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Abstract: Hyperparameters play a vital impact in the performance of most
machine learning algorithms. It is a challenge for traditional methods to con-
figure hyperparameters of the capsule network to obtain high-performance
manually. Some swarm intelligence or evolutionary computation algorithms
have been effectively employed to seek optimal hyperparameters as a com-
binatorial optimization problem. However, these algorithms are prone to get
trapped in the local optimal solution as random search strategies are adopted.
The inspiration for the hybrid rice optimization (HRO) algorithm is from
the breeding technology of three-line hybrid rice in China, which has the
advantages of easy implementation, less parameters and fast convergence.
In the paper, genetic search is combined with the hybrid rice optimization
algorithm (GHRO) and employed to obtain the optimal hyperparameter of
the capsule network automatically, that is, a probability search technique and
a hybridization strategy belong with the primary HRO. Thirteen benchmark
functions are used to evaluate the performance of GHRO. Furthermore,
the MNIST, Chest X-Ray (pneumonia), and Chest X-Ray (COVID-19 &
pneumonia) datasets are also utilized to evaluate the capsule network learnt
by GHRO. The experimental results show that GHRO is an effective method
for optimizing the hyperparameters of the capsule network, which is able to
boost the performance of the capsule network on image classification.

Keywords: Hyperparameter optimization; hybrid rice optimization algorithm;
genetic algorithm; capsule network; image classification

1 Introduction

Internet and information technology have rapidly developed in the big data era. Images have
become a crucial production factor [1–3]. Since machine learning algorithms can intelligently process
massive amounts of data to extract valuable potential information, they have been applied in image
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classification tasks. Image classification is the task of assigning corresponding labels to images from
the provided set of categories.

The primary methods for image classification are divided into traditional machine learning and
deep learning algorithms. One of the most typical classification methods is support vector machine
(SVM) [4] in traditional machine learning algorithms. Up to now, deep learning algorithms have
gradually become popular methods for image classification, including convolutional neural network
(CNN) [5,6], transformer [7], and capsule network (CapsNet) [8,9]. In recent years, ConvNeXt [10],
a pure convolutional neural network, has outperformed the famous Swin-transformer. Moreover,
CapsNet, with a good hyperparameter configuration, is also a good solution for image classification
[11,12]. CapsNet is a novel neural network based on the capsule structure and combined with
convolution to have superior performance on some tasks [13–15]. Because the output of CapsNet
consists of vectors, it contains more information than CNN, such as the orientation of features.
This also leads to the complex structural hyperparameters of CapsNet. The optimized CapsNet can
effectively balance the speed of convergence and accuracy of the model and reduce the training time
and computational cost.

In essence, hyperparameter optimization is a combinatorial optimization problem. Swarm intel-
ligence or evolutionary computation algorithms are effective means for hyperparameter optimization
problem. With the development of optimization algorithms, some novel hyperparameter optimization
methods have gradually emerged for hyperparameter optimization of CNN. These methods could be
applied to optimize the hyperparameters of CapsNet. Only if a good combination of hyperparameters
is selected, we can obtain a high-performance CapsNet. Since CapsNet requires a long training
period for image classification tasks, it is necessary to choose a swarm intelligence or evolutionary
computation algorithm with a faster convergence speed and excellent search capability for the
hyperparameter optimization of CapsNet. Hybrid rice optimization (HRO) algorithm [16] has a faster
convergence speed and can preserve population diversity with reduced computation cost than other
algorithms, which have applications in several fields. For example, Jin et al. [17] proposed an improved
fuzzy C-means (HROFCM) method based on HRO to select the better feature. HROFCM overcomes
the defect which is multiple local optima. Thus the classifier obtained good performance in network
intrusion detection. Shu et al. [18] proposed the parallel model and serial model combined HRO and
the binary ant colony optimization (BACO) algorithm. The two models enhance the efficiency and
robustness of HRO in solving the 0–1 knapsack problem.

Because of the good performance of HRO in the areas mentioned above, HRO is considered for
finding hyperparameters of CapsNet in this paper. However, HRO is still essentially a random search
algorithm and also suffers from the problem of easily falling into the local optima. Therefore, this paper
improves the primary HRO by genetic search and further applies the genetic hybrid rice optimization
(GHRO) algorithm for the hyperparameter optimization of CapsNet. The main contributions of this
paper are summarized as follows:

• For the maintainer line, we proposed a genetic search strategy and mutation rate to enhance the
global search capability of HRO.

• For the restorer line, a hybridization probability was introduced to accept some inferior solution
to maintain the population diversity.

• For CapsNet, the kernel size, the stride, the number of the kernel of convolution, the optimizer,
the routing times, the dimension of capsules, the activation function, and so on, can be
reasonably adjusted by GHRO. GHRO is able to optimize the hyperparameters to help us build
a high-performance CapsNet model.
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The organization of this paper is as follows: Section 2 reviews the related work in recent years.
Section 3 describes the fundamentals of HRO and CapsNet. Section 4 elaborates GHRO and the
process of the hyperparameter optimization problem in CapsNet. Section 5 presents and analyses the
experimental results. Finally, Section 6 is the conclusions and future works.

2 Related Work
2.1 Hyperparameter Optimization Based on Swarm Intelligence or Evolutionary Computation
Algorithms

Traditional hyperparameter optimization methods are hard to solve combinatorial optimization
problems in high-dimensional space. Fortunately, swarm intelligence or evolutionary computation
algorithms can find the optimum efficiently in high-dimensional space. For instance, Guo et al. [19]
combined genetic algorithm (GA) and taboo search (TS) for the hyperparameter optimization prob-
lem. The hybrid optimization algorithm shows excellent search capability with faster convergence and
found the hyperparameter combination with better performance than RS and BO in the experiment.
Mahareek et al. [20] designed a student performance prediction model based on a simulated annealing
(SA) algorithm, which showed better performance than the original model. The hyperparameter
optimization of CNN based on particle swarm optimization (PSO) algorithm has obtained excellent
performance on both hydraulic pistons pump intelligent fault diagnosis [21] and speech recognition
tasks [22]. Xiao et al. [23] proposed a variable-length GA to automate the optimization of CNN
hyperparameters and improve the image classification accuracy. Elgeldawi et al. [24] combined the
advantages of PSO with GA to fine-tune the hyperparameters and successfully applied the resulting
improved model for the Arabic sentiment analysis problem. Lee et al. [25] optimized the deep learning
model hyperparameters based on GA, and the model performance on the Alzheimer’s diagnosis brain
dataset improved by 11.73% compared with the CNN before optimization. Meng et al. [26] optimized
the backpropagation neural network for milling tool wear prediction by gravitational search algorithm
(GSA). Differential evolution (DE) [27] and the Cuckoo search algorithm (CS) [28] have also achieved
satisfactory results in the application of hyperparameter optimization.

Even though these methods obtained good results in optimizing the hyperparameters of machine
learning models, there are still some shortcomings in these algorithms. SA and DE are slow to converge
and sensitive to the initial parameter settings of the algorithms. GA, TS, and CS are susceptible to the
local optima, while PSO and GSA are fast to converge but cannot jump out of the local optima to
find the global optima. In all, there is room for investigating more efficient optimization algorithms
to optimize the hyperparameters for machine learning models. In view of the converge speed and the
searching ability of HRO, it is suitable for handling the hyperparameter optimization problem.

2.2 Overview of CapsNet
CapsNet provides a new way to extract the main features of images different from convolution.

Compared to CNN, CapsNet achieves better classification results in image classification tasks with
MNIST, Fashion-MNIST, SVHN dataset [29], and smallNORB dataset [30]. These studies and
improved the dynamic routing algorithm and convolution layer of CapsNet to design a more effective
CapsNet. Meanwhile, several modified models of CapsNet are applied in image segmentation [31],
disease diagnosis [32], and sentiment analysis [33]. One of the most significant reasons for these
researchers is the reasonable hyperparameter combinations. However, researchers configured these
hyperparameters of CapsNet with a lot of effort. It is difficult to establish CapsNet with an excellent
hyperparameter combination, which requires enormous energy and patience. Therefore, it is necessary
to seek an efficient optimization method for the hyperparameter combination in CapsNet.
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3 Background
3.1 The Fundamentals of Hybrid Rice Optimization Algorithm

The three-line breeding technology of Chinese hybrid rice provides some novel ideas for designing
algorithms. Ye et al. proposed the HRO in 2016. The three-line breeding technology divides rice
individuals into three categories. The rice individuals produce the better genes by hybridization
and self-crossing. It means that the theory uses a maintainer line to maintain male sterility and
achieve seed multiplication of sterile lines and a restorer line to restore fertility and obtain a robust
dominant hybrid combination for application. In HRO, the gene string of rice is encoded in the feasible
solution. These feasible solutions evolve toward the optimum in the search space according to several
specific evolutionary rules. The correspondence between the hybrid breeding evolution process and
the algorithm is shown in Fig. 1.
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Figure 1: Mapping relationship between hybrid breeding evolution and swarm intelligence algorithm

First, HRO sorts individuals of the population X = [X1, X2, .., Xn] according to the magnitude
of fitness values of individuals. Then, X is divided into the maintainer line, sterile line, and restorer
line, where the top a% of individuals are regarded as the maintainer line, the bottom a% of individuals
are considered as the sterile line, and the remaining individuals are viewed as the restorer line. Three
different operations of individual population renovation are hybridization, selfing, and renewal. The
three evolution operators are illustrated in [34]. Furthermore, the three lines cooperate to evolve
collaboratively by specific evolutionary rules, facilitating the rapid finding of the global optimum.
Meanwhile, HRO has a simpler update operator and fewer parameters.

3.2 The Basic Structure of CapsNet
CapsNet is a neural network composed of multiple capsules, and its input and output are vectors.

In addition, the dynamic routing algorithm updates CapsNet between two layers of vectors. Compared
to CNN, the scalar features in CNN are replaced by the vector features in CapsNet because the
vector features contain abundant image features. In the output, the length of the vector represents
the probability of detected features. The direction of the vector represents the geometric state of
detected features, such as direction, position, line thickness, and other information. These instantiated
parameters extracted by capsules are equivariant. When the observed objects move or the visual
conditions change, the values in the vectors change accordingly, but their lengths remain unchanged.
Consequently, CapsNet compensates for the shortcomings of CNN, which is highly sensitive to the
slight feature transformation of images.

A typical CapsNet is composed of an input layer, two convolutional layers, a primary capsule layer
(Primary-Caps), a digitization capsule layer (Digit-Caps), and an output layer. Fig. 2 shows a typical
structure of the CapsNet. The MNIST dataset is used to illustrate the training process of CapsNet,
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and the MNIST dataset has 10 classes from 0 to 9. The input layer of CapsNet is a 28 × 28 × 1 image.
The first convolution layer employs 256 × 9 × 9 convolution kernels with the stride of 1, and the size
of the output feature map is 256 × 20 × 20. The second layer convolution kernel stride is set to 2 to
initialize capsules, and the output feature map is turned to 256×6×6, which is initialized into 8×6×6
capsule structures with 32 channels in the initialized capsule layer. Each capsule of Primary-Caps has 8
dimensions and the total number of primary capsules is 6×6×32. All primary capsules are converted
into ten 16-dimensional capsules by a fully connected (FC) layer. Each capsule layer takes the output
of lower capsule layers as input, and the length of capsule is determined in the last layer. The final
CapsNet will output a vector containing the probabilities of the 10 classes.
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Figure 2: The typical CapsNet structure

4 The Proposed Methodology

Although CapsNet had successful applications in several different areas, some hyperparameters
need to be optimized in CapsNet. These hyperparameters often rely on manual settings. An automatic
hyperparameter optimization method for CapsNet based on GHRO is proposed to overcome this
dilemma of manual setting. HRO combined with the genetic search and the hybridization strategy are
expounded in Section 4.1. Section 4.2 describes in detail the process of the improved HRO to solve the
hyperparameter optimization problem of CapsNet.

4.1 Improved HRO
The most significant characteristic of GA is that its selection operator, crossover operator, and

variation operator, which simulates the process of biological evolution. The genetic mechanism makes
the search process very flexible, effectively ensuring that GA has a powerful global search capability.
Nonetheless, the randomness of GA in the evolutionary process causes the algorithm lose the ability
to perform valuable exploration in the vicinity of reasonable solutions. Therefore, the standard GA
has the defects of poor local search capability, which can result in it falling into the local optimum.

HRO sorts and divides the population into maintainer, restorer, and sterile lines according to
their fitness. In the process of population evolution, the maintainer line remains unchanged. The
sterile line is intercrossed with them to produce the next generation of sterile individuals. The self-
crossing, including the renewal, is belonging to swarm intelligence that enables individuals with
intermediate fitness to approach the current optimum at a certain rate while avoiding the local
optimum. However, the maintainer line without any operator weakens the global search capability of
HRO in the later period. Additionally, the self-crossing operator of the restorer line limits population
diversity, which results in the premature convergence of HRO because of falling into the local optimum.
This phenomenon is named premature in evolutionary computation.
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To overcome the above problems, GHRO is designed by profoundly integrating the advantages
of GA and HRO. The core of GHRO is to introduce the idea of a genetic search and hybridization
strategy into HRO, which can effectively eliminate the defect of premature and preserve population
diversity. Fig. 3 shows the main process of GHRO.
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Figure 3: The main process of GHRO

Individuals in the maintainer line mutate according to the mutation rate (MR). The genetic search
mechanism can enhance the ability of HRO to jump out of the local optimum and improve the global
exploitation of the algorithm. The genetic search mechanism is described as Eq. (1):

xd
new (t + 1) = xd

min + r · (
xd

max − xd
min

)
(1)

where xd
new is the new individual in the dth dimension generated by the mutation. xd

min and xd
max are the top

and bottom bounds of the dth dimensional search space. r is a random variable between zero and one.

In addition to mutation, GHRO also introduces the hybridization rate (HR) to accept inferior
solutions in the sterile line with a certain probability, increasing the diversity of population. The main
process is generating a number between zero and one before the population individuals mutate and
hybridize. If this random number is less than MR, it performs mutation, less than HR, and it performs
hybridization.
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4.2 Hyperparameter Optimization of CapsNet Based on GHRO
To address the problem of manually configuring hyperparameters in CapsNet, GHRO is applied

to automatically search the optimal hyperparameters of CapsNet, which is named GHRO-CapsNet.

The classical CapsNet generally is composed of three different components: convolution layers,
capsule structure, and reconfiguration network. The depth of CapsNet deepens as the number of
capsule and convolution layers increase. In this way, the learning capability of CapsNet increases.
Unfortunately, the time and space complexity of the network also increases. In addition, these
parameters which need to be adjusted are model training parameters during training, including weight,
bias, and coupling coefficient. The other parameters that need to be set in advance are collectively
referred to as the model hyperparameters. For example, the common model hyperparameters of
CapsNet include the relevant parameters of convolution, the channel of the capsule layer, and the
routing iterations.

The structure of CapsNet changes with these model hyperparameters. And the prediction accuracy
for image classification is determined by the structure of CapsNet. Therefore, the hyperparameter
configuration problem of CapsNet must be optimized. Existing research show that these model
hyperparameters directly determine the performance of CapsNet, such as the batch size, number of
convolutional kernels, and activation function. The batch size is a critical parameter that influences
the performance of the network. For instance, the larger the training batch size is, the faster the
computation speeds. However, the accuracy rate may decrease. The convolutional kernels determine
the structure of capsules in CapsNet. And the convolutional kernels perform feature extraction by
sliding over the image in a certain number of strides. The more the feature maps are contained, the
better the prediction result of the network will be, but the computing cost of the network will increase.
What’s more, the choice of activation function in the convolutional layer is also significant. Different
activation functions have different characteristics, and the improper choice of activation function
might lead to slow convergence, increased computational expenses, or gradient disappearance.

It is well known that shallow convolution exhibits poor performance in extracting complex image
features. These fuzzy features which are updated by the dynamic routing algorithm will lead to
poor classification performance. ResNet-50 is an excellent backbone for extracting image features
in CNN. Therefore, it is reasonable to apply ResNet-50 with excellent feature extraction ability as
the backbone of CapsNet. For GHRO, the maximum iteration is 30, the population size is 12, and
the individual dimension is 14. Each algorithm runs ten times independently. In other words, a total
of 12 × 30 × 10 CapsNet need to be validated. Meanwhile, the maximum number of self-crossings in
GHRO-CapsNet is 20. Table 1 describes the hyperparameters required to be optimized. The values of
these hyperparameters are were selected based on prior experience and experimentation. C is the first
convolution layer, P is the Primary-Caps, and F is the FC layer. Fig. 4 shows the structure of GHRO-
CapsNet. Each individual organized by these hyperparameters represents a unique CapsNet structure,
and these individuals search freely in the solution space, dramatically increasing the diversity of
CapsNet structures and the possibility of finding a new network structure with excellent performance.
The pseudo-code for the genetic hybrid rice optimizing capsule network is described in Algorithm 1.

Algorithm 1: Pseudo-code for genetic hybrid rice optimize capsule network.
Input: Population dimensions n, the max of iterations kmax, the maximum number of self-crossings SC,
the mutation rate MR, the hybridization rate HR,
Output: The combination of hyperparameters for the global optimum Xbest

(Continued)
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Algorithm 1: Continued
1: Initialize X = [X1, X2, . . . , Xn], and randomly generate 14 values of hyperparameters from
x1 to x14 in Table 1, which are encoded into each component of the individuals in the
GHRO-CapsNet population.
2: while k< kmax do
3: Train each CapsNet in dataset and classify the population into maintainer line, restorer line and
sterile line by the classification accuracy
4: for each individual in the sterile line do
5: Generate a random number in the range of [0, 1]
6: if rand < HR then
7: Update the individual of the sterile line by hybridization operator
8: else
9: The individual of the sterile line remains
10: end if
11: end for
12: for each individual of the maintainer line do
13: Generate a random number in the range of [0, 1]
14: if rand < MR then
15: Update the individual of the maintainer line by Eq. (1)
16: else
17: The individual of the maintainer line remains
28: end if
29: end for
30: for each individual of the restorer line do
31: if SC < SCmax then
32: Update the individual of the restorer line by the selfing operator
33: if the next individual is better than itself then
34 The old individual is replaced by a next one SC = 0
35: else
36: SC = SC + 1
29: end if
30: else
31: Renew the individual of the restorer line by the renewal
32: end if
33: end for
34: Decode the individuals and build some new CapsNet for training
35: According to the fitness, save global Xbest, k = k + 1
36: end while

Table 1: Hyperparameters to be optimized in CapsNet

Component Meaning of component Range of values

x1 Batch size 20, 40, 60, 80
x2 Number of kernels in C 64, 128, 256, 512

(Continued)
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Table 1: Continued
Component Meaning of component Range of values

x3 Kernel size in C 3 × 3, 5 × 5, 7 × 7, 9 × 9
x4 Activation function in C Sigmoid, Tanh, Relu
x5 Kernel stride in C 1, 2, 3
x6 Number of channels in P 16, 32, 64
x7 Dimension of capsules in P 4, 6, 8, 10
x8 Kernel size in P 1 × 1, 3 × 3, 5 × 5
x9 Kernel stride in P 1, 2, 3
x10 Number of routing iterations 1, 2, 3, 4, 5
x11 Activation function in P Sigmoid, Tanh, Relu
x12 Optimizer Adam, Adagrad, SGD
x13 The number of F in P 1, 2, 3, 4
x14 Activation functions in F Sigmoid, Tanh, Relu
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Figure 4: The architecture of GHRO-CapsNet

5 Experiment Result and Analysis

In this section, the experiment is divided into two components. The first component (Section 5.1)
is to evaluate the performance of GHRO. The second component (Section 5.2) applies the GHRO
for hyperparameter optimization of CapsNet to the MNIST dataset, Chest X-Ray (Pneumonia) [35],
and Chest X-ray (COVID-19 & Pneumonia) datasets [36] collected from Guangzhou Women and
Children’s Medical Centre.
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5.1 Evaluation for Genetic Hybrid Rice Optimization on Function Benchmarks
For GHRO, we compared it with GA, SA, PSO, DE, GSA, CS, and HRO on 13 benchmark

functions [37], which contain two major classes of unimodal and multimodal functions, respectively.
Among them, the benchmark functions from F1 to F7 are unimodal test functions with only
one best solution and variable dimensions, and they can effectively evaluate the local exploration
capability of GHRO. These benchmark functions from F8 to F13 are ordinary multimodal benchmark
functions, which means that the benchmark functions have more than one local optimum. These
local optima grow rapidly with the variables dimension. The best solutions of multimodal benchmark
functions increase by components, and they focus on the balance of local exploration and global
exploration ability. There are 14 hyperparameters to be optimized in CapsNet. The margin of these
hyperparameters is rounded down to 10. Therefore, the dimension of the individual component is set
to 10.

The bold entries in the above table indicate the optimal result among all algorithms. To avoid
randomness in the experiment, each algorithm runs 30 times independently. Mean best and “std” are
used as the metrics. Mean best is the mean of the results of thirty experiments. And the standard
deviation is used to evaluate the effect of randomness on these algorithms.

As shown in Table 2, the mean best of GHRO is better than the other algorithms, except for F2
and F9. At the same time, it is obvious that GHRO is superior in F1, F3-F6, and F10-F13, resulting
in the values of 8.40591E-28, 1.8893E-09, 4.4957E-09, 2.35028803, 0, 0, 1.8408127, 1, 9.27996E-28,
and 1.3498E-32, respectively. Table 3 shows the standard deviation of the eight algorithms. GHRO
is strength in F1, F3, F4, F6, F7, F8, F11, F12, and F13, accounting for 69% of all benchmark
functions. In particular, the standard deviation of GHRO is 0 on F6, F7, and F11. Therefore, GHRO
is more stable than the other algorithms. In short, the experimental results indicate that the HR and
MR balance the search capability of HRO. Meanwhile, the two strategies retain the characteristics
of stable and fast convergence of HRO. Compared to the other algorithms, GHRO is probably an
excellent solution for solving the hyperparameter optimization problem of CapsNet. Therefore, HRO
and GHRO are applied to search for the hyperparameter configuration of CapsNet.

Table 2: The mean best of the eight algorithms for the thirteen benchmarks

F Mean best

GA SA PSO DE GSA CS HRO GHRO The best

F1 1898.6263 8.78621245 42.17546438 6.563E-12 137.314013 1.13E-16 1.405E-27 8.40591E-28 0
F2 9.5421359 7.6293114 0.801803796 4.346E-06 73.9871065 5.56E-08 1.12E-25 5.67453E-15 0
F3 1199.6367 66.545366 181.3838853 0.0013796 17303.444 49273 0.2197305 1.8893E-09 0
F4 26.474192 1.62745703 2.453323476 0.0039715 26.3463062 1.9534 0.0147547 4.4957E-09 0
F5 212876.44 1092.76022 605.7756188 3.8454615 151579.44 35.126 3.9577676 2.35028803 0
F6 1780.6 8.8 53.5 0 135 0.03333 0 0 0
F7 1.251E-09 1.7283E-07 7.9732E-104 3.257E-34 8.0283E-13 0.060334 1.47E-106 0 0
F8 −2995.527 −3232.8154 −2900.26413 −4077.312 −8693.9698 −2463. 3 −3960.847 −4166.1143 −12569.5
F9 50.630588 61.6076571 43.94476265 2.984887 6.672390 26.101 3.183869 3.185425617 0
F10 12.142831 4.98275354 2.551820446 1.8408127 19.526416 7.404309 1.840813 1.8408127 0
F11 17.874386 1.00399039 23.76296094 1 21.1153659 8.9876 1 1 0
F12 3548.4676 1.16871575 5.44264977 7.524E-13 3.38765623 2125 1.191E-05 9.27996E-28 0
F13 37871.149 0.88830492 51.76627336 4.991E-12 38.4362571 0.12276 1.659E-32 1.3498E-32 0
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Table 3: The standard deviation of the eight algorithms for the thirteen benchmarks

F Std

GA SA PSO DE GSA CS HRO GHRO
F1 313.86665 1.4460714 110.0545 1.008E-11 17.7472645 0.022387 4.214E-27 2.3E-27
F2 1.9330446 0.55435409 0.827685 3.376E-06 87.4008083 0.02317 1.36E-25 1.69E-14
F3 379.48541 21.2558906 159.7959 0.002248 2793.7968 3499.817 0.5389259 5E-09
F4 3.1946803 0.18861415 1.052485 0.0007265 2.1935081 1.168541 0.0249666 1E-08
F5 76965.388 430.381196 1534.397 1.7022721 32934.0092 72.92174 2.1475603 4.278745
F6 454.36245 2.13541565 104.8582 0 25.5638634 0.316228 0 0
F7 2.852E-09 3.8945E-07 2.4E-103 6.22E-34 4.2345E-07 0 4E-106 0
F8 114.07928 112.218155 240.6556 131.84416 266.37607 385.7456 153.20949 47.4289
F9 5.1572852 6.78273573 17.12198 1.089922 17.4657131 12.72036 1.3929427 1.093329
F10 1.6769198 0.32444582 0.850201 4.855E-12 0.16845023 0.000604 0 9.69E-12
F11 5.824969 0.00109974 16.49737 4.82E-14 12.1455393 2.57E-06 0 0
F12 5509.0851 0.29165152 2.697356 7.458E-13 3.49813384 0.063336 3.572E-05 2.22E-27
F13 45287.808 0.13597383 84.41085 4.812E-12 42.0320554 0.003175 9.269E-33 2.7E-48

5.2 Assessment for Hyperparameter Optimization of GHRO-CapsNet
5.2.1 Description of Experimental Environment and Data

The working environment is as follows: Windows 10 operating system, Intel(R) Xeon(R) Silver
4210R CPU@2.40 GHz Hexa-core processor, 64G running memory, and Tesla M40 24 GB graphics
card configuration. The development environment is Anaconda 3.4, Pytorch-GPU version 1.11.0,
Python version 3.7, and some third-party libraries, such as Matplotlib, Tqdm, Pandas, and Numpy.

The MNIST, Chest X-ray (pneumonia), and Chest X-ray (COVID-19 & Pneumonia) datasets are
described in Tables 4–6. They are divided into training and testing sets with a ratio of 6:1, 8:2, and 8:2.
The image resolution of MNIST is 28, and the image size of the other two datasets is resized to 224.

Table 4: The related information for MNIST dataset

Dataset Group Class Number of images Total

MNIST Train 0∼9 60000 60000
Test 0∼9 10000 10000

Table 5: The related information for chest X-ray (pneumonia) dataset

Dataset Group Class Number of images Total

Pneumonia Train Pneumonia 3419 4686

Normal 1267
Test Pneumonia 854 1170

Normal 316
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Table 6: The related information for chest X-ray (COVID-19 & pneumonia) dataset

Dataset Group Class Number of images Total

COVID-19 & Pneumonia Train Covid-19 460 5144

Pneumonia 3418
Normal 1266

Test Covid-19 116 1288

Pneumonia 855
Normal 317

5.2.2 Experimental Result for GHRO-CapsNet

By statistics and analysis of the experimental data, the average of the correct rates of the ten
groups of experiments is calculated. The best hyperparameter combinations of HRO-CapsNet and
GHRO-CapsNet searched establish high-performance CapsNet on MNIST, Chest X-ray (Pneumonia)
and Chest X-ray (COVID-19 & Pneumonia) datasets, respectively. MNIST is a simple dataset, thus
classification accuracy is always used as its performance metric. The confusion matrix, average
classification accuracy, precision, recall, and F1-Score are utilized to performance metrics for the other
two datasets. Fig. 5 shows the confusion matrixes for the Pneumonia and Pneumonia & COVID-19
datasets.

The performance of CapsNet, HRO-CapsNet, and GHRO-CapsNet is compared in Table 7.
Based on GHRO, the precision of CapsNet has improved from 95.17% to 99.74% for Pneumonia
dataset, and from 95.04% to 97.73% for COVID-19 & Pneumonia dataset. Similarly, GHRO opti-
mization has raised the recall of CapsNet from 94.44% to 99.74% for Pneumonia dataset and from
94.95% to 97.74% for COVID-19 & Pneumonia dataset. Finally, GHRO has also boosted the F1-
Score of CapsNet from 94.80% to 99.74% for Pneumonia dataset and from 94.99% to 97.73% for
COVID-19 & Pneumonia dataset. The improvement of these performance metrics has demonstrated
the superior classification performance of GHRO-CapsNet.

Table 8 presents the average classification accuracies of various models. GHRO-CapsNet achieved
the best average classification accuracy of 99.73% on the MNIST dataset, 99.74% on the Pneumonia
dataset, and 97.75% on the COVID-19 & Pneumonia dataset, respectively. Compared to CapsNet,
GHRO-CapsNet increased the classification accuracy by 0.53% on the MNIST dataset, 5.3% on the
Pneumonia data, and 2.8% on the Chest X-Ray (pneumonia) dataset. Additionally, GHRO-CapsNet
has advantages over HRO-CapsNet and other recent methods in the three datasets. The experiment
aims to demonstrate that GHRO can obtain a better hyperparameters combination of CapsNet. It
is encouraging that our proposed genetic search strategy and hybridization factor enhance the later
search capability of HRO so that the derived hyperparameter combination constitutes a new CapsNet
with better classification results. Furthermore, GHRO-CapsNet performs better than HRO-CapsNet
and CapsNet on MNIST, Chest X-Ray (pneumonia), and Chest X-ray (COVID-19 & Pneumonia)
datasets, which verifies the effectiveness and practicality of GHRO-CapsNet.
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(a) CapsNet on Pneumonia dataset (b) HRO-CapsNet on Pneumonia

(c) GHRO-CapsNet on Pneumonia dataset (d) CapsNet on Covid-19 & Pneumonia

(e) HRO-CapsNet on Covid-19 & Pneumonia (f) GHRO-CapsNet on Covid-19 & Pneumonia

Figure 5: Confusion matrix of models on pneumonia and Covid-19 & pneumonia dataset
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Table 7: The performance metrics for three different models on the testing dataset

Dataset Model Precision Recall F1-Score

Pneumonia CapsNet 95.17% 94.44% 94.80%
HRO-CapsNet 94.89% 96.49% 95.68%
GHRO-CapsNet 99.74% 99.74% 99.74%

COVID-19 & Pneumonia CapsNet 95.04% 94.95% 94.99%
HRO-CapsNet 96.43% 96.61% 96.52%
GHRO-CapsNet 97.73% 97.74% 97.73%

Table 8: Models competition

Dataset Model Accuracy

MNIST ResNet-50 [38] 99.56%
CapsNet 99.20%
HRO-CapsNet 99.32%
GHRO-CapsNet 99.73%

Pneumonia MDEV [39] 92.15%
CapsNet 94.44%
HRO-CapsNet 96.49%
GHRO-CapsNet 99.74%

COVID-19 & Pneumonia DCNN [40] 94.75%
CapsNet 94.95%
HRO-CapsNet 96.43%
GHRO-CapsNet 97.75%

6 Conclusion

In this paper, we propose a modified HRO to search the optimal hyperparameters of CapsNet to
build a CapsNet model with excellent image classification performance. Specifically, the hyperparame-
ter combinations of CapsNet are encoded to numerical parameters, which is viewed as a combinatorial
optimization problem and handled by GHRO. During the evolution process of the algorithm, a genetic
search strategy makes the algorithm less susceptible to local optimal solutions. On the other hand,
the genetic search strategy also balances the local exploration and global search capability of the
algorithm. Moreover, the hybridization factor maintains the population diversity of hyperparameter
combinations in the hybridization process. Facilitated by these two improved strategies, the algorithm
searches for better hyperparameter combinations of CapsNet more efficiently, resulting in better
performance of CapsNet for image classification tasks.

The experimental results of 13 benchmark functions show that GHRO has an excellent ability
to find the better solution in complex space. Three optimal CapsNet models are searched on the
MNIST, Chest X-Ray (pneumonia), and Chest X-ray (COVID-19 & Pneumonia) datasets. These
three GHRO-CapsNet models attained high accuracy rates on three distinct datasets: MNIST, Chest
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X-Ray (pneumonia), and Chest X-Ray (COVID-19 & Pneumonia). Specifically, the models achieved
99.73%, 99.74%, and 97.75% accuracy on the respective datasets. These new CapsNet structures all
have excellent performance than the original CapsNet in the three datasets. Therefore, the experimental
results demonstrated that GHRO-CapsNet could be an effective and automatic method for the
hyperparameter optimization of CapsNet. In the future, the research will focus on further improving
the CapsNet with other optimization algorithms. Moreover, it makes sense to use GHRO to optimize
the hyperparameters of other networks in machine learning.
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