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Abstract: Software-defined networking (SDN) enables the separation of
control and data planes, allowing for centralized control and management
of the network. Without adequate access control methods, the risk of unau-
thorized access to the network and its resources increases significantly. This
can result in various security breaches. In addition, if authorized devices are
attacked or controlled by hackers, they may turn into malicious devices, which
can cause severe damage to the network if their abnormal behaviour goes
undetected and their access privileges are not promptly restricted. To solve
those problems, an anomaly detection and access control mechanism based on
SDN and neural networks is proposed for cloud-edge collaboration networks.
The system employs the Attribute Based Access Control (ABAC) model
and smart contract for fine-grained control of device access to the network.
Furthermore, a cloud-edge collaborative Key Performance Indicator (KPI)
anomaly detection method based on the Gated Recurrent Unit and Generative
Adversarial Nets (GRU-GAN) is designed to discover the anomaly devices.
An access restriction mechanism based on reputation value and anomaly
detection is given to prevent anomalous devices. Experiments show that the
proposed mechanism performs better anomaly detection on several datasets.
The reputation-based access restriction effectively reduces the number of
malicious device attacks.
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1 Introduction

Software-defined networking (SDN) is seen as a promising and exciting option for the future of
the Internet due to its flexibility, programmability, increased visibility, automation, cost savings, and
innovation potential [1]. SDN enables the separation of the control plane and data plane in a network,
allowing for centralized control and management. This makes it possible to program and configure
the network dynamically, making it more flexible and adaptable to changing demands. Edge devices,
such as IoT devices and smartphones, often operate on the edge of networks, collecting and processing
data before sending it to the cloud or a data centre. With the prevalence of edge computing, a large
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number of devices are being deployed on the edge side of SDN networks [2]. Edge devices often have
limited memory and processing power, challenging applying security updates and patches and leaving
them vulnerable to known threats [3].

When malicious devices connect to a network, the network may be vulnerable to various attacks
that can cause significant damage, such as denial-of-service (DoS) attacks and malware infections
[4]. Therefore, SDN networks require appropriate access control mechanisms to restrict unauthorized
edge devices from accessing the network and its resources, which is especially important in SDN envi-
ronments with separate control and data planes. However, in the current SDN network environment,
managing terminal access is challenging due to the lack of appropriate access control methods. In order
to avoid the security issues mentioned above, some research has been conducted in recent literature
[5,6]. However, traditional centralized access control models rely on a central authority to manage and
enforce access policies, making them vulnerable to attacks and breaches. Recently, blockchain-based
security solutions in SDN-enabled networks have also gained popularity [7–9]. Unlike centralized
access control models that rely on a single point of failure, blockchain-based access control models
are more resilient to failures and attacks, as the system is decentralized and distributed across nodes.
Blockchain allows for transparent storage of access control policies, which can be easily audited and
verified by all parties in a permissioned network.

Suppose a legitimate device with access to the network is compromised and controlled illegally.
In that case, the entire network may suffer severe damage if necessary protective measures are not
taken promptly. Key Performance Indicator (KPI) anomaly detection can help prevent intrusions
through edge devices [10]. By monitoring the expected performance of edge devices, operators can
detect abnormal situations that may indicate intrusions or other security threats.

One of the critical challenges in KPI anomaly detection in SDN networks is the large number
of data generated by network devices and the need to process this data in real time to ensure quick
and effective network management [11]. Many studies have explored machine learning techniques,
such as ARMA [12], clustering algorithms, and neural networks [13], to address this challenge for
KPI anomaly detection in SDN networks. Deep learning performs big data processing and analysis
better than other machine learning methods. It thus has become a suitable method to solve the KPI
anomaly detection problem [14]. However, deep learning-based anomaly detection requires numerous
computations to achieve high accuracy, while edge devices need real-time responses for detecting
anomalies. It means both cloud and edge computing alone can fulfil this requirement.

Combining cloud-edge collaborative architecture and deep learning, we propose a collaborative
anomaly detection algorithm based on GRU-GAN. To address the challenge of a large number of
anomaly detection tasks, the edge nodes divide the network into subregions, and the detection tasks in
the cloud centre are divided into detection tasks for each subregion. The cloud and edge work together
intelligently to complete the KPI anomaly detection tasks. The cloud trains the models, while the edge
devices perform the detection, ensuring the security of operational data and reducing the delay of data
transmission, thereby sharing the computing burden of the cloud.

In this paper, we propose a decentralized access control mechanism based on ABAC and
blockchain. Its main idea is to use attributes to identify devices uniquely. Network administrators use
the ABAC model to develop control policies for devices accessing the SDN network based on multiple
attributes. In order to prevent abnormal devices from further endangering the network, we designed
an access restriction mechanism based on reputation value. When a device’s KPI detection shows
abnormal results, its reputation value will be reduced. As the number of abnormal events increases,
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the reputation value will quickly drop below the threshold. At this point, the edge-controller will call
the smart contract to update the device’s access policy and restrict its network permissions.

In summary, our main contributions are as follows.

(1) We design an anomaly detection and access control system for cloud-edge collaboration
networks. The system uses the ABAC model for fine-grained control of device access to the network.
We use smart contract technology to implement the ABAC model, making the access control process
and device-related attribute information secure and reliable.

(2) We propose a cloud-edge collaborative anomaly detection algorithm based on GRU-GAN,
utilizing GRU as both the generator and discriminator models. The GRU-GAN generates an anomaly
score based on the generator model’s reconstruction error and the discriminator model’s discrimination
loss and automatically calculates the detection threshold to determine the anomaly.

(3) We propose an access restriction mechanism based on reputation value and anomaly detection
results. If a device experiences an anomaly, its reputation value gradually decreases. Once the
reputation value falls below a certain threshold, the device’s access control policy is updated to restrict
or revoke its access rights.

The rest of this paper is organized as follows: Section 2 comprehensively reviews related work. In
Section 3, we give an overview of system architecture. Section 4 describes the KPI anomaly detection
method based on GRU-GAN in detail. In Section 5, we explain the process of access control. We
discuss and evaluate the results of the proposed system using various evaluation metrics in Section 6.
The paper is concluded in Section 7.

2 Related Work

This section overviews the related efforts in traditional access control methods in SDN and KPI
anomaly detection solutions.

2.1 Access Control in SDN
Access control is one of the most critical research areas in SDN. Mattos et al. [15] proposed an

access control model that combines user information with OpenFlow flow tables to address fine-
grained user access control. However, the model has a single authentication method and poor scalabil-
ity with many endpoints. Shin et al. [16] used context separation, resource utilization monitoring, and
micro-privilege structures to prevent malicious applications. However, it performs poorly in specifying
security policies. Al-Alaj et al. [5] proposed an access control model for SDN applications based
on parameterized roles and permissions. However, it is a centralized method that may have poor
performance in large-scale networks. Chattaraj et al. [7] proposed a blockchain-based access control
scheme for the SDN framework to resist various well-known attacks and alleviate the existing single
point of controller failure issue in SDN. Duy et al. [8] designed a blockchain-based access control
framework, B-DAC, to achieve decentralized identity authentication and fine-grained access control
for northbound interfaces, assisting administrators in managing and protecting critical resources.

Although the above solutions have addressed access control, they do not consider the potential
damage to the network caused by devices that are experiencing anomalies. Zhou et al. [17] proposed a
collaborative anomaly detection scheme in distributed SDN, which allows multiple SDN controllers
to work together and train a global detection model that accurately identifies various cyber attacks.
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Zhou et al. [18] proposed a novel collaborative prediction and detection framework for edge com-
puter DDoS attacks. LSTM networks were explored to predict and mitigate DDoS attacks in real-
time. However, both [17] and [18] can not prevent malicious devices from accessing the network.
Kammoun et al. [6] proposed a new SDN architecture based on IoT trust management and access
control, which calculates the terminal trust value through a predefined trust management algorithm
and prevents malicious devices from accessing the network based on the trust value. However, this
approach does not consider the security of access control policies and may lead to policy leakage and
other issues.

In our previous work [9], we designed a blockchain-based terminal access control system in SDN.
The system utilized the ABAC model for fine-grained control. It used smart contract technology
to implement the ABAC model, ensuring secure and reliable access control policies and terminal-
related attributes. However, the system cannot detect abnormal situations of the devices and prevent
deteriorating ones. To address this issue, in this paper, we propose a cloud-edge collaborative abnormal
detection algorithm to detect device anomalies in real-time. Based on the detection results and
reputation mechanism, the system will update the access control policy of the devices to restrict or
revoke their access rights. A comparison between this work with existing works in access control
mechanisms for SDN platforms is also provided in Table 1.

Table 1: Comparison with existing work

Scheme Decentralization Fine-grained
access control

Anomaly detection Access restriction
based on reputation

Reference [6] × √ × √
Reference [7] √ √ × ×
Reference [8] √ √ × ×
Reference [9] √ √ × ×
Reference [15] × √ × ×
Reference [16] × √ × ×
Reference [17] √ × √ √
Reference [18] √ × √ ×
Our work √ √ √ √

2.2 KPI Anomaly Detection
KPI anomaly detection is critical in various domains, such as network management, system

performance monitoring, and business intelligence. The goal of KPI anomaly detection is to identify
abnormal patterns or deviations from normal behaviour in the data, which can indicate potential issues
or opportunities for improvement. There are several existing methods for KPI anomaly detection,
including rule-based methods [19], statistical model-based methods [20], machine learning-based
methods and deep learning-based methods [21].

Li et al. [21] proposed a fast clustering algorithm for long-time series, known as ROCKA, which
was the first research to use clustering to reduce the cost of training for anomaly detection. This
algorithm obtained an F1-score higher than 0.85 on real-world KPI datasets. Li et al. [22] applied con-
ditional variational autoencoder (CVAE) to KPI anomaly detection for the first time and used dropout
to avoid overfitting, achieving good anomaly detection performance. Wang et al. [23] developed a
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single-variable time series generation tool called TSAGen, which generates KPI data with abnormal
and controllable features for KPI anomaly detection, solving the problem of inadequate common
KPI datasets. Liu et al. [24] proposed an unsupervised reconstruction model named BeatGAN for
detecting time-series anomalies, which can be combined with 1-d CNN and RNN. Experiments
showed that BeatGAN achieved better detection accuracy on synthetic data and various real-time
series. Zhang et al. [25] proposed a KPI anomaly detection method based on PU learning, which
enhances anomaly detection accuracy by integrating clustering, PU learning, and semi-supervised
learning, and proposes a new active learning method to avoid false alarms.

In summary, machine learning and deep learning methods do not require data to follow certain
assumptions, nor does expert experience limit them. Thus, with the rise of intelligent operations,
the method of KPI anomaly detection has gradually transitioned from traditional rule-based and
statistical model-based methods to intelligent detection methods primarily based on machine learning
and deep learning.

3 System Architecture

As shown in Fig. 1, the anomaly detection and access control system for cloud-edge collaboration
networks consists of six roles: monitored devices, Edge-controller, cloud centre, permission man-
agement centre, blockchain, and SDN network equipment. Monitored devices and Edge-controller
are deployed in the same subregion to provide real-time monitoring, data collection, and anomaly
detection for IT devices and their hosted applications in the subregion. The attribute management
centre and blockchain provide access control RestFul services based on the ABAC model. The Edge-
controller implements access control for monitored devices by calling the smart contract service
based on the device’s anomaly detection results. The cloud centre and Edge-controller complete the
KPI anomaly detection through intelligent collaboration, i.e., the training task of the KPI anomaly
detection model is completed by the cloud centre, and the model parameters are transmitted to the
Edge-controller for anomaly detection.

Figure 1: The architecture of anomaly detection and access control system
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(1) Monitored device: The monitored device writes the required attribute set for the access request
into the Options field of the IP packet and sends the packet to P4 to request access to the SDN network.
Its operating status is monitored by monitoring tools, and real-time generated KPI data is collected
and uploaded to the Edge-controller for further data processing and analysis.

(2) Edge-controller: Edge-controller is the core of the service architecture, which provides com-
puting and storage capabilities at the data source as an extension and expansion of cloud computing
capabilities. It is responsible for receiving data streams collected from monitored devices and providing
real-time computing services such as access control, data storage, and anomaly detection. After
loading the anomaly detection model parameters issued by the cloud-side nodes, the Edge-controller
can directly perform anomaly detection. The Edge-controller receives IP packets from devices and
parses the Options field value. Subsequently, it constructs the current device’s access request based on
the parsing results. It submits the request to the blockchain access contract through the RestFul service
to verify whether the terminal can access the network. The Edge-controller maintains a trust score list
of monitored devices. When an abnormality is detected, the corresponding trust score of the device
is reduced. The device will be restricted from accessing the network when the trust score is below the
warning threshold.

(3) Cloud Centre: The Cloud Centre is mainly responsible for providing computing resources to
solve computationally intensive tasks. As the KPI anomaly detection model is based on deep learning
algorithms, the cloud centre utilizes its powerful computing capabilities to complete model training
tasks and establish a corresponding library of anomaly detection models for different categories. It
can issue corresponding model parameters to different edge-controllers based on different types of
KPI sequences, assisting edge-controllers in completing anomaly detection tasks.

(4) Attribute Management Centre: The Attribute Management Centre (AMC) is responsible for
managing the attribute set of the devices and batch submitting the attribute set to the blockchain.

(5) Blockchain: The blockchain is a distributed, immutable, and publicly accessible database. In
this solution, the blockchain is used to build a trusted and decentralized access control model based
on Attribute-Based Access Control (ABAC). A blockchain solution similar to the one described in [9]
is used in our system. The blockchain functionality is integrated only into powerful SDN nodes such
as controllers and the cloud centre. Since devices have limited capacity, they are usually not part of the
blockchain network. Their controllers act as proxies to perform blockchain functions.

In our scheme, the ABAC model is implemented using smart contracts. This solution mainly uses
three types of contracts: policy contracts, device contracts, and access contracts. The policy contract
formulates access control policies and stores the policies on the blockchain. The device contract stores
the attribute set submitted by the Attribute Management Centre in the blockchain state database and
provides attribute support for access control policy formulation. The access contract judges whether
a terminal can access SDN network resources.

(6) SDN Network Equipment: SDN network Equipment includes P4 and OpenFlow switches
(referred to as OVS for simplicity below). P4 are mainly responsible for the fast pre-processing of
data packets. They check whether the Token carried by the data packet is correct and implement fast
access based on the query result. When devices send the data packets without a token, P4 parses the
IHL field of the IP packet and filters the packet if the value of IHL is not greater than 0x05.

OVS encapsulates the data packets forwarded by P4 into Packet_in messages, forwards them to the
controller, and performs normal packet forwarding based on the flow table issued by the controller.
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4 KPI Anomaly Detection Method Based on GRU-GAN for Cloud-Edge Collaboration

The cloud-edge collaboration networks architecture divides the network into sub-regions, each
managed by its corresponding edge-controllers. The KPI anomaly detection task is divided, and the
model training task is placed in the cloud centre while each Edge-controller executes the anomaly
detection. Data generated by each sub-region only flows between the device and the Edge-controller,
ensuring data security while also taking advantage of the edge-controllers to share the computation
pressure of the cloud centre. Upon completion of the anomaly detection model training, the cloud
centre will only transmit encrypted model parameters, which the edge-controller will then decrypt and
load. To facilitate the explanation, we simplify the anomaly detection process to a scenario with a
cloud centre, an edge-controller, and a monitored device.

Training stage: The monitored device transfers the collected KPI data to the edge-controller and
then forwards it to the cloud centre, where the cloud node completes the model training in the initial
stage.

Detection stage: The edge-controller receives the model parameters issued by the cloud centre,
completes the model loading, and then performs real-time anomaly detection on the KPI data
collected from the monitored device. The KPI anomaly detection process based on cloud-edge
collaboration is shown in Fig. 2.

Figure 2: KPI anomaly detection process for cloud-edge collaboration

4.1 Data Pre-Processing
Due to occasional errors, the data collection process has issues with data missing and data

redundancy. To improve the detection effect of the KPI abnormal detection model, it is necessary
to pre-process the collected KPI data and further improve the data quality.

If the same KPI value appears multiple times simultaneously, redundant data will be directly
deleted to ensure that the KPI value and timestamp correspond one-to-one. For missing data, as KPI
is a time series data, in order to protect the time series characteristics of KPI, this paper adopts a linear
interpolation method to fill in the missing values. According to the KPI values v0, v1 at time points t0, t1
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within the time [t0, t1], the linear equation is drawn out, and the missing value in the middle is estimated
by using the linear interpolation method. The calculation equation is as follows:

value = v0 + (t − t0)
v1 − v0

t1 − t0

(1)

Besides, as many kinds of collected KPI sequences have different lengths and magnitudes, this
paper completes KPI data standardization based on the Z-score method to ensure the model’s
detection effect. The equation for Z-score is shown below:

xnew = xt − μ

σ
(2)

xt represents the original KPI value at time t, μ and σ represent the mean and standard deviation
of the KPI series, respectively, and xnew represents the KPI value after normalization.

4.2 Model Construction of GRU-GAN
The GAN network has the ability to generate approximate real sample data, and the GRU can

capture the regularity of time series data. Therefore, we construct a GRU-GAN hybrid model for KPI
anomaly detection. This section provides a detailed description of the model and network structure of
GRU-GAN.

GAN networks have two models, the generator model and the discriminator model. After data pre-
processing, the KPI sequence is divided into multiple time windows and inputted into the discriminator
model along with fake samples generated by the generator model based on noise vectors.

The discriminator model judges the input samples as true or false and gives feedback. Both models
optimize their parameters through backpropagation. GRU networks perform well when dealing with
sequential data due to their simple structure and fewer parameters. For time-series data like KPI,
using GRU networks as both the generator and discriminator in a GAN can better capture the data’s
characteristics and correlations, thus improving the quality of the generated fake samples. The overall
architecture of the model is shown in Fig. 3.

The network structure of the generator model includes an input layer, a GRU network layer, and
a fully connected layer. The GRU network layer has four GRU units, and the fully connected layer
chooses the Tanh function as the activation function. The expression of the Tanh function is as follows:

Tanh (x) = ex − e−x

ex + e−x
(3)

The network structure of the discriminator model also includes an input layer, a GRU network
layer, and a fully connected layer. Unlike the generator model, the discriminator model’s GRU network
only has two GRU unit layers. The discriminator model is a binary classifier used to identify whether
the input sample is a real sample from the real world or a fake sample generated by the generator model.
The discriminator model uses the Sigmoid function as the activation function and finally outputs
the probability of true or false samples. The range of the Sigmoid function output is [0,1], which is
commonly used in binary classification problems, and the expression of the function is as follows:

Sigmoid (x) = 1
1 + e−x

(4)
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Figure 3: The GRU-GAN model structure

4.3 KPI Anomaly Detection Method Based on GRU-GAN
The KPI anomaly detection method based on the GRU-GAN model trains the model based

on normal KPI sequences. The generator model generates fake samples by obtaining a random
noise vector from the latent space and updates the parameters through alternating training with the
discriminator model. After a training period, competition between the generator and discriminator
models improves their knowledge and ability. The data distribution of the generated samples grad-
ually approaches the real samples, and the discriminator model becomes difficult to recognize the
authenticity of the samples. The training ends when the output probability of true and false is close
to 0.5. In the anomaly detection phase, the abnormal score of each time window is calculated by the
reconstruction error of the generator model and the discrimination loss of the discriminator model.
The detection threshold is calculated based on the set of abnormal scores, and the anomaly judgment
is made based on comparing the abnormal score and the detection threshold.

4.3.1 Model Training Phase

In GAN, both the generator and discriminator models attempt to optimize the competitive
objective function during training, and the optimization process of GAN is a “minimax two-player
game” problem. The objective function optimizes both the generator and discriminator models, and
the overall objective is to make Pz as close to Pdata as possible. As shown in Eq. (5), where Pdata represents
the distribution of real sample data and Pz represents the distribution of generated sample data.

min
G

max
D

V (D, G) = min
G

max
D

Ex∼Pdata(x) [log D (x)] + Ez∼Pz(Z) [log (1 − D (G (z)))] (5)
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In conclusion, the generator model aims for a smaller loss in the objective function, while the
discriminator model aims for a larger loss. The training process of the GRU-GAN hybrid model is as
follows:

(1) Set the number of training rounds to n, and set the label of the real sample to 1 and the label
of the fake sample to 0.

(2) Given a real KPI sequence {x1, x2, x3, . . . , xi}, set its label to 1. Collect random noise
{z1, z2, z3, . . . , zi}, and set the label of the false sample z generated through G (z) to 0.

(3) Fix the generator model and train the discriminator model. First, input the real sample x
into the discriminator model and obtain the output of the real sample, and calculate the loss based
on the output and the corresponding label “1”, propagate the gradient backwards to calculate the
current gradient, and update the network parameters based on the gradient. Then, input the fake
sample G (z) generated by random noise z, obtain the output of the fake sample, and calculate the loss
based on the output and the corresponding label “0”, propagate the gradient backwards to calculate
the current gradient, and update the network parameters based on the gradient. The loss of the real
and fake samples constitutes the overall loss of the discriminator model. The discriminator model is
continuously optimized based on the loss value.

(4) Fix the discriminator model and train the generator model—input random noise z into
the generator model to generate fake sample G (z). The generator model updates and optimizes
its parameters based on the output of the discriminator model for fake data, trying to minimize
log (1 − D (G (z))) and gradually learn the distribution of real sample data.

(5) Repeat steps (3) and (4) until reaching the training iteration n.

(6) After n iterations of training, the generator and discriminator models gradually become stable
and cannot improve further, and the training is completed.

4.3.2 Anomaly Detection Phase

In the anomaly detection stage, the test KPI sequence is divided into multiple time windows and
input into the trained GRU-GAN hybrid model. The difference between the generated KPI sequence
and the input real KPI sequence generated by the generation model contains reconstruction error and
discrimination loss, which forms the anomaly score as the basis for determining KPI anomalies. When
the anomaly score exceeds the detection threshold, it is considered an abnormal window.

(1) Reconstruction error. For the KPI sequence in the t-th time window xt = {
x1

t , x2
t , x3

t , . . . , xl
t

}
,

where l is the length of the time window, the generated sample based on the GRU-GAN model
is G (zt) = {

G
(
z1

t

)
, G

(
z2

t

)
, G

(
z3

t

)
. . . , G

(
zl

t

)}
. The reconstruction error ϕγ measures the difference

between the real sample xt and the generated sample G (zt) at each time point in the t-th time window.

ϕγ (x) =
l∑

j=1

∣∣xj
t − G

(
zj

t

)∣∣ (6)

(2) Discriminator loss. The discriminator loss ϕd measures the loss on the real and generated
samples in the current time window. f (·) denotes the output of the intermediate layer of the
discriminator model.

ϕd (x) =
l∑

j=1

∣∣f (
xj

t

) − f
(
G

(
zj

t

))∣∣ (7)
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(3) anomaly detection. Each time window’s anomaly score anomaly_scoret is defined as the
weighted sum of its reconstruction error ϕγ and discrimination loss ϕd. anomaly_scoret measures the
difference between the generated and real KPI sequence, as shown in Eq. (8). λ ∈ (0, 1) is a parameter
that controls the relative importance of ϕγ and ϕd. Through multiple experiments, we finally determined
that the optimal value is λ = 0.1, resulting in the best performance in anomaly detection.

anomaly_scoret = (1 − λ) · ϕγ (x) + λ · ϕd (x) (8)

Define the set of anomaly scores anomaly_score, which contains the anomaly scores for all time
windows, and the detection threshold is derived from the mean μ and standard deviation σ of
anomaly_score. The calculation Equation is defined as shown in Eq. (9).

threshold = μ (anomaly_score) + σ (anomaly_score) (9)

The anomaly score of each time window is calculated and compared with the detection threshold
to determine whether the current time window is abnormal. The current time window is abnormal if
the anomaly score exceeds the threshold. Otherwise, it is a normal window.

4.4 Model Update Strategy Based on Cloud-Edge Collaboration
To ensure the detection performance and robustness of the KPI anomaly detection model and to

be able to perform anomaly detection on newly collected KPI sequences promptly, we design a cloud-
edge collaborative model update strategy. The proposed model update strategy includes two modes:

(1) Timed model update: The model is updated by setting an update cycle. When an update cycle is
reached, the edge-controller packages the KPI data generated during the cycle and sends it to the cloud
centre. When the cloud centre receives the new KPI data, it re-trains the anomaly detection model to
obtain new model weight parameters. The new model weight parameters are transmitted to the edge-
controller and loaded as a new anomaly detection model. The timed update mechanism ensures the
robustness of the KPI anomaly detection model, enabling more accurate anomaly detection.

(2) Model library update: We establish a KPI anomaly detection model library to detect multiple
KPI sequences. However, the anomaly detection models stored in the model library can only detect
existing KPIs. If a new KPI is added, the anomaly detection model corresponding to the new KPI
is not stored in the model library, so the model library needs to be updated promptly. The data is
transmitted to the edge-controller when the monitored device collects the corresponding new KPI. The
edge-controller encrypts and transmits the data to the cloud centre. An abnormal detection model is
trained for the new KPI sequence, and the new model is transmitted to the edge-controller to complete
the model library update.

5 The Access Control Process

This section gives the detailed working procedure of the access control. It mainly includes the
following parts. Access control mechanism based on ABAC model and blockchain, and access
restriction mechanism based on anomaly detection and reputation value.

5.1 Access Control Method Based on ABAC Model and Blockchain
5.1.1 Device Registration

(1) The device must submit its attributes to the attribute management centre before accessing
the network. The attribute management centre calls the device contract to store the device’s attribute
information on the blockchain.
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(2) The system administrator calls the policy contract to generate an access control policy (ACP)
for devices that apply to access the SDN network. During the process of generating the access control
policy, the corresponding Token for the device will be generated, and the Token value will be encrypted
based on the relevant attributes in the access control policy. The system administrator can update and
revoke the ACP through the RestFul service of the policy contract.

5.1.2 Device Authentication

(1) The device adds the set of attributes to the Options field of the IP packet and sends the packet
to P4.

(2) P4 parses the packet and filters out packets that do not have Options based on the value of the
IHL field. Packets carrying Options are forwarded to OVS.

(3) OVS encapsulates the packet carrying Options in the Packet_in message and forwards it to the
edge-controller.

(4) The edge-controller parses the Packet_in message to obtain the set of attributes in the Options
field. The edge-controller generates the device authentication request (AAR) based on attributes and
calls the access contract.

(5) According to the ACP, the access contract verifies the validity of the AAR. If the AAR meets
the ACP requirements, the access contract returns the response status code “1” to the edge-controller.
Otherwise, “0” is returned. When the edge-controller receives the status code “1”, it issues a flow table
to OVS to allow the device to access the network. The edge-controller sends the Token to the device.
The key-value pair (DeviceID, Token) is stored in the edge-controller’s cache database (CB) and on the
blockchain, keeping both in real-time synchronization.

(6) The device adds the Token to the Options field of the IP packet and sends the packet to the SDN
network. P4 executes the to_cpu action to mirror the packet to the P4 control plane. The P4 control
plane parses the Options to obtain the Token and queries the CB for the Token value. Suppose the
Token exists and is within the validity period. In that case, the P4 control plane implements a function
similar to the Packet_in message to issue a flow table to OVS, and the device can join the SDN network
normally. Otherwise, the IP packet carrying Options is resent to the edge-controller.

5.2 Access Restriction Mechanism Based on Anomaly Detection and Reputation Value
When a device is successfully authenticated and connected to the network, the edge-controller

generates a reputation management list for the authenticated devices in the region and updates the
reputation value in real time based on the KPI anomaly detection results. When the device operates
normally, its reputation value increases over time and eventually stabilizes at a stable value, such as 100.
On the contrary, when the device experiences anomalies, that is, the result of the KPI anomaly detection
algorithm is abnormal, the reputation value of the device will decrease. In reality, a large number
of KPI abnormal alarms on a device may indicate that the device is likely to fail or be maliciously
controlled by an attacker, leading to many network resources being occupied and affecting the system’s
robustness. Therefore, we need to punish abnormal devices. We propose a strategy: the edge-controller
implements various measures based on the reputation value of the vehicle. For example, when a
device is continuously detected as abnormal, its reputation value will rapidly drop below the warning
threshold. Then the edge-controller will take action to restrict access to the device.

Before presenting the detailed design of the device management mechanism based on reputation
values, we ignore the device’s behaviour—malfunctioning or being invaded—and only deal with it
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based on the results of the device’s KPI detection. Therefore, the reputation Ri of the device Di based
on the KPI anomaly detection is determined by two parts and can be represented as

Ri = R0 + R+
i + R−

i (10)

where R+
i represents the reputation score of devices with normal KPI detection results while R−

i

represents the reputation score of devices with abnormal KPI detection results. R0 is the initial
reputation.

R+
i = α · n+

i (11)

where n+
i represents the number of consecutive times that Di is detected as normal. If Di continues to

be normal for a certain period, R+
i will increase rapidly. If the KPI detection result of Di is abnormal,

n+
i will be reset to zero. Therefore, the reputation score of R+

i will be reset to zero until Di resumes
normal detection. In addition, α represents the weight value of R+

i .

Assuming the set of KPIs that Di needs to perform anomaly detection on is {kpi1, kpi2, . . . kpim}.
In contrast, R−

i is negatively correlated with β (kpik) and n−
ik (kpik).

R−
i =

{∑m

k=1 β (kpik) · 2n−
ik(kpik),

∑m

k=1 n−
ik (kpik) > 0

0, else
(12)

where β (kpik) represents the punishment coefficient for the k-th KPI kpik with abnormal detection
result, n−

ik (kpik) represents the number of times Di has shown abnormal detection for kpik. m represents
the number of KPIs that need to be detected. R−

i is the abnormal count of each type of KPI multiplied
by the corresponding weight, then accumulated and summed. If Di has a KPI abnormality, R−

i will
increase rapidly and n+

i will be cleared. Therefore, R+
i will be cleared until all KPI detection results

for Di are normal. In addition, for different types of KPIs, β (kpik) can be adjusted according to the
sensitivity requirements of kpik.

Depending on the reputation value of the devices, we can divide them into three categories. Take
device Di as an example.

Normal device: Ri = 100 and
m∑

k=1

n−
i (kpik) = 0. Di is in good operating condition.

Suspicious device: 50 ≤ Ri < 100 and
m∑

k=1

n−
i (kpik) > 0, the number of abnormal kpis ≤ 2. Di

starts to have KPI abnormalities, but they are not serious and may be caused by device failure. Edge-
controller can adjust the network parameters, such as limiting this device’s transmission rate and
available bandwidth.

Abnormal device: −∞ < Ri < 50 and
m∑

k=1

n−
i (kpik) > 0, the number of abnormal kpis > 2.

Multiple KPIs of Di are in an abnormal state. The device may be in a serious malfunction or be
maliciously invaded. The Edge-controller requests AMC to revoke the access permission with a
punishment duration of P = 50 − Ri.

6 Evaluation

This section introduces the datasets, detection algorithms, and evaluation metrics used in the
experiments. Then we evaluate and analyze the performance of the KPI anomaly detection method
based on the GRU-GAN hybrid model on various datasets and the influence of the time window on
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the KPI anomaly detection effect. Finally, we analyze the positive impact of the access control method
using anomaly detection on the system.

6.1 Experimental Environment
We build the simulated SDN network based on Mininet [26], where the cloud centre is a high-

performance GPU server, and the edge-controllers and monitored devices are ordinary desktops.
Floodlight is introduced as the SDN edge-controllers. Fabric [27] node is combined with each edge-
controller to provide blockchain functions.

6.1.1 Datasets

This paper evaluates the proposed method using the NAB, AIOps Challenge, and Zabbix self-
collected datasets. NAB and AIOps challenge (referred to as AIOps for simplicity in the rest of this
section) are open anomaly detection datasets, where NAB contains synthetic and real-world data,
while AIOps only contains real-world data collected from different IT companies. The Zabbix dataset
contains real-world data collected using the Zabbix client.

6.1.2 Benchmark Algorithms

We used three representative detection algorithms in the experiment: ARMA [12], LSTM [13], and
TAnoGAN [14]. ARMA is a traditional statistical method in time series anomaly detection, which
combines autoregressive models (AR models) and moving average models (MA models). LSTM is
commonly used for processing and analyzing text, sequences and other data types, and it implements
time series anomaly detection based on prediction methods. TAnoGAN is an unsupervised anomaly
detection method based on GAN, used for detecting anomalies in time series when only a small amount
of data is available. For detailed descriptions of these algorithms, please refer to the relevant papers
[12–14].

6.1.3 Metrics

In this paper, Precision, Recall, and F1-score are used as evaluation metrics to assess the
performance of the GRU-GAN model in the KPI anomaly detection task. Precision, Recall, and F1-
score definitions can be found in [13].

6.2 Analysis of Anomaly Detection Performance on Different Datasets
As shown in Table 1, on the three datasets of NAB, the LSTM model achieved 100% precision,

but the recall was relatively low, indicating that the KPI anomalies detected by the LSTM model
were generally accurate, but a considerable proportion of anomaly sequences may have been missed,
resulting in a low F1 score. ARMA algorithm, as a traditional time series anomaly detection method,
achieved 100% recall on all three datasets, but it had very low precision, resulting in a low F1 score.
This indicates that the ARMA algorithm can detect anomalies well, but there are also detection errors,
where a large number of normal situations are incorrectly detected as anomalies, resulting in a large
number of false alarms. Its performance in the KPI anomaly detection task is unsatisfactory and may
cause alarm storms if applied in practical scenarios.

As shown in Tables 2 and 3, the detection performance of the TAnoGAN model is lower than
our method on all five datasets. The reason may be that the threshold set by TAnoGAN is a fixed
value of 12.2, which cannot adapt to the changing degrees of different types of KPIs. Therefore,
this method performs well in the ambient temperature dataset and the machine temperature dataset
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but relatively poorly in the ec2_cpu_utilizatio__825cc2 dataset. In contrast, our method does not
use a fixed threshold during the anomaly detection phase like TAnoGAN. Instead, it automatically
calculates different detection thresholds based on different KPI sequences and determines anomalies
based on the relationship between the anomaly score and the detection threshold for each window.
This approach has better adaptability for KPIs with variable data characteristics, thus achieving the
best anomaly detection performance on all datasets.

Table 2: Performance comparison of different methods on different NAB datasets

Method Ambient temperature ec2_cpu_utilizatio__825cc2 Machine temperature

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

GRU-GAN 0.815 1.000 0.898 0.875 1.000 0.933 0.835 0.917 0.874
ARMA 0.184 1.000 0.311 0.234 1.000 0.380 0.142 1.000 0.248
LSTM 1.000 0.500 0.666 1.000 0.436 0.608 1.000 0.500 0.667
TAnoGAN 0.806 1.000 0.892 0.476 0.555 0.513 0.559 1.000 0.717

Table 3: Performance of GRU-GAN and TAnoGAN on AIOps and Zabbix datasets

Method AIOps Zabbix

Precision Recall F1-score Precision Recall F1-score

GRU-GAN 0.731 1.000 0.844 0.842 1.000 0.914
TAnoGAN 0.729 0.921 0.813 0.764 0.998 0.865

Compared to other methods, the KPI anomaly detection method based on the GRU-GAN hybrid
model proposed in this paper achieved nearly 100% recall on the NAB dataset, indicating that almost
all KPI anomalies were detected by our method with little or no real anomalies missed. At the same
time, it also achieved relatively high precision, which means fewer false positive anomalies. The good
performance in precision and recall enabled the KPI anomaly detection method based on the GRU-
GAN hybrid model to obtain the highest F1 score on all datasets. Therefore, our proposed method
demonstrated better anomaly detection performance than the other methods.

6.3 Effect of Different Lengths of Time Windows
Considering that different time window lengths may affect anomaly detection performance

differently, we divided the time windows into different lengths to observe changes in model detection
performance. Specifically, we observed the F1 scores achieved by the GRU-GAN model with different
time window lengths on three datasets. From Fig. 4, it can be seen that different time window lengths
have a certain impact on the detection performance of the GRU-GAN model in KPI anomaly
detection tasks. We conducted nine experiments, setting time window lengths from 10 to 90. The
experiments showed that if the time window length is set too small, the model is difficult to capture
the data patterns of the KPI sequence, while if it is set too large, it is easy to overlook anomalies in the
KPI sequence. Too-large and too-small time window lengths will result in lower anomaly detection
performance. Our experiments achieved the best F1 scores when the time window length was set to 60
on all three datasets, indicating the best detection performance.
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Figure 4: Effect of different lengths of time windows

6.4 Performance of the Access Restriction Management Mechanism Based on Reputation Value
The experimental parameter settings are shown in Table 4. We set the punishment factor β (kpik)

to be proportional to the exponential function of the number of kpik anomalies, which means that
the more anomalies occur, the greater the punishment will be. We set the time for each reputation
update transaction (for simplicity, we call it RUT in the rest of this section) to be completed in 1 day.
According to Eqs. (10)–(12), we take the device Di as an example.

Table 4: Reputation mechanism weight

Parameter R0 α β (kpi1) β (kpi2) β (kpi3)

Value 60 5 −1 −2 −3

As shown in Fig. 5a, starting from Ri = 60, all KPIs detection results of the device were normal
from day 1 to day 8. On day 8, Ri = 100, Di became a normal device. At this point, even if it continued
to produce normal KPI detection results, Ri would not increase.

As shown in Fig. 5b, initially, Di is a normal device and Ri = 100. Once the KPIs detection results
of the device Di are abnormal, R+

i will return to zero and R−
i will rapidly increase. At the first and second

RUT, the KPI detection results of Di are normal and Ri = 100. At the third RUT, Di’s KPI detection
results show two instances of abnormality on kpi1. n−

i1 (kpi1) = 2, R−
i = −4, and Ri = 56. At the fourth

RUT, Di has had three anomaly detection results, where n−
i1 (kpi1) = 1, n−

i2 (kpi2) = 1, n−
i3 (kpi3) = 1.

Hence, R−
i = (−1) + (−2) + (−3) = −6, and Ri = 50. At the fifth RUT, Di has had three anomaly

detection results on kpi3, n−
i3 (kpi3) = 3, R−

i = −24, and Ri = 26. As a result, Di is restricted for 24 days.

A reputation-based access restriction policy can effectively reduce the number of malicious devices
attacking the network. As shown in Fig. 6, we assume that the device’s kpi3 anomaly is caused by a
DDoS attack initiated by the device. After the detection anomaly of kpi3 occurs, the device carries out
a DDoS attack every day. When no access restriction policy is implemented, the frequency of DDoS
attacks is equal to the number of days. With the implementation of the β (kpi3), within the first 32



IASC, 2023, vol.37, no.2 2351

days, the device has only accumulated two DDoS attacks. Therefore, the access restriction policy can
reduce the impact of abnormal devices on the network.

Figure 5: Reputation value changes according to the anomaly detection results. (a) Normal device. (b)
The device becomes an abnormal one

Figure 6: The impact of access restriction strategies on the number of anomaly behaviours of devices

7 Conclusions

Ensuring secure access and control of devices in SDN networks is vital to prevent security risks
and vulnerabilities, such as data breaches and network attacks, which can result from unauthorized
terminal access. Additionally, timely detection of KPI anomalies, particularly those caused by intru-
sions, is critical to preventing significant damage to the network. To address the above issues, this paper
proposes a system architecture for anomaly detection and access control in a cloud-edge collaborative
SDN network. The system uses the ABAC model to achieve fine-grained control over device access.
In order to ensure the security of the access control policies, smart contract technology is utilized
to implement the ABAC model. In order to capture the time correlation between KPI sequences,
this paper proposes a KPI anomaly detection method based on a GRU-GAN hybrid model, which
uses GRU as both the generator and discriminator model for GAN. A cloud-edge collaborative
model updating strategy is proposed to enhance further the robustness of KPI anomaly detection
models in cloud-edge environments. Finally, based on the abnormal detection results of the devices, a
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reputation-based access restriction mechanism is designed in this paper. The reputation value of the
device decreases as the number of abnormal occurrences increases. When the reputation value falls
below a warning threshold, the system will update the device’s access control policy, restricting or
revoking its access permissions. The experimental results show that the proposed anomaly detection
algorithm in this paper exhibits superior performance on multiple datasets. The access control method
can effectively reduce the number of network attacks, providing a secure and controllable access
environment for SDN networks.
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