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Abstract: As the pancreas only occupies a small region in the whole abdominal
computed tomography (CT) scans and has high variability in shape, location
and size, deep neural networks in automatic pancreas segmentation task can
be easily confused by the complex and variable background. To alleviate these
issues, this paper proposes a novel pancreas segmentation optimization based
on the coarse-to-fine structure, in which the coarse stage is responsible for
increasing the proportion of the target region in the input image through
the minimum bounding box, and the fine is for improving the accuracy of
pancreas segmentation by enhancing the data diversity and by introducing a
new segmentation model, and reducing the running time by adding a total
weights constraint. This optimization is evaluated on the public pancreas
segmentation dataset and achieves 87.87% average Dice-Sørensen coefficient
(DSC) accuracy, which is 0.94% higher than 86.93%, result of the state-of-
the-art pancreas segmentation methods. Moreover, this method has strong
generalization that it can be easily applied to other coarse-to-fine or one step
organ segmentation tasks.

Keywords: Pancreas segmentation; coarse-to-fine; U-net; constraint loss
function

1 Introduction

According to national cancer registry center (cancer hospital chinese academy of medical sciences)
data released in 2022 [1], pancreatic cancer is a malignant tumor with a 5-year survival rate of 5
percent. Fortunately, early diagnosis and treatment can improve the prognosis of pancreatic cancer,
then preventing its further deterioration. Accurate pancreas segmentation can help us reduce the
impact of the other organs on the detection of tumor areas earlier and make it easier to treat it
in advance to improve survival [2]. In addition, the segmented pancreas can be used for volumetric
measurements, 3D reconstruction, and visualization, which can greatly benefit the pancreatic diseases
diagnosis [3]. Meanwhile, compared to the segmentation of abdominal liver, spleen and kidney, the
segmentation accuracy of pancreas is the lowest at present because of the following three reasons: (1)
the small size of pancreas in abdominal image, (2) the blurred boundary between pancreas and its
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surrounding tissues, and (3) the high variabilities in shape, size and location between inter and intra
slices, as shown in Fig. 1 [4]. Hence, the research of pancreas segmentation is extraordinary essential,
and it is of great significance to improve the accuracy of pancreas segmentation.

Figure 1: Examples of variations in appearance, shape, size and location of the pancreas as seen on
contrast enhanced CT after removal of the image background by masking the patient’s body

Due to the non-invasive, high density resolution of CT scans, it is widely used in the diagnosis and
detection of abdominal diseases. According to that, the pancreas segmentation based on CT images
has attracted considerable attention in recent years, and a large number of segmentation approaches,
which are mainly divided into two categories: tradition machine learning and deep learning based
approaches, have been proposed for pancreas and tumor segmentation. In early machine learning, the
image registration and atlas methods were proposed to achieve the pancreas segmentation based on
the location obtained by locating other organs or vessels around the pancreas first [5–7], but the last
segmentation accuracy is basically more than 60%, which is not satisfactory and the complexity of
these algorithms is relatively high. While Farag et al. [8] proposed the super-pixel algorithm to obtain
the general pancreas region and realize the final segmentation through random forest classification
algorithm, which is a novel bottom-up segmentation strategy, and achieved a high accuracy of DSC
68.2% at that time. In another type of method [9], the seed point in an interactive manner was given and
the segmentation was achieved by graph cut or region growth, which is a new pancreas segmentation
method, but its segmentation accuracy is measured by Jaccard index (0.705 ± 0.054).

With the rapid development of machine learning, deep learning technique has shown its out-
standing advantages in many fields including medical image processing, compared to traditional
machine learning methods. Consequently, some deep learning methods based on the convolutional
neural networks (CNNs) were proposed. It has been proved that using super-pixel algorithm to
form candidate regions as an input to the CNN could achieve better pancreas segmentation results
with the average DSC of 80% ± 4% [10]. Subsequently, Zhou et al. [11] proposed using the a novel
CNN structure named full convolutional network (FCN) to do coarse-to-fine pancreas segmentation,
of which, the network in the two stages were both FCN. The first stage is to achieve the initial
segmentation, which means obtaining a smaller input region and the second is to do re-segmentation
with the same FCN to get the final result. While Zheng et al. [12] also put forward a two-stage
network framework (location stage and fine stage) to segment pancreas, which achieved more than
80% accuracy of DSC. From the other aspect, CNN combined with recurrent neural network (RNN)
was also put forward to do pancreas segmentation [13], which combined CNN with RNN to obtain
the context of the CT image and then completed the segmentation with the current good precision.
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Different from the methods above which are all 2-Dimensional, the 3-Dimensional segmentation
method with more significant effect has been presented [14–16], which used 3D FCN or 3D U-Net to
obtain the initial pancreas segmentation probability map to locate the pancreas, and then conducted
the fine segmentation through the graph cut or 3D U-net. No matter 2D, 3D or traditional algorithms,
most of the methods above are all coarse-to-fine two stage, and it is well-known that the coarse-to-
fine method can always achieve the highest pancreas segmentation accuracy, in the field of pancreas
segmentation, whether it is traditional or the state-of-the-art method used.

Despite the exciting success of deep learning technique in automatic pancreas segmentation, there
are still two-fold drawbacks that might be addressed for further improvement. On one hand, the
highest and state-of-art accuracy of pancreas segmentation is still not high enough to be used clinically.
This may be because the domain knowledge of pancreas segmentation has not been fully explored,
such as the region saliency information of the pancreas. On the other hand, CNN models are typically
computationally expensive and require a large amount of memory and computation power. Then
making it impossible to deploy it on natural devices in clinical applications.

To tackle these problems, this work proposes a novel learning optimization based on coarse-to-fine
scheme for automatic pancreas segmentation. Our coarse-to-fine segmentation method can be divided
into two key steps: coarse stage and fine stage. The coarse segmentation stage is responsible for locating
the approximate position of the pancreas and increasing the proportion of the target region in the input
image. While the fine is for improving the accuracy of pancreas segmentation by enhancing the data
diversity and by introducing a new segmentation model, and reducing the running time by adding a
total weights constraint. In the coarse stage, the ground-truth image and its one-to-one correspondence
with the input image are fully utilized, and the background region is reduced through the minimum
bounding-box of the ground-truth to increase the proportion of the target region in the input image. In
the fine stage, we will study from the following three aspects for improving the fine stage segmentation
accuracy when given a bounding box:

i) The preprocessing algorithms are used to expand the original data to four times, which can
greatly enhance the data diversity.

ii) A new model is proposed to improve the semantic gap problem between the encoder and
decoder part of the traditional U-net.

iii) A total weights constraint is come up with to strengthen the loss function, which cannot only
simplify the network structure but also alleviate the over-fitting problem.

The remainder of this paper is organized as follows. Section 2 outlines our method including
data preprocessing, Aug-net and new loss-function, and comprehensive experiments are presented in
Section 3. Section 4 presents and discusses the experimental results. Finally, Section 5 summarizes the
conclusions of this work.

2 Method

The brief process of the typical coarse-to-fine framework [17] is shown in Fig. 2, where a, c and e
indicate the original input CT slices, coarse stage outputs and fine stage outputs, respectively. The b
and d are the deep neural networks which can be replaced with other segmentation networks.

Generally, the coarse-to-fine scheme can be divided into two stages: coarse and fine, in which, the
coarse is to reduce the background region without pancreas and the fine is to achieve more accurate
segmentation results with the new images obtained by the coarse stage as input. It can be seen from
the figure that the same training strategy is applied in both two stages in traditional coarse-to-fine
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approach, which may have a negative impact on the final segmentation accuracy. Consequently, three
methods focused on improving the fine stage segmentation accuracy are proposed in this paper where
both of these methods discuss how to make full use of the fine stage based on the bounding box given,
which is much different from the tradition.

(e)(d)(c)(b)(a)

Figure 2: A typical example of the coarse-to-fine algorithm

The following comes with the introduction of some parameters and their settings that may appear
in the fine segmentation stage. Firstly, the original input of the whole network, CT slice, is a 3D
volume X sliced along the axial view, of which, the size is W ∗ H ∗ L, and the corresponding ground-
truth label of the input is Y, in which, yi = 1 indicates a true segmentation voxel. Secondly, the fine
segmentation stage is represented with M: FF = fF (X , θ), among which, F subscript is the flag and θ

denotes the model parameters. Finally, the loss function is written as L (F , Y), of which, the value is
reduced to optimize the parameters and achieve more accurate segmentation results. During the whole
process, the input, which is used to train the model FF to obtain the segmentation probability maps
to achieve the final segmentation result through threshold limit, is given by the ground-truth labels
similar to the output of traditional coarse stage model M: FC = fC (X , θ).

2.1 Data Preprocessing with Three Algorithms
For improving the contrast of the specified region in and around pancreas, and lowering the influ-

ence of background, effective preprocessing of the data has carried out, which can be very conducive
to speeding up the network convergence and improving the segmentation accuracy when taking use of
the pre-processed data as inputs instead of the original data. In the following, three optimal algorithms
presented are used to improve the proposed segmentation method during the training process which
is shown in Fig. 3. Namely, from three aspects that diversifying data preprocessing pattern, improving
network and constraining loss function. What illustrated in Fig. 3 is that when given bounding boxes,
the designed model in the training phase is fitted to the data set by multiple iterations while the
segmentation result in testing is obtained by the previously trained model.

The details of the data preprocessing can be divided into the next three steps:

Step 1: Cropping the pancreas slices with bounding boxes generated by ground-truth labels
because pancreas region only accounts for a small proportion in the raw abdominal CT 2D image
(less than 5% [4]), and of which, the around margins are filled with the numbers sampled from {0, 1,...,
60}. This data enhancement method, which is conducive to regularizing the network and preventing
over-fitting, is shown in Fig. 4 where a is the ground-truth label of the original data size and b which is
taken as the input of the proposed network in the fine stage indicates a CT image cropped by adding
the green bounding box in a to the raw 512 ∗ 512 CT image correspondingly.

Step 2: Referring to the common intensity distribution of pancreas, scaling the image pixel values
which is first transformed to HU value [18] limited in [−55, 210] to the range [0, 1], because the raw
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CT value has a wide range of values(common [−1024, 1023]), which can increase the contrast of the
pancreas-related region and speed up the gradient descent convergency after normalization to promote
the performance. The comparisons of the images before and after transformation are shown in Fig. 5,
where the left are the original CT images and the right are corresponding transformed CT images.

Figure 3: Flow chart of the proposed segmentation method

(b)(a)

Figure 4: Process of pancreas cropping

(b)(a)

Figure 5: HU contrast pictures
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Step 3: For increasing the diversity of the original dataset, applying the elastic deformation and
small amplitude rotation to augment the data. Namely, deforming each small 8 ∗ 8 region of the image
and rotating it in randomly degrees in [−15, 15], meanwhile, conducting the same operation on the
corresponding ground-truth label image, which can be seen in Fig. 6. The original CT image and the
corresponding ground-truth label in Fig. 6 are placed in the first column, while the next three columns
are the results generated based on elastic deformation, small amplitude rotation and both of above
two operations respectively. In this manner, the training data numbers can be expanded to four times
of the original through these behaviors.

Figure 6: A set of expanded data

2.2 Proposed Aug-Unet
After the effective data preprocessing, it is of great importance to establish a powerful network

that can learn these data adequately. U-net, a classical medical image segmentation network with
an encoding-decoding structure, extracts feature information of different scales in the encoding part
and uses the long connection to supplement the decoder part to better restore the position and edge
information of the target region. The long connection can fight the vanishing gradient problem and
recover the pyramid level features learned. However, how to reduce the same pyramid level “semantic
gap” is just as important to the final segmentation results. In this work, a short connection formed
through a decoder combined with the encoding part is added in the proposed Aug-unet to overcome
this problem, of which, the structure is shown in Fig. 7 where both short and long connections that
can enhance the feature transferring and solve the “semantic gap” are used for different layers.

The intermediate decoding part is set to generate the different decoding information from the
same scale feature maps, which is going to be added to the final decoding part. Combination of the two
different connection structures, which can enhancement the traditional U-net, forms a novel network
called Aug-unet in this paper.
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Figure 7: Structure of proposed Aug-unet

2.3 Strengthened Loss Function
In the training process, the ultimate goal is to reduce the loss to improve the accuracy. The most

common used loss function of segmentation task is formula (1). According to that in deep networks,
the number of parameters far exceeding the amount of data leads to over-fitting, which makes the
model perform better in training but worse in testing. Based on this, the original loss function is
modified with regularization, which is shown as formula (2).

Loss = 1 − 2
(
ytrue ∩ ypred

)

ytrue ∪ ypred

(1)

Lossnew = 1 − 2
(
ytrue ∩ ypred

)

ytrue ∪ ypred

+ λ

k∑

i=1

w2
i (2)

where ytrue and ypred represent ground-truth and segmentation, wi and λ are weight coefficient and
balance parameter separately. The function of adding the regularization term λ

∑k

i=1 w2
i which is the

sum of squares of the weights is to reduce over-fitting problem while minimizing the loss function,
which can reduce the model complexity and make it have better generalization on the test data.

3 Experiments
3.1 A Dataset and Evaluation

The national institutes of health (NIH) clinical center performed 82 abdominal contrast
enhanced 3D CT scans from 53 male and 27 female subjects, which is public available (https://wiki.
cancerimagingarchive.net/display/Public/Pancreas-CT) and the most widely used dataset for pancreas
segmentation. So this public NIH pancreas dataset is also used in this work to fully validate our
proposed method. The size of each CT scan is 512 × 512 × L, where L limits in [181,466] ranging from
person to person and is the number of slices each of CT volumes, and the thickness is between 0.5 mm

https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
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and 1.0 mm in axial views. This dataset contains 19628 transverse slices of 82 abdominal contrast-
enhanced abdominal 3D CT scans, of which 7059 transverse slices include pancreas. Ground-truth of
the pancreas region in each CT scan was provided by an experienced radiologist.

The cross-validation strategy is applied to the whole training and test process, which divides the
whole dataset into four folds including 21,21,20 and 20 volumes, respectively. Where three subsets are
used to training process and the remaining subset is used to the testing.

The final effects of experiments are measured by computing the average DSC and standard
deviation over all 82 cases. The DSC measures how similar image segmentation algorithm’s results
with it’s corresponding ground-truth segmentation. It is easy to represent geometrically:

DSC = 2 ∗ intersection(S, G)

|S| + |G| (3)

where |S| and |G| represent the cardinal of segmentation result S and ground-truth G.

3.2 The Other Settings
The software environment where to train the model is TensorFlow which is written in keras as the

backend, and the hardware device is the GEFORCE RTX 2080 Ti GPU.

In the experiments, the input volume is generated through the ground-truth (oracle) bounding
box of each training case. During the training process, the learning rate is set to 10−5 and the optimizer
is Adam. The weights of the layers are initialized by the ‘xavier’ method [19] to make the variance of
each layer output as equal as possible, so that the information in the network can flow better.

4 Results

The final DSC accuracy obtained by 4-fold cross-validation verification is shown in Table 1 where
it can be seen that the results of different test processes are similar, which can prove the effectiveness
of the proposed method and avoid the probability problem that the experimental results may be
accidental. In the evaluation indicators, apart from the DSC accuracy and standard deviation, the total
time consumption of each test process is also counted to compute the average time of each patient case
(seen from the last row of Table 1) which can be used to estimate the performance of other experiments
and projects based on this algorithm.

Table 1: Each DSC accuracy and total test time of 4-fold cross validation

Fold DSC (%) Time (s)

1 88.04 ± 2.96 237
2 87.61 ± 2.67 252
3 87.29 ± 2.89 240
4 88.54 ± 2.51 224
Average 87.87 ± 2.76 12 (each volume)

To further demonstrate the performance of the proposed method, final result of the proposed
method is compared with the eight state-of-the-art methods which are all training and testing the
networks based on the NIH datasets with identical initialization. The comparison results are shown
in Table 2. As can be seen from the Table 2, our proposed segmentation algorithm in the accuracy of
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DSC has shown its superiority over others, among which, increasing the DSC accuracy from 86.93%
to 87.87% and decreasing the standard deviation from 4.92% to 2.76%, which proves the effectiveness
and robustness of this method. In particular, the worst result of the presented method increases from
a reported worst case of 61.82% to 74.16%.

Table 2: Results compared with other methods

Approach DSC (%) Min DSC (%)

Farag et al. [20] 81.20 ± 3.3 -
Zhou et al. [11] 83.18 ± 4.81 65.10
Yu et al. [21] 86.37 ±- -
Yijun Liu et al. [17] 86.70 ± 3.51 73.67
Man et al. [22] 86.93 ± 4.92 -
Zheng et al. [12] 86.21 ± 4.37 74.32
Zhang et al. [3] 84.90 ±- 61.82
Long et al. [23] 86.60 ± 4.71 78.91
Our method 87.87 ± 2.76 74.16
Note: “-” indicates that the content is not given in the paper.

Over time, the accuracy of the pancreas segmentation using the coarse-to-fine scheme is increas-
ing, which can be viewed in Fig. 8, where x and y axis represent time and DSC (%) accuracy,
respectively. It is intuitively observed that the segmentation accuracy is increasing steadily along the
time axis and the proposed procedure has the highest accuracy by comparison.

Figure 8: Comparison of experimental results in different years
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Finally, the visualized comparison between the predicted segmentation probability maps and the
ground-truth masks is shown in Fig. 9, where the first two rows are the 3D reconstruction of the
ground-truth labels (left) and the predict results (right). In the third row, red lines depict ground-
truth labels and the blue lines indicate the predicted segmentation masks. It can be observed that the
segmentation results of the proposed method are very close to the standard ground truth labels.

Figure 9: Comparison of a set of segmentation results

5 Conclusion

Motivated by that coarse-to-fine segmentation framework plays an important role in pancreas
segmentation, a novel method based on coarse-to-fine scheme is proposed to achieve the pancreas seg-
mentation results. The coarse stage has completed the target region location through the information
of the ground-truth and improved the proportion of target region in the input image of the fine stage.
The fine stage has improved the accuracy of pancreas segmentation by enhancing the data diversity
and by adjusting the U-net, and decreased the time cost of the whole pancreas segmentation by adding
a total weight constraint. Comprehensive experimental results on the NIH dataset compared with the
state-of-art methods which are shown in Table 2 have demonstrated the effectiveness of this approach.
Not only increasing the DSC accuracy by 0.94% from 86.93% but also reducing the standard deviation
and the running time, which means that this procedure is more stable and robust. In addition, the
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proposed method can also be used for the segmentation tasks based on coarse-to-fine or one step of
other organs such as the spleen, liver and kidney.

Our promotion at present is not enough for clinical application, and further research is needed to
improve the accuracy in the next few years. We will use co-saliency detection techniques to unearth
significant information from multi-stages and adjacent CT slices for further improving the pancreas
segmentation performance.
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