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Abstract: Freezing of Gait (FOG) is the most common and disabling gait
disorder in patients with Parkinson’s Disease (PD), which seriously affects
the life quality and social function of patients. This paper proposes a FOG
recognition method based on the Variational Mode Decomposition (VMD).
Firstly, VMD instead of the traditional time-frequency analysis method to
complete adaptive decomposition to the FOG signal. Secondly, to improve
the accuracy and speed of the recognition algorithm, use the CART model
as the base classifier and perform the feature dimension reduction. Then use
the RUSBoost ensemble algorithm to solve the problem of unbalanced sample
size and considerable limitations of a single classifier. Finally, the hyperparam-
eters of the ensemble classifier are optimized by Bayesian optimization, and
the experiment proves that the RUSBoost algorithm can complete the gait
recognition task well. Compared with the Adaboost, Tomeklinks-Adaboost
and ROS-Adaboost ensemble algorithms, the RUSBoost ensemble algorithm
can complete the FOG recognition task more efficiently. When the maximum
number of splits is 1023, and the number of base classifiers is 100, the
performance of the RUSBoost ensemble algorithm can reach the best. The
accuracy of the time recognition algorithm was 87.8%, the sensitivity was
89.7%, and the specificity was 87.5%.
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1 Introduction

PD is a highly prevalent neurodegenerative disease, and FOG is the most common and disabling
pathological gait in Parkinson’s patients [1]. From the perspective of the pathogenesis of PD, FOG
cannot be cured entirely [2]. Currently, the treatment of FOG is mainly based on levodopa-based
drugs [3]. Due to the limited therapeutic effect of dopamine drugs and surgery on FOG [4,5], non-drug
therapy has become a hot research direction for FOG intervention. Human gait recognition (HGR)
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technology as the basis of non-drug therapy has attracted scholars of attention. The main challenges of
gait recognition are complex environmental changes and high costs [6]. In the field of gait recognition,
instrumental gait analysis is now widely used [7]. The first method is a comprehensive analysis of
patients’ movements in a gait laboratory; the second method is to identify FOG through wearable
sensors and long-term detection systems. Due to the high cost and complex operation of the first
laboratory analysis method, the automated FOG monitoring technology based on wearable sensors
has gradually become the basis for the non-drug treatment of FOG. The advent of new technologies
such as machine learning, wearable sensors, and portable neurostimulation devices has paved the way
for non-drug treatments for FOG [8].

A large number of scholars have researched FOG recognition. Moore et al. [9] first tried to
detect FOG based on inertial sensors, which can detect 78% of FOG events. Hausdorff et al. [10]
introduced a new feature index based on the research of Moore et al. and used the threshold method
to identify FOG with the freezing index. Djuric-Jovicic et al. [11] processed the data obtained by
an inertial sensor mounted on the handle and used the Pearson correlation coefficient method for
gait recognition classification. Mazilu et al. [12] used power index and freezing index as features, and
used machine learning methods for FOG recognition. The method of machine learning mainly uses
decision trees, random forests and naive Bayes algorithms, etc. In 2017, Rodriguez et al. [13] and others
proposed a machine-learning algorithm based on SVM. This new algorithm has significantly improved
specificity and sensitivity, and it can detect FOG in the daily life of Parkinson’s patients. Rodríguez-
Molinero et al. [14] later proposed an accelerometer-based FOG detection algorithm, which used
the Spearman correlation coefficient to evaluate the convergence of the algorithm and the scale. The
correlation between the algorithm and the UPDRS-III scale confirms the feasibility of the algorithm
for detecting FOG. In 2018, Handojoseno et al. [15] proposed Electroencephalogram (EEG) as an
innovative technology that can effectively predict the imminent FOG. In addition, with the in-depth
exploration of neural networks, more and more hybrid identification algorithms combined with them
are developed. For example, neural network models such as ANN [16], DAN2 [17], ANNs [18],
and CNN [19] have shown well in the hybrid algorithm performance. However, there are still some
limitations to the existing characteristics of identification: 1. FOG detection methods based on inertial
sensors will decline in global performance. 2. The identification method based on the acceleration
meter has high requirements for the measurement environment, which cannot achieve daily accurate
real-time monitoring, and the calculation cost is too high. 3. FOG prediction method based on EEG
depends on precision professional equipment.

In response to the above issues, this article proposes a Parkinson’s FOG recognition algorithm
based on the decomposition of differential modulus. As the base classifier of the integrated classifier,
the RUSBoost integrated algorithm is designed for unbalanced data sets and single classifiers per-
formance, and the super-added optimization is performed to achieve the more accurate and efficient
goals of the FOG recognition algorithm.

2 Feature Extraction of FOG Based on Variational Mode Decomposition

VMD is an entirely non-recursive modal variational and signal processing method [20]. Compared
with the Empirical Mode Decomposition (EMD) and the improved algorithm of the EMD [21], VMD
can solve the adverse effects brought by modulus and endpoint effects and can show excellent noise
robustness in practical applications. So this article used VMD to decompose the signal. Assume that
the acceleration signal collected by the patient’s rear sensor is s (t), s (t) is decomposed into k finite
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bandwidth intrinsic mode component functions BIMFk (t) through VMD. The goal of decomposition
is to minimize the sum of the estimated bandwidths of all modal components, and the sum of all modal
components BIMFk (t) is equal to the acceleration signal s (t).

The construction process of the variational problem is as follows:

We use the Hilbert transform to obtain the analytical signal of each modal component function
BIMFk (t) and obtain the corresponding unilateral frequency spectrum as (1).(

δ (t) + j
πt

)
∗ BIMFk (t) (1)

The multiplier e−jwkt is introduced to the unilateral spectrum of each BIMFk(t) to adjust the s (t)
center frequency wk (t) corresponding to each mode, then modulate the unilateral spectrum of each
BIMFk(t) into the corresponding base band as (2).[(

δ (t) + j
πt

)
∗ BIMFk (t)

]
e−jwk(t) (2)

Then use the L2 norm to perform Gaussian smoothing on the demodulated signal, and estimate
the bandwidth of each BIMFk(t), and a constrained variational model of the signal s (t) to be
decomposed is constructed in formula (3).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min{BIMFk},{wk}

{∑
k

∥∥∥∥∂t

[(
δ (t) + j

πt

)
∗ BIMFk (t)

]
e−jwk(t)

∥∥∥∥
2

2

}

s.t.
∑

k

BIMFk (t) = s (t)
(3)

Introduce the Lagrangian operator λ (t) and the secondary penalty factor α, transform the
constrained variational model into an unconstrained variational model, and construct the Lagrangian
function of the following formula (4).

L (BIMFk, wk, λ) = α
∑

k

∥∥∥∥∂t

[(
δ (t) + j

πt

)
∗ BIMFk (t)

]
e−jwk(t)

∥∥∥∥
2

2

+
∥∥∥∥s (t) −∑

k

BIMFk (t)

∥∥∥∥
2

2

+ 〈
λ (t) , s (t) −∑

k BIMFk (t)
〉 (4)

Solve the transformed unconstrained variational model using the alternating direction multiplier
method, getting the following formula (5).

BIMFn+1
k = arg min

{
α

∥∥∥∥∂t

[(
δ (t) + j

πt

)
∗ BIMFk (t)

]
e−jwk(t)

∥∥∥∥
2

2

+
∥∥∥∥s (t) −∑

BIMFk (t) + λ (t)
2

∥∥∥∥
2

2

} (5)



2812 IASC, 2023, vol.37, no.3

Convert the above equation into the frequency domain through the Parseval’s theorem. Therefore
(5) can be written as formula (6).

BIMFn+1
k = arg min

{
α

∥∥∥jw
[
(1 + sgn (w + wk)) ∗ BIM̂Fk (w) (w + wk)

]∥∥∥2

2

+
∥∥∥∥ŝ (w) −∑

BIM̂Fk (t) + λ (t)
2

∥∥∥∥
2

2

} (6)

Replace w in the first term of the above formula with w − wk as formula (7).

BIM̂Fn+1
k = arg min

{
α

∥∥∥j (w − wk)
[
(1 + sgn (w)) BIM̂Fk (w)

]∥∥∥2

2

+
∥∥∥∥ŝ (w) −∑

BIM̂Fk (w) + λ (w)

2

∥∥∥∥
2

2

} (7)

Since the actual signal has Hermitian symmetry, the form of the integral of the interval containing
zero positive frequency can be obtained.

BIM̂Fn+1
k = arg min

{∫ ∞

0

4α (w − wk)
2
∣∣∣BIM̂Fk (w)

∣∣∣2

+2

∣∣∣∣∣ŝ (w) −∑
BIMFk (w) + λ̂ (w)

2

∣∣∣∣∣
2

dw

⎫⎬
⎭

(8)

Let the first term of the above formula be zero. The optimal solution of the modal component
function BIMFk (t) can be obtained as (9).

BIM̂Fn+1
k (w) =

ŝ (w) −∑
BIMFk (w) + λ̂ (w)

2
1 + 2α (w − wk)

2 (9)

BIM̂Fn+1
k (w) is equivalent to the Wiener filter of residual ŝ (w) − ∑

BIM̂Fk (w), through the
Fourier transform, the modal component function group BIM̂Fn+1

k (t) in the frequency domain can
be obtained.

The center frequency wk as (10).

wn+1
k (t) = arg min

{∥∥∥∥∂t

[(
δ (t) + j

πt

)
∗ BIMFk (t)

]
e−jwk(t)

∥∥∥∥
2

2

}
(10)

Convert the above formula to the frequency domain as (11).

wn+1
k = arg min

{∫ ∞

0

(w − wk)
2
∣∣∣BIM̂Fk (w)

∣∣∣2 dw
}

(11)
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Solve the above formula can obtain the final solution wn+1
k as (12).

wn+1
k =

∫ ∞
0

w
∣∣∣BIM̂Fk (w)

∣∣∣2 dw∫ ∞
0

∣∣∣BIM̂Fk (w)

∣∣∣2 dw
(12)

In this paper, through the average instant frequency method and signal decomposition experiment,
it is determined that when the number of decomposition layers is k = 3, the VMD can be adapted to
the FOG signal well.

Figs. 1 and 2 are the results of VMD decomposition of a particular segment of the acceleration
signal on the x-axis of the patient’s rear according to K = 3. We can see that VMD can complete the
FOG adaptive decomposition well when the decomposition layer number K = 3.

The specific implementation process of the algorithm is as shown in Fig. 3.

Figure 1: Time domain diagram of each BIMF
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Figure 2: Frequency domain diagram of each BIMF

Figure 3: VMD process of gait signal
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3 Design and Processing of FOG Characteristics Based on VMD

The characteristics of the BIMF group obtained by the decomposition of the acceleration signal
of the patient’s rear by VMD can describe the gait information relatively finely. In addition to using
statistics that represent time domain characteristics to describe each BIMF, to describe the energy
distribution state of gait information, this paper also uses energy entropy as a new statistic, which
can replace power index and freezing index. Energy entropy is expressed by the following
formulas (13)–(16):

He = −
n∑

i=1

pi × lg pi (13)

pi represents the proportion of energy in the total energy as (15).

E =
n∑

i=1

Ei (14)

pi = Ei

E
(15)

E =
∫ +∞

−∞
s2 (t) dt (16)

In practical applications, due to the existence of redundant features, the overall performance of
the algorithm will be affected to a certain extent, such as increased computation, decreased real-
time performance, decreased recognition accuracy, etc. Therefore, feature dimensionality reduction
is required. We used the CART model to realize the feature selection of the embedding method. The
feature selection basis is the feature importance of the CART model, and its expression is shown in
formula (17).

imp = Ls × Lgini − ls × lg ini − rs × rgini
ts

(17)

imp represents the importance of each feature, Ls represents the number of samples included in
the decision node that uses the feature as the basis for selection, ls is the number of samples in the left
subtree after the decision, rs is the number of samples in the right subtree after the decision, and Lgini
Represents the Gini coefficient of the current decision node, lg ini is the Gini coefficient of the left
subtree, rgini is the Gini coefficient of the right subtree, and ts represents the total number of samples
in the training set.

After the patient’s rear three-axis acceleration signal decomposed by VMD, a total of 9 BIMF
corresponds. The seven statistics of these 9 BIMF plus the energy entropy of the three-axis, with a
total of 66 characteristic values. These characteristics may have redundant, which affects the overall
performance of the algorithm in the actual application, so dimension reduction is needed. We used the
forward search method to determine the optimal feature subset. By analyzing the number of features
and the performance curve of the CART classification model, we can know that the following 22
features can achieve performance similar to the complete feature classification. These 22 features are
as Table 1.
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Table 1: Optimal feature subset

x-axis BIMF3
mean

x-axis BIMF3
maximum

x-axis BIMF1
standard deviation

x-axis BIMF2
standard deviation

x-axis energy entropy

x-axis BIMF2
extremely poor

x-axis BIMF3
minimum

x-axis BIMF2
maximum

x-axis BIMF1
extreme difference

x-axis BIMF2
minimum

x-axis BIMF1
minimum

y-axis BIMF3
mean

y-axis BIMF3
maximum

y-axis BIMF3
minimum

y-axis BIMF2
standard deviation

y-axis BIMF2
maximum

y-axis BIMF2
minimum

z-axis BIMF3
maximum

z-axis BIMF3 z-axis BIMF3
minimum

z-axis energy
entropy

z-axis standard
deviation

4 RUSBoost Algorithm and Its Bayesian Optimization

In this paper, the CART ensemble model is used to avoid the occurrence of overfitting. Due to
the limited classification ability of a single CART model and the imbalance in the number of positive
and negative samples in the sample, the RUSBoost ensemble algorithm is selected to solve the above
problems.

Suppose the training set is S = {(x1, y1) , (x2, y2) , · · · , (xm, ym)}, where xi represents a particular
sample and yi is used to represent the category label. The base classifier is WeakerLearner, and the
number of iterations is denoted as T. The steps of the RUSBoost algorithm as Table 2.

Table 2: RUSBoost algorithm

Input: Training set: S = {(x1, y1) , (x2, y2) , · · · , (xm, ym)};
Base classifier: WeakerLearner;
The number of iterations: T.

Process:

a. First initialize the weight of each record: Di = 1
m

;

b. For t=1,2,3, . . . ,T;
c. Use the under-sampling method to generate a temporary training data set S′

t through the
initial sample weights and randomly generate the weights D′

t used;
d. Call the base classifier WeakerLearner and pass in the parameters S′

t and D′
t;

e. Return to model ht;
f. Calculate the pseudo-loss value of the error classification rate:

εt = ∑
(i,y)=yi �=y

D (i) (1 − hi (xi, yi) + hi (xi, yi))

g. Update calculation weight parameters:
αt = εt

1−εt

(Continued)
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Table 2 (continued)

Input: Training set: S = {(x1, y1) , (x2, y2) , · · · , (xm, ym)};
Base classifier: WeakerLearner;
The number of iterations: T.

h. Update Dt:

Dt+1 (i) = Dt (i) α
1
2(1+ht(xi ,yi)−ht(xi ,y : y�=yi))

t

i. Regularized Dt+1:
Zt = ∑

i Dt+1 (i)

Dt+1 (i) = Dt+1 (i)
Zt

j. End for

Output: Final classifier:

H (x) = arg max
y∈Y

T∑
t=1

ht (x, y) log
1
αt

From the rough grid search and simple experiments, the number of iterations nc and the maximum
number of splits of the CART model mns are the parameters that have the most significant impact on
the FOG recognition algorithm in this paper. Therefore, nc and mns are set as the optimization targets.

Maximize the arithmetic mean of the sensitivity (sen) and specificity (spe) of the validation set
according to the classification requirements of the imbalanced data set as (18).

When performing Bayesian optimization, the optimization goal used in this article as (19).

AM = sen + spec
2

(18)

F (AM) = 1 − AM (19)

Let the integrated algorithm be EC. The optimal feature subset of gait is D, after inputting the
parameters nc and mns to EC, and the output of EC is the value of the verification set AM, as
formula (20).

AM = EC (D, nc, mns) (20)

Finally, the optimization problem is determined as (21).⎧⎪⎪⎨
⎪⎪⎩

Obj : min F (AM)

s.t. : 10 ≤ nc ≤ 200, nc ∈ N
100 ≤ mns ≤ 2000, mns ∈ N
AM = Classifier (mns, nc)

(21)

The Gaussian process is determined by the mean value function m and the covariance matrix
function k. The mean value function is a vector, and the mean value of the covariance matrix function
in this paper is zero. The Gaussian process is as (22).

f ∼ gp (m, k) (22)
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If the known information of the objective function deduced from the model is D1: x = {x1: x, f1: t},
where ft = f (xt), the value of the following search is planned to be xt+1.

K =
⎡
⎢⎣

k (x1, x1) · · · k (x1, xt)
...

. . .
...

k (xt, x1) · · · k (xt, xt)

⎤
⎥⎦ (23)

Both ft and ft+1 obey the joint Gaussian distribution. When the expectation is zero, the joint
distribution of ft and ft+1 is shown as (24).

where k is (25).

ft+1 is the edge density function of the joint distribution, expressed by the following formula (26).[
f1: t

ft+1

]
∼ N

(
0,
[

k k
kT k (xt+1, xt+1)

])
(24)

k = [k (xt+1, x1) · k (xt+1, x2) · · · k (xt+1, xt)] (25)

P (ft+1 |D1: t, xt+1 ) = N
(
mt (xt+1) , δ2 (xt+1)

)
(26)

The mean of the sampling points is expressed by (27).

mt (xt+1) = kTK−1f1: t (27)

The variance of xt+1 is (28).

δ2(xt+1) = k (xt+1, xt+1) − kTK−1k (28)

Thus, we can estimate the probability distribution of the sampling point xt+1 at any place.

This article chooses the sampling function EI function as (29).

EI (x) =
{
(m (x) − f (x+)) φ (Z) + σ (x) ϕ (Z) σ (x) > 0
0 σ (x) = 0 (29)

where φ (·) is the probability density function of the standard Gaussian distribution, and ϕ (·) is the
standard Gaussian distribution function where Z means as (30).

Z = m (x) − f (x+)

σ (x)
(30)

Introduce a scalar ε into the EI function, ε > 0, at this time, the EI function and Z are (31) and
(32).

EI (x) =
{
(m (x) − f (x+) − ε) φ (Z) + σ (x) ϕ (Z) σ (x) > 0
0 σ (x) > 0 (31)

Z = m (x) − f (x+) − ε

σ (x)
(32)

In each iteration, the next set of mns and nc can be selected by the maximized EI function objective.
If the current iteration number reaches the maximum, the iteration will stop. At this time, the mns and
nc corresponding to the smallest objective function value all seek the optimal value.
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5 Bayesian Optimization Experiment

To verify the performance effect of the FOG recognition algorithm proposed in this paper, the
recognition algorithms based on Adaboost [22], Tomeklinks-Adaboost [23], RUSBoost and ROS-
Adaboost [24] integration framework are respectively tested for the FOG recognition effect. To exclude
the interference of hyperparameters, the learning rate is set to 0.1, the number of iterations is set to 30,
the CART model is selected as the base classifier for all frameworks. The maximum number of splits
of the CART model is 127. The effect of each integrated framework for verification on the optimal
feature subset is shown in Table 3.

Table 3: Recognition performance of each integrated framework

Accuracy Sensitivity Specificity AUC

Adaboost 88.7% 33.1% 96.6% 0.84
Tomeklinks-Adaboost 86.7% 68.1% 89.4% 0.86
RUSBoost 86.1% 90.0% 84.3% 0.91
ROS-Adaboost 81.0% 97.9% 64.0% 0.84

From the experimental results, we can find that RUSBoost has high accuracy, sensitivity and
specificity, which can effectively solve the impact of unbalanced data sets.

We used the feature set collected by the patients’ rear acceleration sensor with a time window of
1s after feature selection. The Bayesian optimization process of RUSBoost on the training set and
validation sets are shown in Figs. 4 and 5.

Figure 4: RUSBoost framework hyperparameter optimization process
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Figure 5: RUSBoost objective function model estimation

The contour map is shown in Fig. 6.

Figure 6: RUSBoost model estimated contour map

According to the results of Bayesian optimization, the objective function can be minimized when
mns = 413 and nc = 89. Use this set of values as hyperparameters to train the RUSBoost model again.
After testing on the test set, we can obtain the accuracy of the RUSBoost framework. It is 87.8%, the
sensitivity is 89.7%, and the specificity is 87.5%. The ROC curve at this time is as Fig. 7.
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From the results of Bayesian optimization experiments, the complexity and recognition speed of
the RUSBoost framework is moderate, and the recognition accuracy is similar to the optimal accuracy
of the verification set in the hyperparameter optimization process.

Figure 7: ROC curve and AUC value after RUSBoost Bayesian optimization

6 Conclusion

This work proposed a method of FOG recognition. First, the signal analysis is performed through
the modular modulus decomposition. The signal decomposition experiment has proved that the VMD
can effectively suppress the mixing and endpoint effects of the modulus and endpoints. Subsequently,
the CART model was selected as the base classifier of the integrated algorithm and made a feature
reduction. The experiment proved that the optimal feature could effectively save storage overhead
and time costs without affecting the algorithm’s accuracy. Finally, the performance comparison
experiments of the performance of the unbalanced data set and the single classifier were performed.
The results showed that the RUSBoost integrated algorithm could more effectively complete the FOG
recognition task and determine the top division of the maximum split through Bayesian optimization
1023 The performance of the identification algorithm when the number of base classifiers is 100. The
learning efficiency is 0.1. At this time, the accuracy rate of the algorithm is 91.9%, the sensitivity is
92.3%, the specificity is 91.5%, and the AM value is 0.919.
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