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Abstract: Numerous clothing enterprises in the market have a relatively
low efficiency of assembly line planning due to insufficient optimization of
bottleneck stations. As a result, the production efficiency of the enterprise is
not high, and the production organization is not up to expectations. Aiming
at the problem of flexible process route planning in garment workshops, a
multi-object genetic algorithm is proposed to solve the assembly line bal-
ance optimization problem and minimize the machine adjustment path. The
encoding method adopts the object-oriented path representation method, and
the initial population is generated by random topology sorting based on an
in-degree selection mechanism. The multi-object genetic algorithm improves
the mutation and crossover operations according to the characteristics of the
clothing process to avoid the generation of invalid offspring. In the iterative
process, the bottleneck station is optimized by reasonable process splitting,
and process allocation conforms to the strict limit of the station on the
number of machines in order to improve the compilation efficiency. The
effectiveness and feasibility of the multi-object genetic algorithm are proven by
the analysis of clothing cases. Compared with the artificial allocation process,
the compilation efficiency of MOGA is increased by more than 15% and
completes the optimization of the minimum machine adjustment path. The
results are in line with the expected optimization effect.

Keywords: Assembly line balance; topological order; genetic algorithm;
compilation efficiency; pre-production scheduling

1 Introduction

With the increasing demand from consumers for personalized and diversified clothing products,
garment enterprises must respond quickly to market changes and provide personalized customization
services to meet their needs [1]. Compared to traditional mass production, personalized customization
tends to be a small-batch multi-variety (SBMV) production mode and requires the full utilization
of process flexibility and machine flexibility in garment production [2]. Clothing intelligent hanging
systems have flexible workstation combination abilities and information collaboration capabilities,
which can effectively meet the requirements of this mode in a flexible garment assembly line. However,
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the hanging assembly line faces the assembly line balancing (ALB) problem and the machine allocation
problem during clothing changes due to the SBMV production mode. The process route optimization
problem involved in ALB is at the core of pre-production scheduling and belongs to the flexible
shop scheduling problem [3]. The machine allocation impacts the downtime in the production line for
retooling during product changeovers. By optimizing the assembly line process allocation and machine
allocation schemes, the efficiency and flexibility of the entire assembly line can be maximized.

In this paper, a multi-object genetic algorithm (MOGA) is proposed for the balance optimization
problem of garment assembly lines to achieve the goals of maximizing the efficiency of assembly line
sequencing and minimizing the adjustment path for machines. In MOGA, the population is initialized
by topological sorting to coincide with the process constraints. During the iteration process, a joint
fitness function based on machine adjustment path and assembly line efficiency is used as a criterion.
A constraint adjustment method based on related processes is introduced into crossover and mutation
operations to ensure the generation of effective offspring. Machine constraints are considered in the
process of decoding chromosomes and process allocation. The resulting preparation plan is in line
with the limitations of station space and worker operability in actual production. Process allocation
mechanism splits some processes into two stations in batches to make the bottleneck station not
fixed at a specific position and improves the compilation efficiency. Through the production examples
of the garment workshop, the effectiveness of the MOGA formulation scheme is verified. MOGA
achieves the routine optimization objectives of assembly line balancing while meeting the optimization
requirement of minimizing the machine adjustment path for rapid changeover under the small-batch
multi-variety production mode. MOGA provides a reference for the enterprise to design the man-
machine scheduling scheme of the actual production line.

The structure of the paper is given here: Section 2 introduces the related research on assembly line
balancing in traditional manufacturing and garment manufacturing industries. Section 3 describes
the scheduling problem in the flexible garment assembly line and establishes the corresponding
mathematical model with constraints. Section 4 introduces the fusion methods of the multi-objective
algorithm with other algorithms and mechanisms in various stages or links. Section 5 validates the
feasibility and effectiveness of using the multi-objective algorithm for scheme planning in garment
production through specific case studies, and Section 6 draws the conclusion.

2 Related Works

The traditional exact algorithm is suitable for solving small-scale and simple optimization
problems accurately [4]. For the flexible shop scheduling problem, various heuristic algorithms can
obtain an approximate optimal solution in a short time [5,6]. In [7], Deng et al. proposed an optimized
algorithm called ICMPACO to solve large-scale optimization problems that balances convergence
speed and solution diversity. The experimental results demonstrate that the ICMPACO algorithm
effectively obtains a better assignment result and optimization value when solving TSP and actual gate
assignment problems. In [8], Chen et al. used staff assignments to simulate assembly line balancing to
achieve more balanced production and reduced cycle time. By conducting a comparative case study
and implementing simulation, Chen found that the tabu search algorithm outperforms simulated
annealing in the staff assignment problem. In [9], Goli et al. introduced the method to optimize
the energy consumption of non-permutation flow shop scheduling and batch size simultaneously,
using multiple improved metaheuristic algorithms, including MOALO, MOKA, MOKSEA, etc. The
results showed that the proposed hybrid algorithm provided high-quality Pareto solutions in a shorter
time and had greater advantages than traditional algorithms, and there was a linear relationship
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between processing time and objective function. In [10], Chica et al. proposed using robust multi-
objective optimization and simulation techniques to solve assembly line balancing problems and
demonstrated the advantages of using a robust production line in a Nissan case. Decision-makers are
encouraged to adopt robust multi-objective optimization methods to make the most flexible decision.
In [11], Wang et al. optimized U-shaped production lines by developing a mixed-integer nonlinear
programming model and optimizing it with an improved genetic algorithm. The model was successfully
applied to Company X, resulting in improved load balancing, production rhythm, and reduced time
fluctuations at workstations.

In the garment production process, there are a lot of serial and parallel constraints between
garment processes, so it is necessary to conform to the constraints to ensure the generation of feasible
solutions when using various heuristic algorithms to solve the assembly line balancing problem in
the garment workshop. In [12], Yan et al. developed an intelligent assembly line system that utilizes an
improved particle swarm optimization algorithm to enhance the balance index of the garment produc-
tion line and improve the lean production level of enterprises. In [13], Zhang et al. employed the genetic
algorithm to optimize a garment assembly line with three different working layouts. The optimized
layouts effectively reduced the balance loss rate of the assembly line. In [14], Qian et al. proposed
an adaptive genetic algorithm to ensure the balance of working time at each station. The algorithm
allocated processes and matched workers to maximize adaptability to mixed assembly line production.
In the existing research on workshop scheduling, most studies focus on the production mode of large-
scale manufacturing or processing multiple orders on the same production line, with the main goal
of optimizing assembly line balance and minimizing maximum completion time. However, there are
relatively few studies on optimizing assembly line efficiency and machine adjustment path in the
context of the small-batch multi-variety production mode in garment assembly line pre-scheduling.
It is necessary for clothing enterprises to carry out relevant research and apply it to practice in order
to improve productivity.

3 Mathematical Model

The problem of single-piece flow garment assembly line planning belongs to the multi-process
route flexible workshop scheduling problem, which can be described as: each workpiece has multiple
process routes. Each workpiece contains n processes that must pass through m stations in turn to
complete the garment sewing task. In order to describe the mathematical model of the assembly line
better, the relevant parameters are defined in Table 1.

Table 1: Model parameter

Parameter Definition

n Total workpieces
m Total processing stations
p Total operations
xijk Processing time of the k-th operation of job i at workstation j
yj Whether workstation j is used (0 for not used, 1 for used)
mij Whether machine type i can be used for processing at workstation j. (0 for not

useable, 1 for useable)

(Continued)
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Table 1: Continued
Parameter Definition

mk Number of machines on the assembly line
Tbs Bottleneck Station Working Hours
Tj Working hours of the j-th station
Tu Effective working hours of the order within the planning period
T Theoretical average beat
E Overall compilation efficiency of the assembly line
Eej The compilation efficiency of the j-th station
R Adjustment path of machines on the assembly line
Sk The position of the same machine in the new assembly line machine layout

scheme
S′

k The position of the same machine in the original layout of the assembly line
machine

Sk′ The length of machine moving path that needs to be supplemented or removed
in the new assembly line machine layout scheme

Considering the limitations of station number and machine number, the constraints of the
assembly line problem in a single-piece garment workshop are as follows:∑m

j=1
yjmji ≤ 2, ∀i = 1, 2, . . . , n (1)

∑p

k=1

∑n

i=1
xijk ≤ yj, ∀j = 1, 2, . . . , m (2)

∑p

k=1

(
xijk − xi+1,j,k

) ≥ 0, ∀i = 1, 2, . . . , n − 1, j = 1, 2, . . . , m (3)

∑m

j=1
xijkmji, ∀i = 1, 2, . . . , n, k = 1, 2, . . . , p (4)

∑p

k=1
xijk = 1, ∀i = 1, 2, . . . , n (5)

xijk ≥ 0, ∀i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . . , p (6)

Eq. (1) means that each workstation contains at most two types of machines. Eq. (2) means that
only one workpiece can be processed at a workstation at the same time. Eq. (3) means that an operation
can only be partially processed at most once. Eq. (4) means that an operation can be processed on only
one machine at one workstation. Eq. (5) means that all operations of each job must be completed.
Eq. (6) means that processing time is always non-negative.

In the production process, indexes of the assembly line evaluate the balance state of the assembly
line and judge whether the plan can guarantee on-time delivery. Aiming at solving FCALBP with
a multi-objective algorithm, we adopt the optimization objectives of maximizing the assembly line
balancing rate and minimizing the machine adjustment path during changeovers and establish the
following mathematical model:
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The first optimization objective is to maximize the assembly line balancing rate after process and
machine allocation. The calculation method for this objective is to take the average of the efficiency
of each station in the plan.

E =
∑m

j=1 Eej

m
, ∀j = 1, 2, . . . , m (7)

Eej represents the production efficiency of each station, which is calculated as the ratio of the total
process time at a station to the bottleneck station’s process time in the plan.

Eej = Tj
Tbs

× 100%, ∀j = 1, 2, . . . , m (8)

Tbs refers to the processing time of the station with the maximum total processing time in the plan.

Tbs = max {T j} , ∀j = 1, 2, . . . , m (9)

The second optimization objective is to find the minimum machine adjustment path. In the small-
batch multi-variety apparel production mode, in order to achieve rapid changeover production, the
assembly line needs to be able to switch production processes quickly and effectively. The objective
function calculates the sum of adjustment distances for all machines on the assembly line.

R =
∑

|Sk − S′
k| +

∑
Sk′ (10)

4 Multi-Objective Genetic Algorithm
4.1 Coding and Population Initialization
4.1.1 Coding Method

In the research on traditional assembly line balancing problem with genetic algorithms, binary
encoding is commonly used for coding and decoding. In the FCALBP, the usage of binary coding may
give rise to infeasible solutions by causing disruption to the precedence relationships between garment
processes. Alternatively, the object-oriented coding method effectively represents the feasible scheme
of such problems as chromosomes and makes the offspring chromosomes inherit the characteristics
of the parents. Therefore, MOGA uses the path representation method to encode cloth processes and
generate process chromosomes. The length of the process chromosome is equal to the total number of
processes of a garment. Each process gene carries related process information such as subsequent
procedures, standard working hours, and machine models. MOGA comprises two chromosome
populations, namely process chromosomes and schedule chromosomes. The number of chromosomes
in both populations is always the same, and a one-to-one mapping relationship is established between
them. The process chromosome population considers the constraint relationships between processes
and undergoes genetic algorithm operations such as selection, crossover, and mutation. The schedule
chromosome population is generated from the process chromosome population through the process
allocation mechanism and is used to calculate the fitness value of MOGA, which is then fed back to
the process chromosome selection phase.

The process allocation mechanism considers the number of stations and the assignable operation
time of a single workpiece at each station based on the process chromosome and performs process
allocation accordingly. Bottleneck working hours that always exist in the same station will cause
congestion of the hanging line. In the allocation process, some processes are batch-split to allow for
periodic processing at two different stations, thereby optimizing the bottleneck station of the assembly
line. After the process allocation mechanism is applied, a schedule chromosome is generated that
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corresponds uniquely to the process chromosome. The chromosome carries information about the
processes and split processes at each station and can be further decoded to obtain a scheduling plan
that includes information about the processes and machine assignments.

4.1.2 Population Initialization

The garment process chart has the same structure as a directed acyclic graph. The scheduling of
all garment processes and the traversal of a directed acyclic graph share common characteristics: All
vertices appear and only appear once (uniqueness of processing). If there is a path from vertex 1 to
vertex 2, then vertex 1 must be in front of vertex 2 in the sort (process constraints). A vertex can point
to multiple vertices or be pointed by multiple vertices (process flexibility).

MOGA utilizes random topological sorting for population initialization [15,16]. Topological
sorting ensures the sorting of garment processes and the generation of process chromosomes without
violating garment process constraints. In this study, a random operator was introduced into the
topological sorting process to ensure that the initial population is generated within the entire feasible
solution space, thereby enhancing the global search capability of MOGA. The Fig. 1 is the process
chromosome generation flowchart, and the specific steps are as follows:

Construct a directed graph based on the input process information

Calculate the in-degree of nodes, establish a topological sorting 
table and sorting queue

Initialize the queue

Traverse adjacent nodes

Is the in-degree of the node equal to 0?

Update the queue of items to be sorted

Component probability estimation

Add a node to the sorting queue and update the indegree of 
adjacent nodes

Yes

Yes

The length of the sorting queue =
The total number of processes

Sorting is completed 
Generate process chromosome from the sorting queue

Yes

No

Select some nodes for sorting

No

No

Figure 1: Flow chart of process chromosome generation
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Step 1: Define the constraint relationship. According to the process flow and process information,
define the order constraints.

Step 2: Generate the process dependency graph. Construct a directed acyclic graph (DAG) by
arranging all processes based on their order constraints. Each node in the graph represents a process,
and the edges represent the dependencies between them.

Step 3: Topological sorting. Use the random topological sorting algorithm to sort the nodes in the
process dependency graph. Select a node with an indegree of 0 as the starting point and start traversing
the adjacent nodes. When a node is visited, if its indegree is 0, decide whether to add an element to the
result list based on the random operator. If yes, remove all the edges it points to. Otherwise, continue
traversing other nodes. Repeat Step 3 until all nodes have been visited.

Step 4: Generate the process chromosome population. The list of nodes is the process chromo-
some. Initialize the population according to the size of the population.

The generation of programming chromosomes in MOGA includes the following steps:

Step 1: Process positioning: Except for the first process, when other processes are treated as
pending processes to be assigned, the workstations allocated by all previous processes are first
determined. The process is positioned at the last workstation and undergoes an incoming station
judgment.

Step 2: Incoming station judgment: In the process allocation mechanism, the incoming station
judgment includes machine type judgment and station working time judgment. When the number of
machine types in the station is 0 or 1, the working time is directly measured. If the working time meets
the requirements, the process can enter the station, and the station machine type and working time
will be updated. If the working time does not meet the requirements, proceed to step 3. When the
number of station machines is 2, the machine corresponding to the pending process is consistent with
the current machine at the station for working time judgment. If it is inconsistent, proceed to the next
station in order to perform step 2.

Step 3: Batch process allocation: When the working time does not meet the requirements, splitting
is carried out according to the constraints described in Eq. (1). The split ratio is determined based on
the ratio of remaining working time to the current process time and is taken as a value close to 1/n or
(n − 1)/n:

Rp =
(

Tj−T ′
j

Tj

)
Ti

, ∀j = 1, 2, . . . , m, i = 1, 2, . . . , n (11)

In the Eq. (11), Tj represents the actual production pace of the station, T′
j represents the total

working time of the processes that have entered the station, and Ti represents the processing time for
the divisible process. Batch splitting allocates the i-th process of the entire batch of workpieces to be
processed periodically between two stations according to the proportion of Rp, and a single workpiece
process cannot be split to be processed at two stations.

Step 4: Repeat steps 1 to 3 until all process genes of the process chromosome have entered the
station.

4.2 Select Operation
The joint fitness value of the chromosome for planning is utilized as the assessment criteria for

chromosomes throughout the MOGA iteration process. The efficient fitness value of the assembly line
and the fitness value of the machine adjustment path are given various weights. By normalizing the
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results of minimizing the machine adjustment path, the fitness value of the machine adjustment path
is generated. The available calculation process is as follows:

fitness = w1 • E + w2 • normalize_route (12)

The optimal staffing plan involves achieving efficient production while maintaining the original
machine layout of the assembly line. However, in practical implementation, some machines may require
adjustments to improve assembly line change efficiency. The machine adjustment path is processed
using a maximum-minimum normalization method to scale the path features within the range of
0–1 [17].

normalize_route =
(

1 − R − min _R
max _R − min _R

)
(13)

In the iteration process of the multi-objective genetic algorithm, an elite preservation strategy
is used to preserve individuals with superior performance to accelerate algorithm convergence and
improve the quality of solutions. Specifically, in each generation of the population, the top 40%
of chromosomes based on fitness value (rank-based) are selected as the elite group in the current
population, which will produce offspring for the next generation.

Moreover, selecting chromosomes from a solution set is also an important method to enhance
search performance. For individuals in the solution set, the top 20% of chromosomes based on joint
fitness values are reserved. Then, according to other criteria such as assembly line efficiency and
machine adjustment path, two sub-sets are selected from the solution set, each accounting for 10%
of the total population size, and combined with the previous elite group to form a new generation
of offspring. Such an operation can consider multiple criteria comprehensively and help find better
solutions.

4.3 Improve Crossover and Mutation Operations
4.3.1 Cross Operation

Crossover operations play a key role in the genetic algorithm [18]. The constraint relationship
between garment processes is complex. Directly performing crossover operations will destroy the
constraint relationship between offspring chromosome process genes. In this paper, the crossover
operation is improved by the constraint adjustment method to ensure the effectiveness of the offspring
chromosomes. The front endpoint g1 and the back endpoint g2 of the cross-gene segment are randomly
generated. The substrings before the endpoint g1 and the substrings after the endpoint g2 of the two
parental process chromosomes (P1, P2) are retained. The cross-gene segments between g1 and g2
are exchanged. The same gene in the gene segment retains the original order for interchange. After
verifying the constraint relationship, the differential genes are inserted at the appropriate position
according to the gene position of the subsequent procedure.

Fig. 2 is a process roadmap containing 10 processes. The parent (P1, P2) chromosomes that satisfy
the constraint relationship are shown in Fig. 3. In the two-point crossover operation, the breakpoints
g1 and g2 are first selected. Interchange the same processes 3, 4, 6, and 7 in the intermediate substring
and retain the gene order in the respective parent to cross. The differential gene in the P1 substring is
8, and the insertion point of its offspring is between the process genes 7 and 9. The differential gene in
the P2 substring is 2, and the insertion point of its offspring is between process genes 1 and 3. There are
currently two optional points, and the optional points are randomly selected to perform the insertion
operation. The intersection eventually produced offspring S1 and S2.
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Figure 2: Process directed acyclic graph

Figure 3: Schematic diagram of two-point intersection

4.3.2 Mutation Operation

In the genetic algorithm, the chromosome gene is disturbed by mutation operations to ensure
the ability to jump out of the local optimal solution. In this paper, the mutation operation is carried
out by improving the two-point exchange method. Two points are randomly selected on the parent
chromosome, and the genes at these two positions are exchanged with the offspring. The mutation
operation also adjusts the location of the mutant gene on the infeasible solution using the constraint
adjustment method to ensure the effectiveness of the offspring chromosome. Based on the process
route of Fig. 2, the parent chromosome is generated, and the two-point exchange mutation operation
is performed as shown in Fig. 4.

Figure 4: Schematic diagram of two-point exchange



2430 IASC, 2023, vol.37, no.2

4.4 Algorithm Framework
The flow chart of MOGA is shown in Fig. 5, and the specific execution steps of MOGA are as

follows:

Input Data

Initialize parameters
Generate initial gene population

Generate initial schedule population

Calculate the joint fitness value
Generate the Pareto solution set

Satisfy the iteration 
conditions?

Decode and analysis

Output solution

Yes

Selection Crossover MutationNo

Topological sorting

Process allocation mechanism

Minimum adjustment path

Constraint adjustment method

Figure 5: Flow chart of MOGA

Step 1: Obtain order and process information in the standard time database. Set the initial
parameters of the multi-object genetic algorithm. The initial process chromosome population is
generated by random topological sorting. The scheme chromosome is generated by the initial process
chromosome population through the process allocation mechanism.

Step 2: Calculate the population fitness value and select the dual mechanism. Perform improved
crossover and mutation operations.

Step 3: Judge whether the iteration termination condition is satisfied according to fitness and the
maximum number of iterations.

Step 4: If the iteration termination condition is not satisfied, go to step 2 and repeat the above steps
until the termination condition is satisfied. If the iteration termination condition is satisfied, decode
the optimal solution and generate the assembly line scheme.
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5 Experiments and Computational Results

This paper takes the workwear shirt production order of a garment company in Hangzhou as an
example. This shirt contains 64 basic processes, which can be divided into 5 garment modules according
to the parts of the garment pieces. Process constraints are shown in Fig. 6. The related processes of
each process involve seven types of machines, such as flat cars, knife cars, computer flat cars, and four-
line overlaid cars. Artificial operation does not require additional station space, so it is not included
in the calculation of the number of station machine types. Process-related information is shown in
Table 2. The process number corresponds to the process roadmap in Fig. 6.

The assembly line scheme of the tooling shirt in this example is based on the artificial scheme of
the garment workshop. According to the delivery requirements, there is a daily output of 200 shirts.
The daily operation time of workers is 9 h. The example beat is 2.7 min. The standard working time for
single-shirt sewing is 41.49 min. The theoretical minimum number of stations is 16. The population size
is set to 50 in the hanging assembly line compilation scheme generation program. Then the topological
sort selection probability is 0.5. The crossover probability is 0.6. The mutation probability is 0.05. The
station’s production beat is 2.7. The maximum number of iterations is 200.

According to various methods of assembly line process allocation, the processing time and number
of machine types for each station are shown in Table 3. In the artificial compilation scheme, the process
time at the bottleneck station is 3.66 mins. The assembly line compilation efficiency is 70.93%, and the
proportion of stations containing three types of machines is 43.75%. Compared to the artificial scheme
compilation, MOGA and GA algorithms impose stricter control over station processing time and
limit the number of machines used. The efficiency of traditional GA for assembly line configuration
is 85.05%, with a bottleneck station processing time of 2.71 min. Compared to artificial scheme
compilation, the assembly line efficiency has been improved by nearly 15%. The number of stations
in the garment production line is usually 16, 18, 20, and 22. Due to the limitation of the number of
station machine types, the number of stations in MOGA and GA has increased. The 18 stations of the
final scheme are still of common scale.

Fig. 7 shows the joint fitness value iteration curve of the MOGA. In the production process,
bottleneck process time that always exists at the same station will cause congestion in the hanging
line. In order to improve the bottleneck station, some processes will be split into batches when the
process inbound operation is carried out in programming. The corresponding process is periodically
assigned to two fixed stations for the sewing operation. The bottleneck station will not be fixed in the
same position. The efficiency of the assembly line will fluctuate within a certain range throughout
the sewing stage. Compared to traditional genetic algorithms, MOGA further improves assembly
line efficiency from 85.05% to 88.33% by integrating the mechanism of batch splitting of processes
in the chromosome generation stage for scheme compilation. Fig. 8 shows the assembly line efficiency
iteration curves of MOGA and GA.
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Figure 6: Shirt process roadmap

Table 2: Process information

Process Id Operation or
machine type

Process
level

Process
Id

Operation or
machine type

Process
level

1 MANUAL C 33 THREE-THREAD
OVERLOCKING
STITCH
MACHINE

C

(Continued)
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Table 2: Continued
Process Id Operation or

machine type
Process
level

Process
Id

Operation or
machine type

Process
level

2 IRONING BOARD C 34 ORDINARY
SEWING
MACHINE

C

3 COMPUTER
SEWING
MACHINE

C 35 COMPUTER
SEWING
MACHINE

C

4 IRONING BOARD D 36 COMPUTER
SEWING
MACHINE

C

5 IRONING BOARD C 37 THREE-THREAD
OVERLOCKING
STITCH
MACHINE

C

6 CUTTING
MACHINE

C 38 IRONING BOARD C

7 COMPUTER
SEWING
MACHINE

B 39 DOUBLE-
NEEDLE SEWING
MACHINE

C

8 IRONING BOARD D 40 COMPUTER
SEWING
MACHINE

A

9 COMPUTER
SEWING
MACHINE

C 41 IRONING BOARD D

10 IRONING BOARD C 42 DOUBLE-
NEEDLE SEWING
MACHIN (1 cm 4
pins)

C

11 IRONING BOARD C 43 MANUAL D
12 COMPUTER

SEWING
MACHINE

C 44 COMPUTER
SEWING
MACHINE

C

13 COMPUTER
SEWING
MACHINE

C 45 CUTTING
MACHINE

C

14 FOUR-THREAD
OVERLOCKING
STITCH
MACHINE

C 46 MANUAL D

15 IRONING BOARD C 47 IRONING BOARD C

(Continued)
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Table 2: Continued
Process Id Operation or

machine type
Process
level

Process
Id

Operation or
machine type

Process
level

16 COMPUTER
SEWING
MACHINE

C 48 COMPUTER
SEWING
MACHINE

C

17 CUTTING
MACHINE

C 49 SEWING
MACHINE

C

18 MANUAL D 50 THREE-THREAD
OVERLOCKING
STITCH
MACHINE

C

19 COMPUTER
SEWING
MACHINE

C 51 IRONING BOARD C

20 IRONING BOARD C 52 COMPUTER
SEWING
MACHINE

A

21 COMPUTER
SEWING
MACHINE

C 53 COMPUTER
SEWING
MACHINE

C

22 IRONING BOARD C 54 THREE-THREAD
OVERLOCKING
STITCH
MACHINE

C

23 CUTTING
MACHINE

C 55 IRONING BOARD C

24 COMPUTER
SEWING
MACHINE

C 56 COMPUTER
SEWING
MACHINE

A

25 CUTTING
MACHINE

C 57 CUTTING
MACHINE

C

26 IRONING BOARD C 58 COMPUTER
SEWING
MACHINE

A

27 CUTTING
MACHINE

C 59 IRONING BOARD D

28 IRONING BOARD C 60 CUTTING
MACHINE

C

29 CUTTING
MACHINE

C 61 SEWING
MACHINE

C

30 COMPUTER
SEWING
MACHINE

C 62 IRONING BOARD D

(Continued)
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Table 2: Continued
Process Id Operation or

machine type
Process
level

Process
Id

Operation or
machine type

Process
level

31 MANUAL D 63 MANUAL D
32 IRONING BOARD C 64 MANUAL D

Table 3: Process-station compilation scheme

MOGA Artificial GA

Station ID Process
time

Machine
number

Station ID Process
time

Machine
number

Station ID Process
time

Machine
number

1 2.45 2 1 2.44 1 1 2.58 2
2 2.5 2 2 2.11 2 2 2.67 2
3 2.34 1 3 2.95 2 3 2.7 2
4 2.22 2 4 1.51 1 4 1.98 2
5 1.85 2 5 2.88 3 5 2.61 2
6 2.52 2 6 2.26 1 6 2.71 2
7 2.4 2 7 2.56 3 7 1.82 2
8 2.24 2 8 2.98 3 8 1.63 2
9 2.47 2 9 3.07 3 9 2.67 2
10 2.37 2 10 1.85 3 10 2.17 2
11 2.15 2 11 2.92 1 11 2.58 2
12 1.13 2 12 2.17 1 12 2.58 2
13 2.15 2 13 2.31 3 13 1.27 2
14 2.07 2 14 3.61 2 14 2.35 2
15 2.51 2 15 2.68 3 15 2.59 1
16 2.5 2 16 1.77 1 16 2.64 1
17 2.23 1 17 2.44 2
18 1.97 2 18 1.5 2

Fig. 9 shows the machine adjustment path iteration curves. Observing the change curve during
the iteration process reveals that, despite some instability, the machine adjustment path can converge.
The assembly line efficiency of traditional genetic algorithms converges to the optimal value, but
the corresponding machine adjustment path fluctuates dramatically. In MOGA, machine adjustment
path is assigned weights and optimized. MOGA minimizes the machine adjustment path as one of its
optimization objectives. Although there is a certain fluctuation due to the optimization of assembly
line efficiency during the iteration process, the overall convergence can be effectively achieved. In this
example, the final machine adjustment path of MOGA is 123.

Except for the shirt sample, this paper automatically compiles the orders of the leopard head
single-collar shirt and horn pants of the garment company. The effectiveness of the multi-object genetic
algorithm is further verified by comparing the compilation effects of artificial compilation schemes.
Some process information and compilation efficiency of the two garments are shown in Table 4.
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Figure 7: Joint fitness curve

Figure 8: Efficiency curve
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Figure 9: Machine adjustment path curve

Table 4: Garment example verification and comparison

Garment style Process
number

Machine
type

Presentation
form

Compilation
efficiency

Bottleneck station
Process time (min)

Leopard head
single neck shirt

50 9 MOGA 91.30% 1.83
Artificial 71.45% 1.92

Flared pants 76 8 MOGA 85.99% 3.40
Artificial 73.79% 5.21

6 Conclusion

In this paper, we propose a solution to the scheduling problem in flexible garment workshops with
the small-batch multiple-variety production mode. The proposed approach formulates a mathematical
model that maximizes assembly line efficiency and minimizes the machine adjustment path based
on the constraints of actual production. Further, a multi-objective genetic algorithm (MOGA) is
developed by enhancing the population initialization, crossover, and mutation processes of traditional
genetic algorithms. The MOGA-based scheduling approach has been empirically verified, utilizing
real-life enterprise orders. The results suggest that MOGA is efficient in optimizing the process-
ing sequences of garment hanging lines while complying with the requirements of flexibility and
equipment constraints in garment manufacturing. Notably, MOGA generates a higher assembly line
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compilation efficiency (more than 10%) compared to artificial arrangement methods in multiple cloth-
ing scenarios. Importantly, MOGA considers machine adjustment paths as one of its optimization
objectives to ensure minimum value convergence during iterations. As a result, the final production
scheme can effectively accelerate the speed of assembly line machine adjustments for new orders and
reduce downtime, thereby meeting the demand for the small-batch multi-variety production mode.
These findings demonstrate the potential of MOGA-based approaches for designing multi-objective
and multi-priority combinatorial optimization algorithms to help businesses achieve lean production
goals.

During the MOGA solving process, various parameters, including fitness value weighting,
crossover, and mutation probabilities, can significantly impact the final solution. To further optimize
AI-based intelligent decision-making systems for flexible manufacturing pre-scheduling, we will focus
on enabling autonomous learning, adaptation, and parameter adjustment during production. In this
paper, we primarily design MOGA to perform pre-scheduling tasks for garment assembly lines.
However, actual production processes are subject to real-time constraints, such as worker absence
or machine failure, which require immediate adjustments to workflow allocation. Thus, in our future
research, we plan to investigate real-time scheduling for garment job shops to handle unexpected
events adequately.
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