which included one VGG and one CapsNet model, outperformed
independent or ensemble learning with a single base estimator. A hybrid capsule network was created
by Boaro et al. [30] for the identification of malignancy in medical images. The VGG16 and a capsule
network are coupled in the suggested design. When compared to the literature, the results produced
by the suggested model were positive.

Gunasinghe et al. [31] have developed a model utilizing CNN with CapsNet to diagnose lung
disorders, including combining patient information with data from chest X-rays. Toraman et al. [32]
presented the difficulties in recognizing COVID-19 owing to symptoms that are similar to those of lung
infections. The authors used CapsNet to create a system that was trained and evaluated for pneumonia
patients.

Saif et al. [33] introduced CapsNet for musculoskeletal radiograph anomaly identification, and
it has been shown that its architecture has very promising features that can assist in solving CNN’s
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limitations. Singh et al. [34] have proposed a method for glaucoma prediction in images using both
early and late fusion. They have successfully implemented fusion based on features and image levels.

For the identification of COVID-19, Aksoy et al. [35] developed a capsule network on a cloud
platform for quicker and easier processing. Abdollahi et al. [36] have applied the VGG16 model for
epidemic-type identification in chest x-ray radiographs.

Sharma et al. [37] have used CapsNet with shallow architecture for COVID-19 diagnosis. They
have used 5 fold-cross validation technique on the dataset having multiclass classification.

Qiu et al. [38] have developed several novel model architectures by combining various CNN
models with CapsNet. The proposed models have achieved accuracy ranges from 95% to 98% for
COVID-19 detection in both multi-class and binary classification.

Table 1 summarizes the literature and indicates that integrated models are used in different
application fields specifically for disease detection. But very little work has been done for lumbar
spondylolisthesis diagnosis and there is scope for improving accuracy and making models gener-
alize. So, the study proposed an integrated deep learning-based web interface to diagnose lumbar
spondylolisthesis.

Table 1: Literature review summary

Source Purpose Major findings Accuracy

Tiwari et al. [24] COVID-19
detection

VGG-CapsNet can eliminate
faults in the CNN model DSS
for COVID-19 detection.

97%

Mittal et al. [25] Detection of
pneumonia

An integrated model is used
for pneumonia detection in
radiographs.

95.33%

Yousra et al. [26] Image
classification

VGG19 and CapsNet are
combined to overcome their
drawbacks.

94%

Bharati et al. [27] Detection of Lung
disease

An integrated model VDSNet
is proposed for disease
detection.

73%

Kumar et al. [28] Diagnosis of
diabetic
retinopathy

An integrated model is
proposed to classify diabetic
retinopathy.

5-classes: 82%
2-classes: 96%

Nguyen et al. [29] Colorectal tissue
classification

“Soft Voting,” a hybrid model
is proposed for disease
diagnosis.

93%–98% for
all classes

Boaro et al. [30] Detection of
melanoma

VGG16 was combined with a
capsule neural network to
observe the structures of the
skin.

92.6%

(Continued)
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Table 1: Continued
Source Purpose Major findings Accuracy

Gunasinghe et al. [31] Prediction of Lung
Diseases

CNN is combined with
CapsNet to identify lung
diseases.

–

Toraman et al. [32] COVID-19
Detection

With binary classification and
multi-class classification, the
suggested technique is meant
to deliver rapid and accurate
diagnoses for COVID-19
disorders.

97.24%

Saif et al. [33] Musculoskeletal
abnormality
detection

A CapsNet architecture is
proposed to overcome CNN’s
limitations.

95.15%

Singh and
Khanna [34]

Glaucoma
prediction

Feature and image level
glaucoma prediction

95.56%

Aksoy et al. [35] COVID–19
detections

Proposed cloud
computing-based capsule
network for disease detection.

98%

Abdollahi et al. [36] Epidemic types Proposed a powerful model
for disease detection.

97%

Sharma et al. [37] COVID-19
detection out of 3
classes

Integrated model outperforms
a single model.

96.47%

Qiu et al. [38] COVID-19
detection

For the binary and multiclass
classifications, the novel
hybrid models were applied.

95–98%

3 Model Architecture
3.1 VGG-Net Architecture

VGG-Net is a widely used CNN architecture that gains popularity due to its outstanding
performance on the ImageNet dataset. TheVGG16 architecture works well with various datasets;
therefore, it was chosen for this study. It consists of convolutional layers, ReLU (activation function),
pooling layers, and fully connected layers. In input, a 2D convolutional layer with 3 × 3 convolutional
filters was used. Images (reduced to the size of 224 × 224 pixels) are fed to the first convolution layer
for detecting low-level features. It contains position definitions for lines and edge points.

An activation function (ReLU) along with max pooling is applied to all hidden layers. It uses the
pixel positions for generating the feature map. This is a high-level feature used for sharing weights to
reduce unnecessary or redundant load. Image area is reduced by combining a few neurons by using the
pooling technique. At last, three fully connected layers were used, which contain the SoftMax function
for classification tasks. VGG Net’s architecture is depicted in Fig. 2.
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Figure 2: VGG16 model architecture for lumbar spondylolisthesis prediction

3.2 CapsNet Architecture
Deep models commonly encode the entities with vectors. However, this concept is rarely applied

to image categorization. The capsule networks (CapsNets) use “vector-wise” encoding, in which items
are encoded by capsules (groups of neurons). It helps in fixing the position of objects and managing
the relationship between them. It overcomes the problem of information loss caused by pooling layers
in CNN, such as location, size, rotation, and scale, as described in Fig. 3.

Figure 3: CapsNet vs. CNN Model

A capsule is made up of a pose vector or matrix for encoding the object’s instantiation of various
layers parameters and an activation. The instantiation parameters change as the viewing circumstances
change, but the capsule remains active. With the ability to assign parts to wholes, equivariance, and
invariance are two qualities that are utilized to build visual hierarchical connections.

CapsNets may simulate visual hierarchical relationships due to the “Dynamic routing” method
[39]. In CapsNets, dynamic routing is used to establish visual hierarchical relationships via a method
called “routing-by-agreement” to repeatedly route information transitioning from lower to higher level
capsules, which is the key concept of dynamic routing in CapsNets.

Fig. 4 depicts the CapsNet architecture for spine x-ray image classification. In this first layer, the
ReLU function is activated with 256 filters and takes the parameter of size 9 × 9 with stride one.
Features are passed to the primary capsules through this function.
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3.2.1 CapsNet’s Basic Mathematics

CapsNet employed three unique mechanisms:

• Convolution,
• Reshaping function, and
• Squash function.

Figure 4: CapsNet architecture for spine x-ray diagnosis

The input is given to the convolutional layers in the convolution process that is used to generate
a list of “feature maps”. These feature maps are now reshaped using the Reshaping function. Finally,
each vector’s length is kept inside the range of 1 and 0, according to the squash function. Because it
represents the probability that an item will be found at a specific spot in the image and it does not
cause the positional data contained in a high-dimensional vector to be destroyed [40].

Assume that layer l and layer l + 1 have m and n capsules, respectively. We must compute the
activations of the capsules at layer l + 1 based on the activations at layer l. The letter u is used to
represent capsule activations at layer l. We must compute v, the capsule activations, at layer l + 1.

For a capsule j at layer l + 1,

1. At layer l, the capsules are used to calculate the prediction vectors. The prediction vector
(shown in equation 1) for the capsule j (of layer l + 1) generated by capsule i (of layer l) is:
uj|i = Wijui (1)

Wij represents “weight matrix”.
2. Now the output vector for capsule j is calculated (in Eq. (2)). The output vector for capsule j

is the sum of the weights of all the prediction vectors supplied by layer l capsules:

sj =
m∑

i=1

cijuj|i (2)

3. Scalar cij represents the coupling coefficient between capsules i (of layer l) and j (of layer l +1).
A method called the iterative dynamic routing algorithm determines these coefficients.

4. To obtain the activation vj of the capsule j, we apply the squashing function (shown in Eq. (3))
to the output vector:
vj = squash(sj) (3)

5. Long vectors are pushed toward 1 and shot vectors are pushed toward 0 by the squashing
function.
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3.2.2 Dynamic Routing Algorithm

Dynamic Routing Algorithm is more efficient than max pooling. It gives solid support to
those capsules that have reached the parent output. It provides a non-linear relationship by using
mathematical concepts explained in the earlier section. It is generally applicable to scalar values.

The layer l+1 activation vectors transmit feedback signals to the layer l capsules. The dot product
should be high if the prediction vector of capsule i (of layer l) for capsule j (of layer l + 1) agrees with
the activation vector of capsule j. As a result, the “weight” of the prediction vector uj|i in the output
vector of j is raised. Simply, the output vector gives a lot more weight to those prediction vectors that
assisted the activation vector (and consequently the activation vector). For 4 − 5 cycles, this circle of
reciprocal assistance continues.

The predictions for high-level capsules from a low-level capsule should add up to one (i.e.,∑
k cik = 1). As a result, capsule i (of layer l),

cij = exp(bij)∑
k exp(bik)

(4)

The bij (initially equals to one) reveals how closely capsules i (of layer l) and j (of layer l + 1) are
linked. Eq. (4) illustrates a measure of the number of capsules i which explains the presence of the
capsule j.

Algorithm 1: Routing Algorithm
1 Given: Prediction vectors uj|i number of routing iterations r
2 ∀ capsule i in layer l and capsule j in layer l + 1: bij = 0
3 for r iterations do:
4 for ∀ capsules i in the layer l: ci = softmax(bi) (A capsule’s bets on high-level capsules should
equal to 1)
5 for ∀ capsules j in the layer l+1: sj = ∑m

i=1 cijuj|i (output vector is a weighted sum of prediction
vectors)
6 for ∀ capsules j in the layer l + 1: vj = squash(sj) (apply activation function)
7 for ∀ capsule i in layer l and capsule j in layer l + 1: bij = bij + uj|i · vj

8 return vj

The routing takes place at the last line of the loop. If the product uj|i ·vj is big, it will raise bij, which
will increase the associated coupling coefficient cij, causing the product uj|i · vj to grow more.

3.3 Proposed Model Architecture
Transfer learning technique is used as a preliminary step for a few tasks. Utilizing knowledge from

other areas to improve the quality of learning in the actual environment is the aim of transfer learning.

Reducing the amount of training time is possible through transfer learning. This approach could
be connected to the creation of deep learning visual categorization models. A deep CNN and a smaller
kernel size can improve model performance, as demonstrated by VGG16. As a result, the VGG16
architecture of CNN has been proposed as an integrated with CapsNet for faster processing. As a
mixture of these two powerful architectures, the VGG16 is used to replace the feature extraction section
of CapsNet in the research work. Fig. 5 shows the proposed integrated model architecture that includes
a two-stage recommended paradigm.



2142 IASC, 2023, vol.37, no.2

The base network architecture is the VGG16 network with 2D kernels. In the first phase, Initial
feature maps are derived from a spine X-ray radiograph using a VGG16 model. Conv1 kernels in
VGG16 have been modified to support x-ray radiographs. VGG16 is invariant as a result of the
pooling procedure, the model is reduced at the block 5 pool. After block5_pool, the capsule network
is combined with VGG16. This upgradation can be considered as transfer learning and its goal is to
utilize the feature extraction capability and pass it to CapsNet. So, CapsNet may properly identify the
low-level feature.

In the second phase, the features hierarchy is encoded to multi-dimensional main capsules via
the global average-pooling layer. The pooling layer in VGG16 selects the backward-transmitted input
and transfers the parameters between the two convolutional layers. CapsNet minimizes this marginal
loss by dynamically adjusting the network’s parameters. For binary class prediction tasks, the lambda
function is used.

Figure 5: Integrated model (S-VCNet) architecture

4 Experimental Set-Up

The experiment was performed on programming language “Python3” by using Google Colab
IDE. The Keras and TensorFlow frameworks were used as a feature extractor, and for scientific
computing, various open-source libraries such as Pandas, NumPy, and Scikit-learn were applied.
Pyplot module from the matplotlib package is utilized for accuracy and loss curve visualization.

4.1 Image Acquisition
A private dataset of 466 spinal x-ray radiographs was used in this investigation. There are 186

images of the patient with spondylolisthesis, compared to 280 images of the healthy patient. The
images were converted into 224 × 224 pixels. Fig. 6 displays a few pictures of patients with normal
and spondylolisthesis cases from the dataset.
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Figure 6: X-ray Radiographs from dataset

4.2 Data Splitting
Collected data is split into two parts: training data, and testing data. A balanced set of images

were selected from each category of image. A total of 343 samples are used to train the model.
For performance checking, 123 images are randomly selected from the total sample. A quantitative
breakdown of data splitting is shown in Table 2.

Table 2: Statistics after data splitting

Test type Training data Testing data Total

Healthy 220 60 280
Diseased 123 63 186
Total 343 123 466

4.3 Training and Optimization
The foundational network design was provided by the VGG16 network with 2D kernels, and it

has utilized a fixed image size of 224 × 224. The Conv1 kernels of VGG16 have been modified to
accept the input. After block5_pool was reached, the capsule network was combined with VGG16.
For binary class prediction tasks, a lambda function was utilized. The overall model contains a total
of 21 M trainable parameters. Out of those 13 M parameters are trainable and 7 M parameters are non-
trainable. The pre-trained ImageNet weights are used to train all the tasks end-to-end simultaneously
using an ‘Adam’ optimizer. It is a simple and computationally efficient gradient-based loss function
optimization technique. The loss function’s objective during training is to reduce the model’s loss. Loss
is defined as the discrepancy between the expected and actual value.

A loss function, namely categorical cross entropy, is used to find the variation between two
quantities. It is a strengthening tool that can differentiate the given quantities. An example is given
below, in Table 3, to understand this example a bit more. Suppose we take the first case where:

Door 3 shows the negative likelihood or 1, the probability that is the probability of not getting
a gift. Here, y shows the number of gifts is behind the door. Categorical cross-entropy (CCE) can be
formulated as follows,

CCE = − 1
N

N∑

i=1

C∑

c=1

yc.log(ŷc) + (1 − yc) . log(1 − ŷc) (5)
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Table 3: Example of categorical cross entropy

Door 1 Door 2 Door 3

p(gift) = ŷc = 0.8 p(gift) = ŷc = 0.7 p(gift) = ŷc = 0.1 OR
1-p(gift) = 1 − ŷc = 0.9

y = 1 y = 1 y = 0

For the given example, the above formula is used to calculate entropy. The cross-entropy is
calculated by the negative logarithm. It is allowed for the two functions, yc, and ŷc. Where the
groundtruth and predicted values of the image object are represented by yc and ŷc, respectively. C
indicates the number of classes and N indicates the number of observations. Cross-entropy is generally
used to describe the closeness between the predicted distribution and the actual distribution. The minus
sign ensures that the loss gets smaller when the measurements get closer to each other. A SoftMax
activation function is used in conjunction with the CCE cost function. It is used to calculate the loss
between predicted and target values in multi-class classification. The pre-trained ImageNet weights
are used to train all the tasks end-to-end simultaneously using an optimizer.

The goal of the Adam optimizer is to minimize the loss function. It is a method of calculating
current gradients using prior gradients. Adam is a hybrid combination of the AdaGrad and RMSProp
methods. Adam also applies the concept of momentum to the current gradient by combining fractions
of prior gradients. This optimizer has gained a lot of popularity and is now widely used in neural
network training.

Adam uses two moments in the gradients: variable vt as the first moment (the mean) and variable st

as the second moment (the uncentered variance). The Adam estimator can be generated using the hyper
parameters 0 ≤ β1, β2 < 1, and an Exponentially Weighted Moving Average (EWMA) as follows [41].

Algorithm 2: Adam Estimator
1 Initialize: β1β2ε [0, 1] , v0, s0, learning rate η, and stochastic objective function f (xt) with

parameters xt.
2 Find f (xt) using the formula: gt = ∇xft(xt−1).

Update moments (1st & 2nd) using the below formula:
3 vt = β1vt−1 + (1 − β1) gt

st = β2st−1 + (1 − β2) gt

⊙
gt

Find the corrected bias:
4 v̂t = vt

1 − β t
1

,

ŝt = st

1 − β t
2

.

Corrected bias parameters were used to modify the learning rate of each model parameter:

5 g̀t = ηv̂t√
ŝt + ε

, (where η denotes the learning rate and ε = 10−8 denotes the error criteria)

6 Modify xt as: xt = xt−1 − g̀t)

7 Repeat steps 2 to 6 until the parameter xt converges.
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Adam used stochastic gradient descent to keep all weight updates and assured that the learning
rate remains constant throughout the training. Each network weight (parameter) has its learning rate,
which is maintained and changed as learning progresses. In addition, the algorithm computes an
exponential moving average of the gradient as well as the squared gradient, with hyper parameters
β1 and β2 controlling the decay rates. The learning rate is set to η = 0.0001, β1 = 0.9, and β2 = 0.999
in the initialization.

4.4 Performance Evaluation Tools
The effectiveness of any DL model is defined by several performance assessment measures in

the field of soft computing. The selection of metrics is decided according to the task handled. The
current study is concerned with image classification tasks, therefore, the accuracy/loss graph, confusion
matrix etc. are used as performance assessment metrics. Loss and accuracy will be used to assess
model performance in this investigation. A confusion matrix is a much better approach to assessing a
classifier’s performance in a classification problem for determining the model’s accuracy and precision.
It works for both binary and multi-class classification systems.

A confusion matrix is not a performance metric itself, but it does allow for the computation of
certain useful performance measures based on the true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) values. The words TP, FP, FN, and TN have been described below in the
context of the considered situation:

• TP: A case is true positive if the patient has spondylolisthesis (class 1) and the classifying model
predicted the case to be spondylolisthesis as well (class 1).

• FP: It has occurred when a patient with a healthy spine (class 0) is diagnosed with spondylolis-
thesis (class 1).

• FN: It is the reverse of FP, in which a patient with spondylolisthesis (class 1) is anticipated as
healthy (class 0).

• TN: If a patient has a healthy spine (class 0) and is also predicted as healthy (class 0), the
situation falls into the TN category.

For performance assessment, all the samples were observed from training and test categories.
Some useful parameters for performance measures are computed using the confusion matrix. These
metrics can be defined as follows:

Accuracy: This term is described by the number of right predictions divided by the total number
of predictions.

Accuracy = Correctlyclassifiedimages
Totalnumberofimages

= (TP + TN)

(TP + FP + TN + FN)
(6)

Precision: Precision is a metric for determining the accuracy of a prediction.

Pricision = Imagescorrectlyclassifiedasn
Imagesclassifiedasn

= TP
(TP + FP)

(7)

Recall: Recall is the measure of successful identification of the ground truth.

Recall = Imagescorrectlyclassifiedasn
Imagesofclassn

= TP
(TP + FN)

(8)
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F1 Score: The F1 score is calculated using the harmonic mean of precision and recall.

F1ScoreorFavg = 2∗ (Precision∗Recall)
(Precision + Recall)

(9)

Sensitivity (SN): This term is described by the number of correct positive predictions divided by
the total number of positive predictions.

Sensitivity = TP
(TP + FN)

(10)

Specificity (SP): This term is described by the number of correct negative predictions divided by
the total number of negative predictions.

Specificity = TN
(TN + FP)

(11)

5 Result Analysis
5.1 Experimental Results

Confusion metrics were used to evaluate the prediction ability of developed models. To reduce
over fitting and increase training data artificially, data augmentation techniques such as rotation,
flipping, and zooming were used in this study. The history object was used to collect metric values
for performance measurement during training. Continued learning of the VGG16 and S-VCNet is
visualized using an accuracy/loss graph shown in Figs. 7 and 8, respectively.

Figure 7: VGG16’s performance graph

The confusion matrix of selected models was displayed in Fig. 9 Actual instances were grouped in
rows in the confusion matrix, whereas expected cases were grouped in columns and denoted as normal
and spondylolisthesis cases.

The test set included a total of 123 X-ray radiographs (63 for spondylolisthesis and 60 for normal).
Table 4 lists the performance metrics of the VGG16 and VGG-CapsNet classifiers for each class
(Spondylolisthesis vs. Normal).
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Figure 8: S-VCNet’s performance graph

The above table shows that models have learned effectively. VGG16 has achieved 95% accuracy by
misclassifying only 1 case as normal and 5 cases as spondylolisthesis. The suggested integrated model
has achieved 98% accuracy by misclassifying only 1 case as normal and 2 cases as spondylolisthesis.
The training loss of VGG16 and the integrated model are recorded as 0.23 and 0.08, respectively.
After the result analysis, it is confirmed, the S-VCNet model outperformed for the spondylolisthesis
detection.

Figure 9: Confusion matrix of VGG16 and S-VCNet

Table 4: Performance assessment of classification models

Model Class Performance metrics

Accuracy Precision Recall F1-score Loss SP SN

VGG 16 Normal 0.95 0.98 0.92 0.95 0.23 0.93 0.98
Spondylolisthesis 0.93 0.98 0.95

S-VCNet Normal 0.98 0.98 0.97 0.97 0.08 0.97 0.98
Spondylolisthesis 0.97 0.98 0.98
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5.2 Gradio Implementation
The architecture of Gradio is based on a client-server model, where the client is a web browser and

the server is a Python-based web application. While creating the Gradio interface a Python function
needs to be defined that takes input from the user and returns an output. Then it generates a web page
that allows users to interact with functions through a web form. After form submission the input is
sent to the server, which runs those functions and returns the output to the user’s browser [42].

Gradio uses Flask, a lightweight web framework, as its server technology. It handles the HTTP
requests and responses and provides a simple way to create routes that map to your Python functions.
Gradio also uses Socket.IO to handle real-time communication between the client and server, allowing
for a smooth and responsive user experience.

Under the hood, Gradio uses JavaScript and CSS to create the user interface, and it includes
several pre-built components that you can use to customize your interface. Gradio also supports a wide
variety of input and output types, including images, text, audio, and video. Overall, the architecture of
Gradio is designed to be simple and flexible, allowing you to quickly create and deploy web interfaces
for your ML models with minimal overhead [43].

After testing the integrated model, it is used as a web app for Lumbar Spondylolisthesis diagnosis
on the Gradio platform. To access this application, the patient must first complete a hospital-based
spine X-ray screening. Take a photo of the X-ray film and upload it using the “Drop Image Here or
Click to Upload”, then hit the Submit button. Finally, spondylolisthesis may be detected using the
Gradio platform.

Fig. 10 illustrates that the Gradio-based tool successfully recognized normal and spondylolisthesis
cases within 20 s. The probability of the two classes will be presented as a percentage after hitting the
Submit button (as shown in Figs. 10a and 10b). The X-ray image of the spine will most likely fall into
one of two categories.

Figure 10: Screenshots of the gradio web application tool

6 Discussion

The suggested model, S-VCNet, is found to take less time to diagnose lumbar spondylolisthesis
and have high sensitivity and specificity, as shown by the figures and tables presented above. The model
could be utilized in building a real-time diagnostic system for routine clinical practice. The results
produced by VGG16 alone are not that beneficial, but the transferred weights from VGG16 to CapsNet
for the classification task are found to be beneficial. The ultimate objective of the model is to minimize
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marginal loss for accurate and swift diagnosis, which was discovered to be significantly better than
training the CapsNet from scratch. Compared to previous studies on integrated CapsNet models by
Tiwari et al. [24], Kumar et al. [28], and Bharati et al. [27], the proposed model in this study achieved
a peak accuracy of 98%.

7 Conclusion

In this study, a novel integrated model called “S-VCNet” is created using a web application for
the prediction of Lumbar Spondylolisthesis, as an alternative to manual radiological examination.
The suggested model improved the performance of the VGG16 model by utilizing the initial feature
map. Comparative experiments demonstrated that the overall performance of S-VCNet was superior
to previously created models. However, the model had significant limitations in accurately classifying
some spondylolisthesis positive cases as negative or vice versa, indicating the need for further research
in the diagnosis of lumbar spondylolisthesis. Although this study provides a foundation for predicting
lumbar spondylolisthesis, grading the spondylolisthesis is important. Therefore, future studies should
focus on (1) improving this algorithm for lumbar spondylolisthesis grading, and (2) developing a
mobile app for the disease identification.
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