
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2023.039937
Article

Machine Learning-Based Efficient Discovery of Software Vulnerability for
Internet of Things

So-Eun Jeon, Sun-Jin Lee and Il-Gu Lee*

Department of Future Convergence Technology Engineering, Sungshin Women’s University, Seoul, 02844, Korea
*Corresponding Author: Il-Gu Lee. Email: iglee@sungshin.ac.kr

Received: 25 February 2023; Accepted: 18 May 2023; Published: 23 June 2023

Abstract: With the development of the 5th generation of mobile communi-
cation (5G) networks and artificial intelligence (AI) technologies, the use of
the Internet of Things (IoT) has expanded throughout industry. Although
IoT networks have improved industrial productivity and convenience, they
are highly dependent on nonstandard protocol stacks and open-source-based,
poorly validated software, resulting in several security vulnerabilities. How-
ever, conventional AI-based software vulnerability discovery technologies
cannot be applied to IoT because they require excessive memory and com-
puting power. This study developed a technique for optimizing training
data size to detect software vulnerabilities rapidly while maintaining learning
accuracy. Experimental results using a software vulnerability classification
dataset showed that different optimal data sizes did not affect the learning
performance of the learning models. Moreover, the minimal data size required
to train a model without performance degradation could be determined in
advance. For example, the random forest model saved 85.18% of memory and
improved latency by 97.82% while maintaining a learning accuracy similar to
that achieved when using 100% of data, despite using only 1%.

Keywords: Lightweight devices; machine learning; deep learning; software
vulnerability detection; common weakness enumeration

1 Introduction

The Internet of Things (IoT) is growing with hyperconvergence, hyperconnection, and hyperintelli-
gence, where everything is connected to the network [1,2]. Therefore, the number of IoT devices owned
by individuals is increasing. Statista predicted that the number of IoT devices worldwide would increase
from 9.7 billion in 2020 to more than 29 billion in 2030 [3]. However, IoT heavily relies on nonstandard
protocol stacks and poorly verified open-source software. Such vulnerable software have a significant
adverse effect on the entire industry and on individuals. If the code containing the vulnerability is
copied and used in another environment, it has the same security weakness and becomes a target
for attackers. According to the IoT threat report published by Palo Alto Networks, IoT devices
can exploit infections, malware, and user information leakages. IoT target exploits typically include

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.039937
https://www.techscience.com/doi/10.32604/iasc.2023.039937
mailto:iglee@sungshin.ac.kr


2408 IASC, 2023, vol.37, no.2

network scans, command injections, and buffer overflows [4]. In 2016, Mirai malware attacked the
domain name system service and infiltrated home appliances [5]. The Mirai botnet targets and infects
devices with vulnerable administrator accounts and uses the infected devices for distributed denial of
service (DDoS) attacks [6]. In 2022, the Mozi botnet infected 11,700 domestic and foreign IoT devices
and used them to hack public institutions and disseminate cryptocurrency mining [7]. Therefore, IoT
security threats are gradually increasing and developing into various attack methods.

As advanced attacks on IoT devices have evolved, studies on IoT vulnerability analysis, attack
detection, and response techniques have been actively conducted. A typical approach involves software
vulnerability and security attack detection using artificial intelligence (AI). AI-based software vulnera-
bility detection can increase the detection rate by being trained on various patterns of attacks occurring
in node and cluster functions with vulnerabilities. The increase in the number of IoT devices and their
variety has made the implementation of machine learning for attack detection in IoT environments
essential. However, because an IoT device has a small amount of power, energy is consumed in training
the model, and a large amount of data cannot be used because of its limited memory. In addition,
the computing power is not sufficiently large to detect anomalies accurately within a limited time.
Moreover, the overall network communication and cloud environment must be considered [8]. In
other words, machine learning in IoT devices has become essential. However, due to environmental
restrictions on IoT devices, there are still limitations in actively introducing machine learning.

In the past, software vulnerabilities were analyzed and detected on high-performance server
systems. However, lightweight IoT devices have limited computing power, memory, and battery
capacity, making it difficult to detect and respond to software vulnerabilities like high-performance
servers. Recently, a variety of research has been conducted to implement machine learning in IoT
devices. However, in previous studies, the resource-constrained environment of IoT was insufficiently
considered, and the realistic attack performance environment was not considered. To solve this
problem, this study addresses ways to efficiently detect software vulnerabilities by optimizing the
training data size to detect software vulnerabilities rapidly while maintaining learning accuracy. The
data sampling ratio in the dataset used to train the AI model in an IoT environment was adjusted
to find the optimal point between size and performance. This study focuses on detecting practical
machine learning-based software vulnerability and evaluates performance from the perspective of
accuracy, memory usage, and latency, which should be considered for practical IoT environments.
Consequently, we found an environment that alleviates trade-offs in terms of accuracy, memory usage,
and latency for IoT devices.

The main contributions of this study are as follows:

• First, the optimal training data size to improve a model’s performance is identified.
• Second, a machine learning-based software vulnerability detection method that can be used

in lightweight IoT devices is proposed. In addition, the proposed method was verified using
the vulnerability detection in source code (VDISC) dataset, which contains essential IoT
vulnerability data such as buffer overflow and null pointer.

The remainder of this paper is organized as follows. Section 2 analyzes related research on attack
detection methods for IoT devices. Section 3 proposes a method to efficiently detect machine learning-
based software vulnerabilities in lightweight devices by optimizing memory usage and learning
accuracy. Section 4 evaluates and analyzes performance. Finally, Section 5 concludes the paper.



IASC, 2023, vol.37, no.2 2409

2 Related Work

IoT attacks have been developed in various ways, from physical to man-in-the-middle attacks,
false data injection, and botnet-based DDoS. Initially, software metrics based on complexity, code
change, or software detection methods based on abstract syntax tree (AST) were studied. Since then,
AI has been integrated into IoT devices to protect systems from advanced attacks. In particular, AI is
the most typical technology for intrusion detection that analyzes traffic patterns and identifies attack
behaviors [9,10]. Table 1 presents an analysis of previous studies on software vulnerability detection.

Table 1: Previous studies on software vulnerabilities detection

Previous studies References Methods and contribution Limitation

Source code
vulnerabilities

Li et al. [11] • Code gadgets are
vectorized, source code
datasets are constructed on
a per-code gadget basis,
and performance is
evaluated using the
bidirectional long
short-term memory
(Bi-LSTM) model.

• Lack of consideration of
various learning models
• Lack of consideration of
different vulnerability
types. (Consider CWE-119,
CWE-399 only)

Bilgin et al. [12] • Ways to automatically
analyze source code using
machine learning models
are studied.
• Through lexical analysis,
parsing, and AST
generation processes for
source code, a deep
learning model is
configured to extract
useful features when
determining vulnerabilities.

• Different dataset
environments leverage
various learning models,
resulting in poor reliability.

IoT
vulnerabilities

Blinowsk et al. [13] • Detection of new
vulnerabilities in IoT
devices using NVD
datasets
• Defined its classification
class and evaluated its
performance

• Unable to learn data
from heterogeneous
devices rapidly
• Difficult to apply to
lightweight IoT devices

(Continued)



2410 IASC, 2023, vol.37, no.2

Table 1: Continued
Previous studies References Methods and contribution Limitation

Niu et al. [14] • A deep learning-based
static pollution analysis
method automatically
finding IoT vulnerabilities
is proposed
• Use the CNN-Bi-LSTM
model to evaluate the
model’s performance

• Excessive computing
power is required

Zolanvari et al. [15] • Proposed machine
learning-based intrusion
detection methodology in
an industrial Internet of
Things (IIoT) environment
• Evaluations were
conducted using the
backdoor, SQL injection,
and command injection,
which are attacks
occurring primarily in an
IoT environment.

• Difficult to apply to
lightweight IoT devices

Hasan et al. [16] • Classify DDoS, data-type
probing, malicious control,
malicious operation, scan,
spying, and incorrect setup
using machine learning
models

• Compared simple
methods in an ideal
environment

Kumar et al. [17] • Proposed IoT attack
detection methodology for
large-scale networks in
scanning and infection
stages

• Poor detection rate, and
additional devices are
required

Li et al. [11] studied source code vulnerability detection. In particular, the authors defined the
source code as a code gadget. Code gadgets were vectorized; source code datasets were constructed
on a per-code gadget basis, and performance was evaluated using the bidirectional long short-term
memory (Bi-LSTM) model. Moreover, a lower non-detection rate than the existing vulnerability
detection system was observed. However, this previous study did not compare the performance of
various learning models and only evaluated the model performance for two vulnerability types, CWE
119 and CWE-399. Additionally, research has been conducted to extract and analyze the source
code as an AST and differentiate between vulnerable and non-vulnerable codes by applying a deep
learning model. Bilgin et al. [12] recognized that the existing vulnerability detection method requires
the expertise and time of domain experts; thus, a method for automatically analyzing source codes



IASC, 2023, vol.37, no.2 2411

using a machine learning model was studied. In addition, through lexical analysis, syntax analysis, and
AST generation of the source code, a deep learning model was configured to extract useful features
when determining the presence of vulnerabilities. The model was evaluated using a CNN model. On
an imbalanced dataset, the Micro-Average P-R curve, the average performance for all classification
values, showed a value of 0.377 when the F1 value passed the 0.4 curve. This study contributed to
analyzing the source code in the form of AST and evaluating the performance of imbalanced and
balanced datasets. However, the different dataset environments leverage various learning models so
the result was in poor reliability.

Blinowsk et al. [13], who studied IoT vulnerability detection, proposed a machine learning
methodology for detecting novel vulnerabilities in IoT systems. The network vulnerability data (NVD)
database, a representative common vulnerability database (CVE), was categorized into multiple classes
(H, S, E, M, P, and A) according to the field. H targeted vulnerabilities related to home and small office
home office devices, S targeted supervisory control and data acquisition and industrial systems, and
E targeted enterprise industries. M targeted mobile and wearable devices, and P grouped personal
computers (PCs) and laptops. Furthermore, A referred to other home appliances, such as printers
and storage devices. Subsequently, the classification performance was evaluated using a support
vector machine (SVM). Experiments show that when there are many data points, the precision is
70% to 80%, while when there are fewer data points, the precision is less than 50%. The method
proposed by Blinowsk et al. [13] is meaningful because it attempts to find zero-day vulnerabilities
that could occur through vulnerability data in IoT and other devices. However, rapidly training
AI models on data from heterogenous devices in an IoT environment remains a challenge. This
approach is unsuitable for lightweight IoT devices because one cannot expect further effects in terms of
complexity when using the computationally complex SVM model. In addition, the method proposed
by Blinowsk et al. showed poor detection performance compared to the time learned, with some groups
achieving a precision of less than 50%.

Niu et al. [14] proposed a deep learning-based static pollution analysis method that automatically
finds vulnerabilities in IoT software. The method uses difflib to obtain a diff file between the source
and patched source codes. Subsequently, labels are entered according to the contamination selection
principle. Then, a propagation path is predicted through static pollution propagation, and the path is
converted into a symbolic representation. The symbolic representation is again encoded as a vector,
and the data are trained using a deep learning model. This study used a trained convolutional
neural network-Bi-LSTM (CNN-Bi-LSTM) model to identify two general types of IoT software
vulnerabilities. The proposed model was evaluated using buffer overflow (CWE-119) and resource
management vulnerability (CWE-399), and vulnerabilities were detected with accuracies of 97.32%
and 97.21%, respectively. This study is meaningful because the proposed method traces the attack
propagation path and learns data. However, it has the following limitation: a high-powered computing
device is required for IoT vulnerability detection.

Zolanvari et al. [15] used machine learning in IIoT to evaluate the performance of an intrusion
environment. In particular, the method was used to classify backdoor, structured query language
(SQL) injection, and command injection attacks that can occur in an IIoT system by monitoring
the water level and turbidity of the reservoir. The random forest (RF) model achieved a detection
accuracy of approximately 99%. Furthermore, Zolanvari et al. [15] measured the detection rate in an
actual IIoT environment with high accuracy. However, their method is unsuitable for lightweight IoT
devices because a large amount of computing power and training time cannot be invested in general
IoT equipment.



2412 IASC, 2023, vol.37, no.2

Hasan et al. [16] used machine learning models to predict IoT attacks and anomalies. First,
the performances of the models were compared using logistic regression (LR), SVM, decision trees,
RT, and artificial neural networks. Then, DDoS, data-type probing, malicious control, malicious
operation, scan, spying, and wrong setup attacks were detected with accuracies of 98%–99%. This
study contributed to the literature by evaluating the performance of the machine learning models used
in IoT attacks. However, the study did not model an ideal environment, and a simple methodology was
used. In addition, it is difficult to conclude that RF is suitable because it does not yield the best results
for all vulnerability datasets.

Kumar et al. [17] proposed the early detection of IoT malware network activity (EDIMA) to
detect large-scale IoT attacks during the scanning and infection stages. EDIMA classified traffic from
edge devices with an accuracy of 88.8% for RF, 94.44% for k-nearest neighbors (KNN), and 77.78%
for Gaussian naïve Bayes (Gaussian NB) algorithms. This study is meaningful because it developed
a methodology that can detect an attack in the stage immediately before the attack. However, some
traffic cannot be detected, and there are limitations on those additional nodes, such as PCs and edge
devices, that must be used to detect attacks. Conventional studies have suggested various vulnerability
detection methodologies for IoT devices. However, they have not explored whether IoT devices can
perform training by themselves and whether high computing power is required to detect attacks..

3 Practical Machine Learning-Based Software Vulnerability Discovery Mechanism

This study derives the optimal data size for efficiently detecting software vulnerabilities in
lightweight device environments that use resource-constrained IoT and mobile devices. Collecting
sufficient learning data from lightweight devices with limited resources is challenging. Because the
optimal learning model differs depending on the learning environment, this study analyzed the
performance of machine learning and deep learning models according to the training data size.
In particular, the optimal data size was determined without performance degradation of software
vulnerability detection.

Fig. 1 shows a mechanism for determining the optimal minimum data size while maintaining
accuracy. In general, when the training data are sufficient, the accuracy of machine learning models
improves. In other words, even in this mechanism, the higher the data sampling rate, the higher the
possibility of vulnerability detection because enough data are available for learning. However, resource
usage, such as memory usage and latency, becomes inefficient. Because the accuracy and resource
usage performance indicators are in a trade-off relationship, this study proposes a model to find and
optimize the trade-off between accuracy and resource usage. The operation process of the proposed
mechanism is described below.

Figure 1: Flowchart of the data sampling ratio optimization mechanism



IASC, 2023, vol.37, no.2 2413

First, when a training dataset was prepared, the models were trained without sampling in the first
round. If the required accuracy was satisfied, the data sampling ratio was decreased to save memory
usage. However, if the required accuracy was not satisfied, the data sampling ratio was increased to
minimize the performance degradation and is relearned. A back-off algorithm was applied to minimize
performance degradation by adjusting the data sampling ratio to maintain sufficient accuracy. In
other words, when the required accuracy was satisfied, the two performance indicators in a trade-off
relationship can be optimized while adjusting the sampling ratio. The proposed algorithm can optimize
the trade-off problem between data classification performance and the overhead due to memory
occupancy. Moreover, the algorithm can provide real-time performance and update the framework
through a back-off algorithm.

4 Performance Evaluation and Analysis

This section compares the performance of machine learning and deep learning models using the
source code vulnerability dataset. In particular, the environment of the training data was adjusted,
and actual demand metrics for evaluating the performance of lightweight devices used in an actual
scenario was considered.

4.1 Experimental Environment
The VDISC dataset [18] is a collection of source code functions that can become potential

vulnerabilities through static analysis. This dataset consisted of 127,418 vulnerable function codes.
Table 2 lists the CWE-IDs and each vulnerability type included in the VDISC dataset.

Table 2: CWE-IDs in the VDISC dataset [19]

CWE-ID Description

119 Improper restriction of operations within the bounds of a memory buffer
120 Buffer overflow
469 Use of pointer subtraction to determine size
476 NULL pointer dereference
Other (e.g., 20, and 457) Improper input validation, and use of uninitialized variable

The VDISC dataset contains large amounts of functional code collected from several open-source
projects. The vulnerability types, which are prone to attacks, are classified as CWE-119 (improper
restriction of operations within the bounds of a memory buffer), CWE-120 (buffer overflow), CWE-
469 (use of pointer subtraction to determine size), CWE-476 (NULL pointer dereference), and CWE-
other. CWE-other is a label for other vulnerabilities, including CWE-20 and CWE-457. The frequency
of occurrence of CWE-119, CWE-120, CWE-469, CWE-476, and CWE-other are 38.1%, 18.9%,
9.5%, 2.0%, and 31.4%, respectively [19]. Therefore, this experiment used a dataset of vulnerability
types with a high occurrence rate. Vulnerable source code functions were preprocessed using word-
level tokenization. The average performance for each vulnerability type was derived using a binary
classification model that predicted each vulnerability type as true or false. Machine learning models
(KNN, RF, and LR) and deep learning models (CNN and multi-layer perceptron (MLP)) were selected
to evaluate the classification performance according to vulnerability type. KNN is an algorithm that
classifies data according to the ratio of labels by referring to k pieces of data close to the data. RF
is an algorithm that collects and classifies results from trees constructed in the training process, and



2414 IASC, 2023, vol.37, no.2

LR is an algorithm that classifies multi-labels using a linear combination of independent variables.
In addition, CNN is a model used to classify data such as images and videos by imitating the human
optic nerve, and MLP is a network model composed of a multi-layer neural network structure with a
hidden layer added to a single-layer perceptron.

In addition, the performance was verified according to the learning environment of the lightweight
device by differentiating the sampling ratio in the entire dataset. The data sampling environments are
listed in Table 3.

Table 3: Data sampling environment

Data sampling ratio (%) Number of datasets

0.05 63
0.1 127
1 1,274
50 63,709
100 127,418

The evaluation metrics considered in this study are accuracy, memory usage, and latency. Accuracy
predicts the vulnerability type and is calculated using Eq. (1).

Accuracy = TP + TN
TP + TN + FP + FN

(1)

where true positive (TP) is the case where the model predicts true for a true condition. True negative
(TN) is when the model has a false outcome for a false condition. A false positive (FP) is when the
model outputs true for a false condition. A false negative (FN) indicates that the model has a true
output for a false condition. Memory usage refers to the amount of memory used by a CPU during
the learning process. Memory is utilized by the tracemalloc module. Latency is the amount of time
required to learn and evaluate each model.

4.2 Evaluation Results and Analysis
This section analyzes the performance evaluation results for each machine learning model

according to different data sampling ratios. Fig. 2 shows the performance results in terms of accuracy
according to the data sampling ratio.

As shown in Fig. 2, the accuracy, memory usage, and latency increased as the data sampling ratio
increased, implying that software vulnerability can be more accurately detected for a large training
data size. However, this approach is inefficient considering memory usage and latency in lightweight
devices with limited memory and computing power.

When the data sampling ratio was low, the accuracy was high in the order of RF, LR, CNN, KNN,
and MLP. However, in an environment with a large training data size, the accuracy was high in the
order of CNN, RF, KNN, LR, and MLP. The performance of all models converged in the range of
approximately 98%. This result implies that the training data size must be maintained above a specific
level to utilize a deep learning model because the detection performance of the deep learning model
degrades in the absence of training data [20]. In addition, the performance of the RF model, which is
a supervised machine learning model, was generally good, regardless of the training data size. On this



IASC, 2023, vol.37, no.2 2415

dataset, the benefit of RF, which efficiently generalizes the prediction model and does not easily cause
overfitting, can be observed.

Figure 2: Model performance in terms of accuracy and data sampling rate

Fig. 3 shows the performance results in terms of memory usage according to the data sampling
ratio.

Figure 3: Model performance in terms of memory usage and data sampling ratio

Regarding memory usage, the efficiency of the algorithms was in the following order: KNN, RF,
CNN, MLP, and LR. Memory usage was highest in the order of CNN, MLP, LR, KNN, and RF
in environments with small training data sizes. Memory usage was highest in the order of LR, MLP,
CNN, KNN, and RF in environments with large training data sizes. In particular, when LR and MLP
sampled 0.05% of the training data compared with the total training data, the memory usage decreased



2416 IASC, 2023, vol.37, no.2

by 99.95% and 98.77%, respectively. Thus, verifying the inefficiency of LR and MLP is possible for
a large training data size. In addition, KNN, a relatively simple model, had the least memory usage
in an environment with a small dataset and was less efficient than RF in the non-sampled dataset
environment, which is because the computational cost increases rapidly with the data size [21]. Thus,
the results indicate that RF and LR had the most efficient memory usage, even in an environment with
a small training data size.

Fig. 4 shows the performance results in terms of latency according to the data sampling ratio.

Figure 4: Model performance in terms of latency and the data sampling ratio

In terms of latency, performance deteriorated rapidly when the data sampling ratio exceeded 1%.
In an environment with a small training data size, the latency was high in the following order: CNN,
RF, MLP, LR, and KNN. However, in an environment with a large training data size, latency was high
in the order of CNN, MLP, KNN, LR, and RF. In terms of latency, the performance degradation of
deep learning models is generally high. CNNs require a long time to train because of the problem
of vanishing and expanding gradients, regardless of the training data size [22]. Thus, CNNs can be
considered to be a highly inefficient model for lightweight devices. MLP also had a characteristic in
which the latency increased rapidly as the training data size increased, owing to the complexity of
the model. The KNN is efficient in environments with a small training dataset. However, the latency
increased rapidly as the training data size increased, rendering it the most inefficient model after the
deep learning model. This is because all the data are compared in the KNN learning process, and as
the data size increases, the training time increases rapidly. By contrast, RF and LR had the shortest
training times. LR with relatively low complexity requires a small amount of latency regardless of the
training data size. In addition, in an environment with a small data size, RF requires a small latency at
0.2 s, even though it had the second-highest latency of the five models. However, RF requires the least
time of the five models in an environment where the training data size increases.

In this study, when the data were sampled at a rate of 1%, the accuracy performance converged to
98%, also it was before the rapid increase in memory usage and latency. Therefore, the data sampling
ratio showing optimal performance in the lightweight device under this experimental condition is 1%.
In other words, the experimental results indicate that in lightweight IoT, data size decisions that do



IASC, 2023, vol.37, no.2 2417

not degrade performance are important and experimentally optimizable. In addition, the CNN was
efficient in terms of accuracy among learning models, despite being inefficient in terms of memory
usage and latency. Therefore, these models are more suitable for high-power servers instead of being
used for detecting vulnerable software in lightweight devices. MLP is inefficient in all three evaluation
metrics and is relatively unsuitable for lightweight devices because it is a highly complex model.
KNN is efficient in terms of memory usage. However, KNN has low accuracy in environments with
a small training data size, and it is inefficient in terms of latency in environments where the data
size increases. LR is efficient in terms of accuracy and latency; however, memory usage increases
rapidly as the training data size increases. By contrast, RF was the most efficient in terms of accuracy,
memory usage, and training time. RF maintains the same accuracy as that achieved with 100% of the
data despite learning only from 1%. In addition, it reduces memory usage by 85.18% and improves
latency by 97.82%. Therefore, although the optimal data sampling ratio is 1%, RF has the most stable
performance in lightweight devices even if the data size is increased.

5 Conclusions

The introduction of 5G networks has ushered in hyperconnection, and the use of IoT devices has
increased. Therefore, software vulnerabilities arising from lightweight IoT devices are increasing. In
the past, machine learning-based vulnerability detection and response methods were primarily run on
powerful servers. However, performing data learning efficiently in resource-constrained IoT devices
is challenging. Therefore, this study proposed a technique for optimizing the data sampling ratio to
efficiently detect software vulnerabilities in lightweight IoT devices. Furthermore, the performance of
each machine learning and deep learning model was evaluated to detect the most frequently occurring
vulnerability types in terms of accuracy, memory usage, and latency. Consequently, a data sampling
ratio of 1% is the optimal data size, which was determined under experimental conditions. In addition,
in terms of learning models, CNN, a deep learning model, was inefficient for resource usage, and MLP
was inefficient for accuracy and resource usage. By contrast, the performance of machine learning
models, KNN and LR, was significantly affected by training data size. In comparison, RF showed
overall stable performance in terms of accuracy and memory usage. This study showed that an optimal
learning environment exists considering the resources of IoT devices for each learning environment.
Based on this, in future work, the detection accuracy of vulnerabilities must be improved by creating
an optimal learning environment within the IoT device environment by optimizing the performance
for each learning environment.

This study evaluated five learning models by using only one software vulnerability dataset. In
addition, resource usage, such as complexity, which indicates whether the models can operate on IoT
devices, must be evaluated. In future studies, we will compare the detection performance of each model
using various datasets, and additional resource usage will be considered to demonstrate the operability
of IoT devices. In addition, a classifier that guarantees high detection performance through model
optimization will be studied. We will also present a novel detection framework to detect unknown
vulnerabilities. Furthermore, the performance of the model can be evaluated by implementing the
model proposed in this study. Finally, we plan to study adaptive data sampling techniques in non-
independent and identically distributed data environments.

Acknowledgement: This study was revised and supplemented from a paper presented at the 6th
International Symposium on Mobile Internet Security (MobiSec’22) conference.



2418 IASC, 2023, vol.37, no.2

Funding Statement: This work was partly supported by a National Research Foundation of Korea
(NRF) grant funded by the Ministry of Science and ICT (MSIT) (No. 2020R1F1A1061107), the
Korea Institute for Advancement of Technology (KIAT) grant funded by the Korean Government
(MOTIE) (P0008703, The Competency Development Program for Industry Specialists), and the MSIT
under the ICAN (ICT Challenge and Advanced Network of HRD) program (No. IITP-2022-RS-2022-
00156310) supervised by the Institute of Information & Communication Technology Planning and
Evaluation (IITP).

Author Contributions: So-Eun Jeon: Conceptualization, Methodology, Software, and Writing-Original
Draft. Sun-Jin Lee: Methodology, Validation, Resources, and Writing-Original Draft. Il-Gu Lee:
Conceptualization, methodology, writing-review and editing, supervision, project administration, and
funding acquisition.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. Ahn, I. Lee and M. Kim, “Design and implementation of hardware-based remote attestation for a secure

internet of things,” Wireless Personal Communications, vol. 114, pp. 295–327, 2020.
[2] B. Lee, I. G. Lee and M. Kim, “Design and implementation of secure cryptographic system on chip for

internet of things,” IEEE Access, vol. 10, pp. 18730–18742, 2022.
[3] Statista. 2022. “Number of internet of things (IoT) connected devices worldwide from 2019 to 2021,

with forecasts from 2022 to 2030,” [Online]. Available: https://www.statista.com/statistics/1183457/iot-
connected-devices-worldwide. last viewed 17 September 2022.

[4] Paloalto networks. 2020. “2020 unit 42 IoT threat report,” [Online]. Available: https://unit42.
paloaltonetworks.com/iot-threat-report-2020/. last viewed 17 September 2022.

[5] H. Lee, “Intrusion artifact acquisition method based on iot botnet malware,” Journal of IoT Convergence,
vol. 7, no. 3, pp. 1–8, 2021.

[6] Cloudflare. 2016. “What is the Mirai botnet?” [Online]. Available: https://www.cloudflare.com/ko-kr/
learning/ddos/glossary/mirai-botnet. last viewed 21 September 2022.

[7] K. Sunghoon and N. Hyunjun, 2022. “Cctv robbed 10,000 routers,” [Online]. Available: https://www.mk.
co.kr/news/it/view/2022/01/57997. last viewed 17 September 2022.

[8] J. Gold, 2022. “IoT is turning into a service,” [Online]. Available: https://www.ciokorea.com/news/221754.
last viewed 17 September 2022.

[9] K. Murat, C. Fair and O. Guler, “Role of artificial intelligence in the internet of things (IoT) cybersecurity,”
Discover Internet of Things, vol. 1, no. 3, pp. 1–4, 2021.

[10] D. Abebe, N. Chilamkurti, V. Nguyen and W. Heyne, “A comprehensive study of anomaly detection
schemes in iot networks using machine learning algorithms,” MDPI Sensors, vol. 21, no. 24, pp. 8320,
2021.

[11] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin et al., “Vuldeepecker: A deep learning-based system for vulnerability
detection,” in Proc. Network and Distributed Systems Security (NDSS) Symp. 2018, San Diego, CA, USA,
2018.

[12] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak et al., “Vulnerability prediction from source
code using machine learning,” IEEE Access, vol. 8, pp. 150672–150684, 2020.

[13] G. J. Blinowsk and P. Piotrowski, “CVE based classification of vulnerable IoT systems,” in Int. Conf. on
Dependability and Complex Systems, Geneva, Switzerland, Springer, pp. 82–93, 2020.

[14] W. Niu, X. Zhang, X. Du, L. Zhao, R. Cao et al., “A deep learning based static taint analysis approach for
IoT software vulnerability location,” Measurement, vol. 152, no. 3, pp. 107139, 2019.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide
https://unit42.paloaltonetworks.com/iot-threat-report-2020/
https://unit42.paloaltonetworks.com/iot-threat-report-2020/
https://www.cloudflare.com/ko-kr/learning/ddos/glossary/mirai-botnet
https://www.cloudflare.com/ko-kr/learning/ddos/glossary/mirai-botnet
https://www.mk.co.kr/news/it/view/2022/01/57997
https://www.mk.co.kr/news/it/view/2022/01/57997
https://www.ciokorea.com/news/221754


IASC, 2023, vol.37, no.2 2419

[15] M. Zolanvari and L. Gupta, “Machine learning-based network vulnerability analysis of industrial internet
of things,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6822–6834, 2019.

[16] M. Hasan, M. Islam, I. I. Zarif and M. M. A. Hashem, “Attack and anomaly detection in IoT sensors in
IoT sites using machine learning approaches,” Internet of Things, vol. 7, pp. 100059, 2019.

[17] A. Kumar and T. J. Lim, “EDIMA: Early detection of IoT malware network activity using machine learning
techniques,” in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, pp. 289–
294, 2019.

[18] L. Kim and R. Russell, 2018. “Draper vdisc dataset-vulnerability detection in source code,” [Online].
Available: https://osf.io/d45bw/. last viewed 17 September 2022.

[19] R. L. Russell, L. Kim, L. H. Hamilton, T. Lasovich, J. A. Harer et al., “Automated vulnerability detection
in source code using deep representation learning,” in 17th IEEE Int. Conf. on Machine Learning and
Applications (ICMLA), Orlando, Florida, USA, pp. 757–762, 2018.

[20] A. Klautau, P. Batista, N. González–Prelcic, Y. Wang and R. W. Heath, “5G mimo data for machine
learning: Application to beam-selection using deep learning,” in 2018 Information Theory and Applications
Workshop (ITA), San Diego, CA, USA, pp. 1–9, 2018.

[21] V. Praveen Kumar and I. Sowmya, “A review on pros and cons of machine learning algorithms,” Journal
of Engineering Sciences, vol. 12, no. 10, pp. 272–276, 2021.

[22] G. Liu, H. Kang, Q. Wang, Y. Tian and B. Wan. “Contourlet-CNN for SAR image despeckling,” Remote
Sensing, vol. 13, no. 4, pp. 764, 2021.

https://osf.io/d45bw/

	Machine Learning-Based Efficient Discovery of Software Vulnerability for Internet of Things
	1 Introduction
	2 Related Work
	3 Practical Machine Learning-Based Software Vulnerability Discovery Mechanism
	4 Performance Evaluation and Analysis
	5 Conclusions
	References


