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Abstract: Recognition of human activity is one of the most exciting aspects
of time-series classification, with substantial practical and theoretical impli-
cations. Recent evidence indicates that activity recognition from wearable
sensors is an effective technique for tracking elderly adults and children in
indoor and outdoor environments. Consequently, researchers have demon-
strated considerable passion for developing cutting-edge deep learning sys-
tems capable of exploiting unprocessed sensor data from wearable devices
and generating practical decision assistance in many contexts. This study
provides a deep learning-based approach for recognizing indoor and outdoor
movement utilizing an enhanced deep pyramidal residual model called Sen-
PyramidNet and motion information from wearable sensors (accelerometer
and gyroscope). The suggested technique develops a residual unit based on a
deep pyramidal residual network and introduces the concept of a pyramidal
residual unit to increase detection capability. The proposed deep learning-
based model was assessed using the publicly available 19Nonsens dataset,
which gathered motion signals from various indoor and outdoor activities,
including practicing various body parts. The experimental findings demon-
strate that the proposed approach can efficiently reuse characteristics and
has achieved an identification accuracy of 96.37% for indoor and 97.25%
for outdoor activity. Moreover, comparison experiments demonstrate that the
SenPyramidNet surpasses other cutting-edge deep learning models in terms
of accuracy and F1-score. Furthermore, this study explores the influence of
several wearable sensors on indoor and outdoor action recognition ability.
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1 Introduction

Human activity recognition (HAR) has emerged as an increasingly exciting issue considering
the recent introduction of intelligent wearable technology, wireless connectivity, and techniques for
machine learning. Various applications will take advantage of the results of the HAR study, including
athletic activity tracking [1], construction worker evaluation [2], and intelligent home monitoring [3].
In addition, HAR could be a viable opportunity for virtual medical systems for elderly individuals
[4]. For instance, the HAR technology can offer care organizations valuable details and intelligent
services so that the elderly can stay home for the longest time possible in a safe and healthy
environment. Depending on the sensing technology employed, HAR techniques can be separated
into two types: vision sensor-based and wearable sensor-based HAR. Vision-based HAR received the
focus of researchers in video and image computation to determine HAR’s satisfactory performance.
Nevertheless, this strategy is impracticable for ordinary life since it would raise privacy issues. The
solution can only function in the region where the camera is installed. Most of the research on HAR
uses wearable sensors. Although the wearable sensor-based HAR has no privacy concerns and is
environmentally insensitive, wearing the sensors for an extended period will make our everyday lives
harder and involve considerable living expenses. Wearable technologies are increasingly employed
in our everyday lives presently. The inertial sensors integrated with smart wearables are a viable
alternative to wearable sensor-based HAR, allowing us to forego extra sensing elements [5]. Using
the sensors from wearable technologies for HAR is thus an interesting topic to investigate.

Deep neural networks have significantly advanced sensor-based HAR applications in recent years.
The capability of one to extract meaningful and express characteristics in a hierarchy from low-
level to high-level abstractions has been demonstrated. Deep neural networks minimize the heuristic
parameters of typical hand-designed characteristics and scalability more effectively for complicated
behavior-recognition challenges. Previous findings on deep learning (DL) approaches for sensor-
based activity detection have discovered that DL techniques outperform methods based on manually
designed characteristics for human activity recognition [6]. For sensor-based HAR, Convolutional
Neural Networks (CNNs) are the most often used DL technique. Even though HAR has been
intensively examined, an appropriate feature learning strategy has yet to be exhaustively studied.
Compared to the feature learning mentioned previously, a complex and deeper model structure
enhances the accuracy of sophisticated HAR systems. These classifiers autonomously extract features
using CNN. In object problems, a CNN feature extractor is often referred to as the backbone because
the model architecture of the feature extractor and the overall model construction are examined
independently. This work utilizes a CNN-based feature extractor as the “backbone” and self-attention
as the sub-systems based on the formulation described in Section 3.

The following is a summary of the significant contribution that makes our proposed methodology
superior to state-of-the-art methods in categorizing indoor and outside actions:

e SenPyramidNet, a deep pyramidal residual network, is presented for indoor and outdoor
activity identification using wearable sensors (e.g., accelerometer and gyroscope). This proposed
model functions as a hybrid of plain and residual networks by employing zero-padded identity-
mapping shortcut interconnections while enhancing the dimension of the feature map.

e The recommended SenPyramidNet is optimized for spatial-temporal signals in terms of struc-
ture and training characteristics.

e We evaluate our proposed model using a standard HAR dataset, including mobility signals from
both indoor and outdoor activities. The experimental findings demonstrate that our approach
surpasses the current state-of-the-art approaches.
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The following sections of this study are organized into six parts: Section 2 describes HAR’s
relevant research and intellectual context. The Section 3 covers the proposed methodology, which
consists of a sensor-based HAR framework and a deep pyramidal residual model. Section 4 then
analyzes the performance of several DL methods, including the proposed approach, based on
controlled experiments using a standard dataset. In Section 5, we explore in depth the influence of
sensor signals on the HAR platform’s efficacy. Section 6 concludes with a summary of our findings
and potential future research.

2 Related Works

There are two standard methods of HAR analysis: vision sensor-based HAR and wearable sensor-
based HAR. Several features and insights can be obtained from this study, including the captured
image and signals, extracted feature descriptors, and methodologies used for dimensionality reduction
and human subject modeling.

2.1 Vision Sensor-Based HAR

Vision-based HAR relies entirely on visual sensing applications, such as observation and super-
vision cameras, images or video sequences, modeling, segmentation, identification, and monitoring.
Experimental findings [7] demonstrate that researchers presented a technique for identifying substan-
tially more resilient and prosperous activities than the base classifiers. Nonetheless, the preliminary
limitation of this research was the effectiveness of uncommon classes, namely transition movement
classes. Moreover, they planned to enhance efficiency by including this class imbalance concern
in their classification algorithm. Yang et al. [8] founded a new prototype for recognizing human
actions in depth-camera-recorded video sequences. They also studied the low-level polynomial derived
from a localized hyperspace in close proximity. In addition, their suggested scheme is customizable
because it could be utilized in convergence with the combined trajectory-matched depth sequence.
Their suggested model experienced a thorough analysis and evaluation of five standard datasets.
The experimental results show that their suggested technique performs much better than current
strategies on these datasets. Unfortunately, their suggested approach required additional data and
incorporating numerous elements from both color and depth points to provide more cutting-edge
representations. Moreover, Sharif et al. [9] offered an approach with two crucial phases. Initially,
diverse individuals were uncovered in the captured video frame by integrating a new invariant
segmentation with expectation-maximization (EM) segmentation. Employing vector dimensions, they
retrieved and integrated localized features from determined sequences. A new Euclidean distance and
joint entropy were used to select the ideal characteristics from the augmented vector. The optimum
feature descriptors for motion identification were adjusted to the classifiers. Unfortunately, this effort
did not solve the occlusions. Incorporating saliency to enhance segmentation precision is a different
idea. Patil et al. in [10] suggested an approach for distinguishing and identifying human interactions
in everyday life. In addition, they investigated numerous human visual databases to identify and
track many human subjects. The background subtraction approach was used to track several moving
individuals. Human everyday life operations with histogram of oriented gradient (HOG) feature
extraction and a support vector machine (SVM) classifier gain superior recognition results with fewer
false positives. Ji et al. [1 1] introduced a novel technique for interactive movement detection based
on integrating probabilities at various stages. Furthermore, they addressed current complications
in connection categorization techniques, such as insufficient feature descriptors due to incorrect
human body segmentation. Consequently, a fusion technique based on many stages was developed to
address this concern. However, this method is inefficient for handling the inherent qualities of human
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interaction; it is excellent for identifying deviant behaviors, including violent actions and unexpected
occurrences. Wang et al. introduced a probabilistic-based graphical approach for recognizing human
physical activity in [12]. In addition, the problem of segmenting and identifying ongoing activity was
considered. Unfortunately, these approaches only function offline. Using skeletal joint angle patterns,
Ince et al. [13] produced a biometric system method for developing human physical activity in a
three-dimensional environment. In addition, this framework uses the RGB-depth camera, which seems
suited for video monitoring and senior care establishments. Nevertheless, there are a few limitations
associated with the concept. Inadequate skeletal identification initially leads to inaccurate angle
calculations and incorrect categorization.

2.2 Wearable Sensor-Based HAR

Every aspect of our everyday life, from healthcare to convenience, has been changed by
wearable inertial sensors. In this study, we evaluated IMU-based solutions due to the significant
need for enhanced processing capacity and decreased space constraints. From the related literature,
Irvine et al. [14] developed a homogencous ensemble neural network technique for recognizing
everyday actions in an indoor background. In addition, four standard models were created and
fused through support function fusion. They also validated their suggested ensemble neural network
technique framework by comparing the performance of human physical activity recognition (HPAR)
achieved with two non-parametric conventional classifications. The robustness of the suggested
ensemble approach was shown by the fact that the neural network ensemble methodology surpassed
both conventional models. Nonetheless, the effort was limited since there needed to be a technique
for selecting a meaningful subset of input attributes. Feng et al. presented an ensemble strategy for
identifying HPAR [15] by combining a random forest approach with multiple wearable and inertial
sensors. The random forest’s increased predicting abilities contributed to a superior alternative for
sensor-based wearable healthcare monitoring systems. Gupta et al. [16] introduced a successful bodily
activity identification system based on a portable wearable accelerometer that could be applied to a
real-world geriatric monitoring system. In addition, they integrated exceptional skills for identifying
transitory actions. The suggested statistical characteristics collected extra details from the inertial
signals inside the time-frame window. Signal correlation is extracted by evaluating other stimuli.
Unfortunately, the introductory difficulty of this research is that just two individuals were utilized to
collect data, which restricts the database’s application in varied contexts. Abidine et al. [17] created a
weighted SVM for recording human existence log events in an indoor setting. In addition, they handled
other operational challenges associated with the HAR techniques, such as repetitive sequence features
and group variations in the learning set. To overcome these issues, they provided a distinctive approach
for detecting life log events indoors. In addition, the complete model was built on the fusions of many
techniques, such as principal component analysis (PCA), SVM, and linear discriminant analysis
(LDA). The PCA and LDA functions were used first to reduce the training set. Next, an SVM classifier
was employed for each classification to optimize the classification performance on the imbalanced
life log action database. De Cillis et al. [18] offered an innovative, pervasive approach for movement
patterns utilizing a wearable inertial accelerometer sensor in a separate work. Their suggested model
used a limited feature set and a decision tree classifier to identify four unique movement styles. They
obtained characteristics from both static and dynamic collections of windows initially. The study’s
results demonstrated that accuracy was much higher while executing static activities than dynamic
ones. The approach could be excellent for real-time medical operations due to its reduced computation
overhead. Tian et al. [19] described a method for noticing bodily movements based on ensemble
learning. Numerous characteristics were used to train three advanced classifiers and several SVMs,
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possibly resulting in a system based on ensemble learning. In addition, an adaptive hybrid model
retrieved numerous characteristics from an individual’s body movements to boost their detection
interpretation. Jung et al. [20] created a HAR-based system for recording life log everyday tasks and fall
detection utilizing several wearable inertial sensors. Javed et al. [21] defined a state-of-the-art method
for identifying physical movements based on sensory data collected from a two-axis smartphone
accelerometer. In addition, the research considered the effectiveness and influence of the particular
accelerometer axis in identifying human physical behaviors. Moreover, this approach includes multi-
modal sensory data gathered from three body-worn sensors. This research illustrates that adding data
from inertial sensors increases the HAR’s accuracy. The system was evaluated through an exhaustive
collection of cyclic, static, and random activities. Temporal and frequency domain variables were
retrieved to achieve the most reasonable outcomes.

3 Proposed Methodology

This section details the process designed to directly construct a deep learning model and identify
driving-related activities using smart glasses’ built-in sensors. Fig. | depicts the proposed strategy for
the smart glasses HAR configuration. It includes the five processes of data collection, preprocessing,
training the learning model, and action recognition.
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Figure 1: The proposed HAR methodology based on smart glasses sensors
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3.1 Data Acquisition

The initial step of the HAR procedure is the collection of sensor data captured by wearables. This
approach chose the 19NonSens dataset [22] as the public standard HAR dataset. This wearable sensor
dataset for individual action detection is compiled from e-shoes, smart glasses, and a smartwatch.
Twelve participants between the ages of 19 and 45 are requested to wear e-Shoes and a Samsung
Gear-S2 wristwatch on their dominant hand (ten right-handed and two left-handed). The participants
are given a list of 18 events—nine inside hobbies, like brushing and chopping, and nine outside
sports, including kicking and sprinting. The participant might undertake any 18 tasks in the task list
during pre-defined tasks. The dataset regarded all irrelevant actions as Null actions. The period of
each exercise ranges between 3 and 10 min. Table | provides an overview of the particulars of each
19NonSens dataset.
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Table 1: A list of activities in the 19NonSens dataset

No. Activity Environment Movement Duration (minutes)
1 Brushing Indoor Upper 78
2 Washing hand Indoor Upper 48
3 Slicing Indoor Upper 71
4 Peeling Indoor Upper 72
5 Walking upstairs Indoor Upper and lower 58
6 Walking downstairs  Indoor Upper and lower 56
7 Mixing Indoor Upper and lower 52
8 Wiping Indoor Upper and lower 63
9 Sweeping floor Indoor Upper and lower 102
10 Turning shoulder Outdoor Upper 46
11 Turning wrist Outdoor Upper 51
12 Turning knee Outdoor Lower 53
13 Turning haunch Outdoor Lower 52
14 Turning ankle Outdoor Upper and lower 49
15 Walking Outdoor Upper and lower 64
16 Kicking Outdoor Upper and lower 77
17 Running Outdoor Upper and lower 61
18 Cycling Outdoor Lower 76

In the 19NonSens dataset, the accelerometer and gyroscope signals will be utilized as the scheme’s
input information. Both the accelerometer and gyroscope sensors of the Samsung Gear G2 are
configured to a reading frequency of 50 Hz, similar to the sampling rate of the 3-axis wireless
accelerometers, to facilitate synchronization. Several unprocessed data captured by the Samsung Gear
G2 are depicted in Figs. 2 and 3. The wearable sensor used in the e-Shoe is a micro-electro-mechanical
system (MEMS) accelerometer. The sampling frequency of the 3D-accelerometer data captured from
the e-shoes is adjusted to 50 Hz. Several raw data captured by the e-Shoe are illustrated in Fig. 4.
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Figure 4: Some raw accelerometer data recorded from e-Shoe in the 19Nonsens dataset

3.2 Pre-Processing Process

According to the person’s active movements while data gathering, the raw data obtained by the
wearable sensors include measurement noise and other unexpected interference. Relevant information
inside a transmission is obscured by noise. Consequently, it was crucial to limit the impact of noise on
the motion to gather crucial data for subsequent processing. The most frequently employed filtering
methods are mean, low-pass, and Wavelet [23]. We deployed a third-order low-pass Butterworth filter
with a 20 Hz cutoff frequency on the accelerometer and gyroscope sensors in all multiple dimensions
to denoise the data. Considering that 99.9% of the energy is contained below 15 Hz, this rate is enough
for capturing bodily motions.

3.3 The Proposed SenPyramidalNet

SenPyramidalNet, as seen in Fig. 5, is a deep residual network designed to effectively classify
indoor and outdoor activities using wearable sensors. This proposed model is based on Han’s 2017
[24] proposal for deep pyramidal residual networks (DPRN).

Based on the residual network, the DPRN optimizes the residual unit model. The primary point
of the DPRN is to focus on the feature map dimension by steadily increasing it instead of drastically
raising it at each residual unit by downsampling. Most deep convolutional neural network designs
enhance feature map dimensions by a substantial margin as the scale of the feature map reduces and
does not raise feature map dimensions unless they meet a layer with downsampling. To address this
issue, DPRN attempts to progressively expand the feature map size, rather than increasing it at one
of the residual units, and to divide the rising feature map load equally. This configuration results in a
steady rise in the number of channels as a proportion of the layer’s depth, akin to a pyramid whose
base steadily expands towards its apex. In our investigations, the proposed SenPyramidNet selects the
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additive PyramidNet model, which enhances the dimension of the feature map proportionally. The
equation for enhancing the dimensions of a feature map is Eq. (1).

64, if k=1

D, = (1)
‘ [D+%J if 2<k<N+1

N represents the total number of residual units, and « represents a step factor for increasing
dimensions.
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In addition, the network design functions as a combination of plain and residual networks by
employing zero-padded identity-mapping shortcut connectivity when the feature map dimension is
increased. Several configurations of ResNet shortcuts, including an identity-mapping shortcut, were
examined. The identity-mapping shortcut is much more suitable than other alternatives. Due to the
absence of parameters, an identity-mapping shortcut has a lesser likelihood of overfitting than other
shortcuts, resulting in enhanced generalization performance. Furthermore, this could pass through
the gradient strictly based on the uniqueness mapping, providing higher consistency throughout the
training phase. In the case of SenPyramidNet, identity mapping alone cannot be employed as a
shortcut since the dimension of the feature map varies across residual units. Moreover, the zero-padded
shortcut does not result in the overfitting issue since there are no new parameters, and interestingly, it
demonstrates a greater capacity for generalization than other shortcuts. Consequently, the suggested
zero-padded identity-mapping shortcut depicted in Fig. 6 could deliver a mixed impact of the residual
network and the plain network that is significantly enhanced.

As seen in Fig. 6, the proposed model’s convolutional unit comprises a one-dimensional convolu-
tion layer (Conv1D) and a batch normalization (BN) layer. Each kernel produces a feature map, and
One-dimensional kernels, for example, the input spectrum, were included. The use of BN stabilized and
accelerated the training process. Each feature map was turned into a 1D vector employing a flattened
layer after being averaged utilizing GAP. A softmax function was utilized to convert the completely
integrated layer’s output into probabilistic reasoning for each class. The network was trained to utilize
the Adam optimizer, and the loss was calculated using the cross-entropy loss function, frequently
employed in classification.
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4 Evaluations and Results

This section contains the outcomes of all experimental investigations undertaken to determine the
most effective DL models for indoor and outdoor movement identification and the studies’ results.
Our evaluations were conducted using a standard dataset known as 19Nonsens that captured motion
signals from a variety of activities both indoors and outdoors. To assess the proposed SenPyramidNet,
we performed two studies based on 10-fold cross-validation using the following dataset activity data:

o Study I: We employed indoor motion data to validate the proposed model with state-of-the-art
advanced models (Inception-ResNet, Inception, Xception, VGGs, and ResNets).

e Study II: The second study was accomplished utilizing motion signals of outdoor activities
to evaluate the detection capability of state-of-the-art advanced models with our suggested
SenPyramidNet model.

4.1 Environmental Configuration

Evaluations were conducted using the Google Colab Pro+ [25] framework. The results of
accelerating DL model training with the Tesla V100-SXM2 with a 16GB graphics processor module
were outstanding. The proposed SenPyramidNet and advanced DL models were developed using the
Python library, the Tensorflow backend, and the CUDA graphics cards. The Python libraries that
produced this investigation are mentioned below:

e The sensor data were operated employing Numpy and Pandas, which included reading,
processing, and analyzing the data.

e Matplotlib and Seaborn were manipulated to plot and display the consequences of the data
finding and model assessment procedures.

e Sklearn framework was utilized for sampling and data creation.

e TensorFlow, Keras, and TensorBoard were operated to create and train DL models.

4.2 Hyperparameter Setting
Hyperparameters are manipulated to handle the learning process in DL. The hyperparameters
utilized in the proposed SenPyramidNet model are (1) the number of epochs, (2) batch size, (3) learning
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rate «, (4) optimization, and (5) loss function. For setting the values of these hyperparameters, the
number of epochs was set to 200, and the batch size was assigned to 128. If no improvement in the
validation loss was uncovered after 20 epochs, we quit the training process with an early-stop callback.
Initially, we arranged the learning rate « = 0.001. Then, we updated it to 75% of the initial value if
the validation accuracy of the proposed model remained the same after six consecutive epochs. Adam
optimizer [20] is set with parameters 8, = 0.9, 8, = 0.999, and ¢ = 1 x 10~* to minimize the error.

4.3 Experimental Results of Indoor Activity Recognition

The results of Study I used motion signals of indoor activities captured by an accelerometer
integrated with an e-Shoe and an accelerometer and gyroscope of a smartwatch for training and
evaluating models. Table 2 summarizes the findings of the SenPyramidnet and state-of-the-art models.

Table 2: Experimental studied results of DL models using indoor activity data

Model Performance (Mean (£Std.))
Accuracy Loss Fl-score

Inception-ResNet 92.17% (£0.89%) 0.38 (£0.04) 91.25% (£1.05%)
Inception 95.52% (£0.56%) 0.19 (£0.03) 94.99% (£0.60%)
Xception 93.79% (£0.59%0) 0.31 (£0.03) 93.06% (£0.59%)
VGGI11 76.57% (£13.41%) 0.88 (£0.32) 73.22% (£15.31%)
VGGI3 90.89% (£2.28%) 0.47 (£0.06) 89.68% (£2.95%)
VGGI16 85.08% (£5.56%) 0.88 (£0.54) 83.71% (£6.07%)
VGG19 81.48% (£16.75%) 0.65 (£0.50) 79.26% (£19.52%)
ResNetl6 96.28% (£0.47%) 0.18 (£0.04) 96.13% (£0.50%)
ResNet18 95.69% (£0.87%) 0.21 (£0.09) 95.57% (£0.94%)
ResNet34 96.15% (£0.36%) 0.19 (£0.02) 96.03% (£0.38%)
SenPyramidNet 96.37% (£0.35%) 0.17 (£0.01) 96.08% (£0.39%)

Based on comparison findings in Table 2, the proposed SenPyramidNet model surpassed the
other DL models in this investigation, achieving the most fantastic accuracy (96.33%) and F1-score
(96.08%). Comparing the core structure of state-of-the-art models, we discover that ResNets have more
accuracy than other models. This model utilizes the residual architecture while reinforcing the feature
at each convolutional level.

4.4 Experimental Results of Outdoor Activity Recognition

Study II indicated that only outside motion data is accessible for training and testing DL models,
as summarized in Table 3. In this experiment, the proposed SenPyramidNet model achieved the most
incredible accuracy of 97.25% and the highest F1-score of 97.95%, outperforming other DL models.
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Table 3: Experimental studied results of DL models using outdoor activity data

Model Performance (Mean =+ Std.)
Accuracy Loss Fl-score

Inception-ResNet 94.56% (£0.90%) 0.26 (£0.05) 94.61% (£0.86%)
Inception 93.75% (£1.20%) 0.29 (£0.06) 93.89% (£0.94%)
Xception 95.04% (£1.16%) 0.30 (£0.06) 95.03% (£1.10%)
VGGI1 88.58% (£1.12%) 0.80 (£0.17) 88.26% (+1.20%)
VGG13 89.16% (£1.36%) 0.68 (£0.12) 89.26% (£1.56%)
VGG16 86.46% (£1.76%) 0.69 (£0.10) 86.87% (£1.81%)
VGGI19 86.34% (£1.88%) 0.61 (£0.10) 86.72% (+£1.89%)
ResNetl6 95.66% (+1.48%) 0.29 (£0.12) 95.72% (£1.12%)
ResNet18 96.49% (£0.67%) 0.32 (£0.08) 96.37% (£0.71%)
ResNet34 96.27% (£0.47%) 0.31 (£0.05) 96.10% (£0.35%)
SenPyramidNet 97.25% (£0.43%) 0.19 (£0.03) 97.95% (£0.47%)

5 Research Discussion

5.1 Effects of Different Wearable Sensors

To determine the influence of wearable sensors on the effectiveness of the proposed SenPyra-
midNet models, we performed further investigations employing e-Shoe and smartwatch sensors
independently. The comparison findings are summarized in Tables 4 and 5. These findings suggest
that smartwatch sensors are more suitable than sensors incorporated in e-Shoes for training indoor
and outdoor HAR models.

Table 4: Comparative results of the SenPyramidNet using different wearable sensors separately to
recognize indoor activities

Wearable sensor Performance (Mean £Std.)

Accuracy Loss F1-score
e-Shoe 64.65% (£2.34%) 1.29 (£0.27) 67.82% (£2.75%)
Smartwatch 95.21% (£0.28%) 0.19 (£0.02) 94.52% (£0.32%)

Table 5: Comparative results of the SenPyramidNet using different wearable sensors separately to
recognize outdoor activities

Wearable sensor Performance (Mean £Std.)

Accuracy Loss

e-Shoe 89.21% (£2.27%) 0.58 (£0.11)
Smartwatch 96.82% (£0.64%) 0.15 (£0.05)

Fl-score

86.15% (£3.21%)
97.35% (£0.57%)
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To determine the causes of the divergent performances, we study the confusion matrices for each
individual, as seen in Fig. 7. The suggested model obtains an F1-score of 67.82% using solely e-Shoe
data. Most indoor tasks are hand-oriented, including brushing, peeling, and slicing. As demonstrated
in Fig. 7, the movement signals collected by e-Shoe sensors cannot be distinguished. Therefore, the
sensors of smartwatches are suited for indoor activity identification.

Corilusion Matrix Confusion Matrix
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Figure 7: Comparison of the model performance between confusion matrices: (a) indoor HAR using
e-Shoe sensors (b) indoor HAR using Smartwatch sensors (¢) outdoor HAR using e-Shoe sensors (d)
outdoor HAR using Smartwatch sensors

5.2 Effects of Attention Mechanism

Most learning-based solutions require the capability to learn an open-to-interpretation repre-
sentation. DL techniques offer the advantage of extracting the features from unprocessed data, but
it might take much work to interpret the relative significance of the incoming data. Prior research
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[27] established the concept of attention to solve this issue. This research introduced an attention
mechanism for neural network machine translation operations into our classification system. This
effort helped the construction of an interpretable representation of the model’s input data components.
As shown in Tables 6 and 7, the findings revealed that the attention mechanism improved detection
capability in all conditions. Surprisingly, the effectiveness of our SenPyramidNet model was much
improved for indoor and outdoor motion identification.

Table 6: Improved performance of SenPyramidNet using attention mechanism for indoor activity
recognition

Model Performance (Mean (£Std.))

SenPyramidNet Accuracy Loss F1-score
Without attention 95.54% (£0.43%) 0.21 (£0.035) 95.22% (£0.51%)
With attention 96.37% (£0.35%) 0.17 (£0.01) 96.08% (£0.39%)

Table 7: Improved performance of SenPyramidNet using attention mechanism for outdoor activity
recognition

Model Performance (Mean =+ Std.)

Accuracy Loss F1-score
Without attention 97.06% (£0.28%) 0.18 (£0.03) 96.77% (£0.27%)
With attention 97.25% (£0.43%) 0.19 (£0.03) 97.95% (£0.47%)

5.3 Model Parameters

The complexity of DL models employed in studies has been investigated. Table 8§ demonstrates
that SenPyramidNet has considerably greater parameters than ResNet16 but significantly fewer than
other DL models. As demonstrated in Fig. 8, our proposed model is more accurate than theirs in
indoor and outdoor action identification.

Table 8: Model parameters

Models
Inception- Inception Xception VGGI1  VGG13 VGG16 VGG19  ResNetl6 ResNetl8 ResNet34 Sen
ResNet Pyramid
Net
Parameter 44.43 14.29 20.71 28.29 28.35 30.12 31.89 0.46 3.85 7.24 0.79

™M
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Figure 8: Comparison results with state-of-the-art DL models

6 Conclusion and Future Works

This research classified indoor and outdoor behaviors using DL algorithms. Various advanced
DL approaches in HAR were evaluated by using the 19 Nonsens dataset. SenPyramidNet is a
deep pyramidal residual network developed to efficiently distinguish indoor and outdoor actions
based on sensor data from wearable devices. This model is a novel DL approach that combines the
advantages of interaction modules with an attention mechanism to enhance the identification accuracy
of the HAR. The SenPyramidNet model surpassed other state-of-the-art approaches concerning
overall accuracy and Fl-score. The indoor and outdoor activity identification accuracy rates of
96.37% and 97.25%, respectively, indicate the superiority of our model over existing sophisticated
DL approaches. Comprehensive experiments have been carried out to investigate the performance of
the proposed approach and demonstrate its robustness. The analyzed data indicate that the proposed
SenPyramidNet recognizes indoor and outdoor activities effectively.

In the future, we will attempt to overcome one of the initial study’s limitations: the requirement
to collect sensor data with a predetermined size by using flexible data segmentation. In addition, we
aim to build a pedagogical learning technique to enhance awareness of indoor and outdoor activities.
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