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Abstract: The dimensionality of data is increasing very rapidly, which creates
challenges for most of the current mining and learning algorithms, such
as large memory requirements and high computational costs. The literature
includes much research on feature selection for supervised learning. However,
feature selection for unsupervised learning has only recently been studied.
Finding the subset of features in unsupervised learning that enhances the
performance is challenging since the clusters are indeterminate. This work
proposes a hybrid technique for unsupervised feature selection called GAk-
MEANS, which combines the genetic algorithm (GA) approach with the
classical k-Means algorithm. In the proposed algorithm, a new fitness func-
tion is designed in addition to new smart crossover and mutation operators.
The effectiveness of this algorithm is demonstrated on various datasets. Fur-
thermore, the performance of GAk-MEANS has been compared with other
genetic algorithms, such as the genetic algorithm using the Sammon Error
Function and the genetic algorithm using the Sum of Squared Error Function.
Additionally, the performance of GAk-MEANS is compared with the state-
of-the-art statistical unsupervised feature selection techniques. Experimental
results show that GAk-MEANS consistently selects subsets of features that
result in better classification accuracy compared to others. In particular, GAk-
MEANS is able to significantly reduce the size of the subset of selected
features by an average of 86.35% (72%–96.14%), which leads to an increase
of the accuracy by an average of 3.78% (1.05%–6.32%) compared to using all
features. When compared with the genetic algorithm using the Sammon Error
Function, GAk-MEANS is able to reduce the size of the subset of selected
features by 41.29% on average, improve the accuracy by 5.37%, and reduce the
time by 70.71%. When compared with the genetic algorithm using the Sum of
Squared Error Function, GAk-MEANS on average is able to reduce the size of
the subset of selected features by 15.91%, and improve the accuracy by 9.81%,
but the time is increased by a factor of 3. When compared with the machine-
learning based methods, we observed that GAk-MEANS is able to increase
the accuracy by 13.67% on average with an 88.76% average increase in time.
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1 Introduction

Feature selection aims to identify the minimum size subset of features that is necessary and
sufficient to stay close to the original class distribution. Irrelevant or redundant features whose
presence does not improve the proximity to the original class distribution can be dropped [1].
Consequently, learning with the subset of selected features will be easier, less expensive, and more
effective in terms of accuracy and computational time [2,3].

Most of the feature selection techniques are dedicated to supervised learning. Unsupervised
feature selection is known to be a more difficult problem due to the unavailability of class labels that
could facilitate efficient exploration of the search space of the problem. Few studies have tackled this
problem. The literature offers four types of machine learning approaches to deal with the feature
selection: namely wrapper, filter, embedded, and hybrid [4]. Wrapper approaches [5–7] proceed by
implicitly enumerating subsets of features and assessing their learning contributions according to a
specific clustering algorithm, which is run for every candidate subset of features. Wrapper approaches
are time-consuming because they generally must explore all possible feature subsets. In addition,
wrapper effectiveness is restricted to the specific learning algorithm used to assess the subset of
features. On the other hand, filter approaches [8–13] filter the features based on their intrinsic
properties. Embedded method is a built-in feature selection mechanism that incorporates feature
selection into the learning process and uses its properties to guide feature evaluation [4]. In hybrid
methods, they try to combine the advantages of other methods [4,14].

The mathematical formulation of the unsupervised feature selection problem leads to a hard
combinatorial optimization problem (see Section 4). Even when the number k of features to select is a
priori known, the state space of the potential solutions is huge; it is of order Cn

k that is the number of
ways to choose k features among n. For that reason, rather than solving the optimization problem in an
exact manner, many metaheuristics and evolutionary algorithms have been proposed to deal with this
problem [15–20]. Unsupervised Feature Selection problem (UFS) can be considered as an optimization
problem, where the objective function is to select the smallest subset of features that minimizes the
redundancy and maximizes the relevance toward the goal. UFS is a hard optimization problem; the
size of the search space is O (2n) where n is the number of features. Exact optimization methods must
explore the whole search space to determine the optimal solution. However, these types of methods are
time-consuming due to the huge size space of the problem, especially when the number of features is
relatively large. Metaheuristics constitute a more adequate and suitable alternative to solve such hard
optimization problems as only some promising regions of the search space are explored to determine a
near-optimal solution. On the one hand, metaheuristics can exploit all the different types of concepts
of similarity and feature variance developed in the context of filter approaches, and on the other hand
they can overcome the drawbacks of wrapper approaches by intelligently exploring the huge search
space of exponential size in a reasonable time to find a near-optimal solution of the problem. The main
difficulty lies in the designing of a significant objective function of the UFS optimization problem
enabling us to guide the search toward potential solutions. These types of methods combine and
take advantage of metaheuristic techniques developed in artificial intelligence and existing statistical
concepts designed for unsupervised feature selection that we are seeking to design in this paper.

Genetic Algorithm (GA) is a powerful population-based search metaheuristic that has demon-
strated its effectiveness and superiority in solving the famous hard combinatorial optimization
problems the Quadratic Assignment Problem (QAP) [21,22], the Traveling Salesman Problem (TSP)
[23,24], and the DNA Fragment Assembly Problem [25]. On the other hand, few GAs have been
developed for the UFS problem and even those developed are very basic, in the sense that they used
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classical and generic known GA operators of the literature. For these reasons, we consider it worth
investigating properly and adequately designed genetic algorithms in the context of unsupervised
feature selection.

In this paper, we propose a hybrid technique, called GAk-MEANS, which combines the genetic
algorithm approach with the classical k-Means algorithm. In order to efficiently explore the huge
search space of the UFS problem and to guide the search to the potential solutions, we modeled the
UFS as a multi-criteria optimization problem. For this purpose, we designed a new fitness function
based on the k-Means algorithm. Our fitness function stands out from the others existing fitness
functions in the literature because it is properly designed with respect to the characteristics of the
optimization problem modeling UFS itself, rather than adapting existing fitness functions of the
literature. The main contributions of this research are as follows:

• We proposed a hybrid technique for unsupervised feature selection called GAk-MEANS, which
combines the genetic algorithm (GA) approach with the classical k-Means algorithm to find a
low-dimensional subset of features. The proposed technique is experimentally evaluated using
a set of datasets that vary in dimensionality.

• The initial population plays a major role in the effectiveness of any genetic algorithm perfor-
mance. Thus, we investigated how to generate an initial population to enhance the performance
of genetic algorithms that solve the UFS problem. In this paper, we carefully generate a set of
initial individuals to improve the search and converge quickly to a satisfactory near-optimal
solution.

• Designing an efficient fitness function for a genetic algorithm is a substantial and challenging
task. In the proposed algorithm, a new fitness function relying on the k-RMeans algorithm is
designed to assess the quality of a subset of features, and specially to direct the exploration of
the search space of the problem toward potential (near-optimal) solutions.

• We designed a new smart crossover operator to ensure the exchange of the best-selected feature
subsets to create a better subset of features.

• We designed a new suitable mutation operator based on the feature similarity measure to
diversify the search and maintain the fitter individual.

Our approach, GAk-MEANS, can be categorized as a hybrid filter-wrapper approach as it
assesses a subset of features based on their similarities independently from any learning algorithm (as
in the filter approach). However, it stands out from the traditional filter approaches by allowing the
consideration and the assessment of several candidate solutions instead of only the first one selected
based on the similarity coefficients (as in the wrapper approach).

The designed hybrid technique is implemented and tested using five different datasets. The
performances of GAk-MEANS have been compared with the results of other genetic algorithms,
namely the genetic algorithm using the Sammon Error Function, and the genetic algorithm using the
Sum of Squared Error Function. Moreover, the performance of GAk-MEANS is compared against
the state-of-the-art statistical approaches for unsupervised feature selection techniques.

Experimental results show that GAk-MEANS consistently selects the subsets of features that
result in better classification accuracy compared to others.
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2 Background Information
2.1 Relevant and Irrelevant Features Definitions

Real-world data suffers from the existence of many irrelevant, redundant, and noisy features.
Removing these features by feature selection reduces the computational cost in terms of both time and
space [14]. Removing irrelevant features before learning is beneficial. Some relevant features could be
redundant. For instance, when one feature strongly correlates with some other feature. In this case,
one of these features could be removed, hence improving the learning process.

2.2 Similarity Measure between Two Features
The similarity measure is a way of measuring how data samples are related or close to each other.

Data samples are related if their corresponding features are related. Without loss of generality, we can
assume that all features are vector samples from real numbers. Some of the most popular similarity
measures are described below:

• Euclidean distance is the basis of many measures of similarity and dissimilarity [26]. The
Euclidean distance between features X and Y is the square root of the sum of squared differences
between corresponding elements of the two features, as shown in Eq. (1) [26].

dEuclidean (X , Y) =
√∑n

i
(xi − yi)

2 (1)

Euclidean distance is only appropriate for data measured on the same scale. The correlation
coefficient is (inversely) related to the Euclidean distance between standardized versions of the data.

• Another commonly used distance measure is the Manhattan distance. The Manhattan distance
between features X and Y is the sum of the absolute differences between the corresponding
elements of the two features, see Eq. (2) [26].

dManhattan (X , Y) =
∑n

1
|xi − yi| (2)

• The following is a definition of the correlation between the vectors X and Y [27]:

r (X , Y) =
1
n

∑m

i xiyi − μXμY

σXσY

(3)

where μX and μY are the means of X and Y respectively, and σX and σY are the standard deviations
of X and Y. The numerator of the equation is called the covariance of X and Y and is the difference
between the mean of the product of X and Y subtracted from the product of the means.

In this paper, the designed fitness function is based on the k-RMeans algorithm, where the k-
RMeans algorithm is a relaxed version of k-Means that can rely on any feature similarity measure.

2.3 Genetic Algorithm
Genetic algorithm (GA) is a well-known population-based metaheuristic algorithm that is

inspired by the biological evolution processes [28,29]. The fundamental components of GA are
chromosome representation, fitness function, and biological-inspired operators which are selection,
mutation, and crossover. The fitness function evaluates the closeness of the solution to the optimal
solution of a specific problem, which means it decides how suitable a solution is. In the genetic
algorithm, the creation of the fitness function is a very important step [30]. Genetic algorithms begin
by generating an initial population of candidate solutions. The natural selection procedure begins with
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the selection of the fittest individuals (solutions) from a population by employing a fitness function
to obtain a better population. The generation of the new solutions occurs by using crossover and
mutation operations [31].

3 Related Work
3.1 Machine-Learning Techniques for Unsupervised Feature Selection

In this section, some of the state-of-the-art unsupervised feature selection methods [14] based on
mathematical/statistical modeling are presented. Different feature selection algorithms exploit various
types of criteria to define the relevance of features. Current UFS are classified into Similarity-Based
methods, Sparse-Learning-Based methods, and other recent methods. The state-of-the-artwork for
Similarity-Based methods and Sparse-Learning-Based methods are described in this section.

Similarity-Based methods assess feature importance by their ability to preserve data similarity.
These include Laplacian Score [32], and SPEC [33]. The Laplacian Score (LS) method assumes that the
local structure of the data space defines the underlying classes/clusters. To model the local geometric
structure, LS constructs a nearest neighbor graph where two data points are probably in the same
class/cluster, if they are close to each other. LS computes for each feature its Laplacian Score to find the
top features that respect this graph structure. Since Laplacian Score evaluates each feature individually,
the task of selecting the k features can be solved by picking the most k relevant features. Obviously,
LS is unable to discover redundant features.

SPEC realizes that both supervised and unsupervised feature selection methods select the features
that separate the data points into subsets according to their similarity, in most cases. It proposes
that, analyzing the spectrum of the graph induced by the data points pairwise similarity is a generic
framework in both settings. SPEC shows that many algorithms, including Laplacian Score, are just
special cases of the proposed generic framework.

Sparse-learning-based methods select the features by removing the least useful ones. They use
a spare regularizer to weigh the importance of a feature and force the coefficient of the non-useful
features to be very small or exactly zero, and hence, to be removed. Examples of sparse-learning-based
methods are Multi Cluster Feature Selection (MCFS) [34], and Nonnegative Discriminative Feature
Selection (NDFS) [35].

In the experimental evaluation section, we compared the performance and results obtained by the
proposed method GAk-MEANS with the results of these statistical methods.

There are some recent works that proposed unsupervised feature selection algorithms. For
example, Miao et al. [36] proposed a new UFS approach, called Regularized Local Linear Embedding
(GLLE), which aims at preserving the local invariance of feature subspace by integrating local
linear embedding (LLE) and manifold regularization constrained in feature subspace into a unified
framework. Moreover, they proposed an iterative optimization algorithm to solve the resulting model.
Nie et al. [37] proposed a new feature selection approach, called unsupervised feature selection with
RSOGFS, to solve the original � 2, 0-norm constrained problem rather than tackling its relaxed or
approximate problem. Instead of selecting a good individual one at a time, RSOGFS selects a good
feature subset. Miao et al. [38] proposed a new regularized self-representation unsupervised feature
selection method, which employs � 2, 1–2 as sparse regularization to perform feature selection. Also,
an iterative CCCP algorithm to the resulting non-convex problem with proven global convergence
is provided. Several experiments using real-world datasets show that the proposed method performs
better than several state-of-the-art methods.
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Some methods for solving the unsupervised feature selection problem include a metaheuristic
artificial intelligent (AI) strategy, and a machine learning (ML) strategy such the methods mentioned
above. Metaheuristics in artificial intelligent are intelligent techniques intended to explore the search
space of the UFS optimization problem to find a near-optimal solution in a reasonable time as only
some promising regions of the search space are explored to determine a near-optimal solution. For this
purpose, some metaheuristics have been designed to deal with the UFS optimization problem, which
will be discussed in the following sections.

3.2 Metaheuristics Techniques for Solving UFS
Metaheuristics are a type of generic algorithm that can be used to solve a wide range of optimiza-

tion problems. Recently, few metaheuristics have been designed to deal with the UFS optimization
problem. For example, evolutionary approaches as the binary bat algorithm [16] and genetic algorithm
approaches are used to solve UFS problem [17–20]. Furthermore, ant colony optimization [15] has
recently been used to solve UFS problem. In this section, some metaheuristics algorithms for solving
UFS problem are presented.

Ant colony optimization (ACO) is one of the most well-known swarm-based algorithms.
Dadaneh et al. [15] designed an unsupervised probabilistic ACO-based method for feature selection
(UPFS). In each step of the ACO algorithm, to select the next potential feature, they calculate the
amount of redundancy between the current feature and all those which have been selected thus
far. In addition, they utilize a matrix to hold ant related pheromone which shows the rate of the
copresence of every pair of features in solutions, then the features are ranked based on a probability
function extracted from the matrix. In general, there are some limitations and drawbacks of ant colony
algorithm [39]. As a result of numerous parameters that are involved in ACO, incorrect selection of
starting value can lead to a local optimum. In addition, individual ants will move randomly when the
problem size is too large, causing the entire algorithm to take longer to run, reducing the efficiency
of finding the best solution. The pheromone-related parameters that were chosen in the formula are
mostly based on experience. Thus, when selecting the pheromone parameters without experience and
theoretical arguments, then the obtained results could be greatly scattered because of the inefficiency
and poor convergence of the algorithm.

Ramasamy et al. [16] proposed a wrapper-based unsupervised feature selection method with the
modified binary bat approach that applies k-Means clustering algorithm. They used a fitness function
which is evaluated based on the cluster quality measured using Sum of Squared Error. Binary bat
algorithm has some weaknesses that may negatively affect its performance [40]. One of the important
factors through which the efficacy of most swarm intelligence algorithms is determined its ability to
produce a mutation. Besides, the diversity of the population achieves the continued ability to develop
in the algorithm, but bat algorithm lacks these features and thus cannot jump out from the local
optima area, where the diversity decreases whenever the problem dimensions increase [41]. Another
determinant is that in the standard bat algorithm, the movement to a new location (a new solution)
is not performed unless it is better than the current global solution, and this leads to limiting the
movement of the search agents [42].

There are few numbers of metaheuristics algorithms that have been proposed to deal with the
UFS optimization problem. Metaheuristic algorithms including the genetic algorithm have proven
their efficiency in solving optimization problems, through a balance between exploration and random
search [40]. In the next section, we present a number of recent works to solve UFS problem by using
genetic algorithms.
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3.3 Genetic Algorithms for Solving UFS
To the best of our knowledge, there are many unsupervised feature selection methods reported in

the literature, but few of them discuss unsupervised feature selection using genetic algorithms.

Shamsinejadbabki et al. [17] introduced an approach to unsupervised feature selection for text
clustering based on genetic algorithm that evaluates groups of terms by utilizing a new Term Variance
measuring technique. They used a genetic-based algorithm to find the most valuable groups of terms
(vector feature) depending on the new measure. The proposed method’s main limitation, according to
the author, is that it is time-consuming in which finding the best-fitting groups of words with a GA is
a process that takes a long time.

Abualigah et al. [18] proposed a new method called Feature Selection technique using GA
Algorithm for the Text Clustering (FSGATC), which is a genetic algorithm used to solve the
unsupervised feature selection problem. This method is used to create a new subset of informative
features to obtain more accurate clusters. They used mean absolute difference (MAD) as a fitness
function in GA for feature selection technique using the weight scheme called (term frequency-inverse
document frequency) for each position, which is a statistical measure that evaluates how relevant a
word is to a document in a collection of documents. MAD is a measure used in FS domain to assign
a relevance score for features by calculating the difference of the mean value, then computing the
difference between the mean and median of xij, where xij is the value of the feature j in document i. The
optimal solution is the one with the highest fitness value.

Agrawal et al. [19] proposed an approach for unsupervised feature selection using genetic
algorithm. They incorporated the genetic feature selection method and greedy feature selection
algorithm as discussed by Farahat et al. [43], which selects one feature at each iteration such that
the reconstruction error for the novel set of features is in the least amount. The implementation of the
greedy feature selection algorithm is to compute the reconstruction error for every candidate feature,
and then select the feature with the minimum error. The proposed greedy feature selection by Ahmed
K. Farahat, as noted by the author, is less effective for very big data instances, which is one of the
method’s disadvantages. In addition, there is insufficient information regarding the implementation
of the genetic algorithm operations and their parameters.

Saxena et al. [20] proposed a new method for unsupervised feature selection where a genetic
algorithm has been utilized to select a subset of features by taking Sammon error as the fitness
function, where Sammon error is related to Sammon mapping that belongs to the multidimensional
scaling algorithms family for mapping a high-dimensional space to a lower-dimensional space.
Sammon error is a function to evaluate how good a given projection is in preserving the original
structure, by assessing the difference in the distance between each pair of points in the higher and
the lower dimensionality space, which can be used as a measure of quality of the selected feature. A
lower value of the Sammon error denotes a higher topology preservation and a better set of selected
features.

As mentioned in the introduction, GA algorithms proved their effectiveness and superiority
to solve the well-known combinatorial hard optimization problem such as the Traveling Salesman
Problem (TS) and the Quadratic Assignment Problem (QAP). On the other hand, to the best of
our knowledge, a few numbers of UFS approaches in the literature are utilizing genetic algorithms
and are still inadequate and unsatisfactory which also creates a motivation to research in this field.
Furthermore, most genetic algorithms for solving UFS problems rely on the basic classical operators
and generic fitness functions which do not consider the structural aspect and characteristics of the UFS
optimization problem. Thus, there is a need for designing a more appropriate genetic algorithm for
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UFS by developing more adequate fitness function and biological-inspired operators. The modeling of
the unsupervised feature selection as an optimization problem enables us to design a new proper fitness
function to the UFS problem that naturally guides the search towards feasible and potential region
of solutions. Our fitness function is distinct from other fitness functions of the literature because it is
properly designed with respect to the characteristics of the UFS problem, rather adapting existing
fitness functions of the literature. Similarly, this modelling allowed us to introduce proper smart
crossover and mutation operators to explore the huge search space of the UFS problem rather adapting
existing classical known operators as the famous one-point crossover. At the end, these new different
algorithmic contributions to UFS deserve to be investigated in order to know their impacts on several
UFS datasets of the literature.

4 UFS as a Multi-Criteria Optimization Problem

We model the unsupervised feature selection as a Multi-Criteria Optimization problem. More
formally, given a similarity measure between the features of data samples, and let C1, . . . , Ck be a set
of k clusters where each cluster is a grouping of similar features according to the similarity measure.
Let Pij be the similarity measure of the two features i and j (i < j). The best subset of features should
fulfill the following three objective functions (given in points 1, 2, 3) subject to the two constraints
(given in point 4):

1. Min k(LB <= k <= UB)

2. Max
∑

k

∑
i∈Ckj∈Cki<j

Pij

3. Min
∑

i∈Ck1 j∈Ck2
k1<k2

Pij

s.t.
4. ∪

k
Ck = F

Ci ∩ Cj = ϕ ∀ (i, j) i < j i = 1, . . . , k − 1

1. Minimize the number k of selected features,
LB and UB are a given lower and upper bounds
of k.
2. Maximize the sum over all clusters of the
similarities intra-clusters.
3. Minimize the sum of the similarities between
inter-clusters.
4. Every feature must be included in exactly one
cluster.

The huge search space of the optimization problem will be explored using the designed hybrid
technique detailed in the following section. The three objective functions are handled explicitly via the
fitness function, the crossover and mutation operators designed for this purpose.

5 The Hybrid Technique GAk-MEANS

In this section, we describe the designed GA concepts for the UFS problem. We start by encoding
a possible solution of UFS, then we introduce the simple variant of the k-Means algorithm which will
be used in defining the fitness function of an individual and generating the initial population of the
hybrid technique GAk-MEANS. We describe how to calculate an individual’s fitness function value,
and the newly designed crossover and mutation operators for UFS. Some definitions are introduced
below to illustrate the proposed algorithm of the hybrid technique.

• Definition 1. (Nearest features vs. farthest features): A feature j in a cluster C is the nearest (resp.
farthest) feature to some feature i in C, according to a given similarity measure, if j is the most
(resp. least) similar feature to i. That is for i, j ∈ C, maxj Pij (resp. minj Pij).
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• Definition 2. The eccentricity of a feature i into a cluster C is the similarity value with the farthest
feature to i in C.

• Definition 3. The center of a cluster C is the feature in C with minimum eccentricity.

Fig. 1 gives an overview of the different steps for the hybrid technique GAk-MEANS. Next, each
step will be explained in detail.

Figure 1: GAk-MEANS flowchart

5.1 Encoding of Individuals
An individual I is a set of integer numbers where each number represents a feature, and the

cardinality of a set I indicates the number of features in the individual I.

5.2 Initial Population
The first step in any GA algorithm is to create the first generation of the population. The

population is a set of individuals; each individual consists of a subset of k features (LB <= k <= UB).
Basically, the genetic algorithms generate the initial population randomly.

In this paper, we carefully improve a set of initial individuals in order to improve the search and
to converge quickly to a satisfied near-optimal solution. Table 1 shows the procedure of GeneIndiv (I,
k) relying on k-RMeans algorithm to improve a given individual of size k from the initial population.
The value of k is randomly selected in the interval [LB, UB] for each generated individual.
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Table 1: Pseudo-code for generating an initial population

Algorithm GeneIndiv (Generate an individual I of size k)

Input: Size of individual k
Output: The individual I

I = {}
From i= 1 to k do

Select randomly a feature i from F where F is the set of all features
I = I ∪ {i}

I = k-RMeans(I)
Return I

5.3 k-RMeans Algorithm
Given a subset of k features, k-RMeans aims to partition the features of F into k clusters where

intra-clusters similarity is maximized. k-RMeans is a Relaxed variant of k-Means algorithm that is
simply one iteration of k-Means. Let I be a subset of k features of F, we create for each feature I a
cluster. k-RMeans assigns every feature i of F not in I to the cluster whose the center feature is the
nearest feature to i. k-RMeans relies on the concept of eccentricity to compute the center of a cluster
as seen in Table 2.

Table 2: Pseudo-code for k-RMeans algorithm

Algorithm K-RMeans

Input: Individual I
Output: Centers of clusters

Create a cluster for each feature in I
S = F-I //S is the set of features in F not in I
//let k be the number of created clusters
While S is not empty {

Select feature i from S
Select the cluster Cj whose center is the nearest feature to i
Assign the feature i to the cluster Cj

Compute the new center of Cj }
Return the centers of clusters

k-RMeans algorithm can use any feature similarity measure (feature correlation: Person, Euclid-
ian distance, symmetric uncertainty, etc.).

5.4 Fitness Function
The fitness function assesses the quality of an individual, a subset of k features (k <= n) where

n set of all features. For UFS, we defined a new fitness function relying on the k-RMeans algorithm.
The fitness value of an individual is the ratio of intra-cluster similarities to inter-cluster similarities.
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More formally, the fitness function of an individual I is computed as follows:

Fitness (I) =
∑

k

∑
i ∈ Ck, j = center of Ck

Pij∑
icenterof C i,

i<j
jcenterof Cj

Pij

(4)

This fitness function is defined from the objective functions 2 and 3 of the optimization problem
described in Section 4. A good individual is one who has a higher fitness function value. In our
experiments, we used Euclidean distance to infer the similarity. Thus, the lower fitness function, the
better the individual.

5.5 Selection
The roulette wheel selection is used at this step to select the potentially useful solutions for

recombination based on the fitness values of the individuals.

5.6 The Crossover Operator UFSX
The crossover operator explores the search space of the UFS solution by building a new offspring

from two individual parents. UFSX is a new smart crossover operator that we designed to generate
a new offspring by getting closer to the optimal solution. Let’s I1 and I2 be two individuals. UFSX
crossover builds a new offspring in O (k1 k2) as shown in Table 3.

Table 3: Pseudo-code for crossover operator

Algorithm UFSX Operator

Input: Individual I1

Individual I2

Output: The new individual I3

k1 = Size of first individual
k2 = Size of second individual
Select the value of k where k = min {k1, k2}
Select randomly a feature j from the set of features I1∪I2

I3←{j}
For i = 2 to k

Select a feature i from I1 ∪ I2 such that i is the farthest feature to the centroid of I3

I3←I3 ∪ {i}
Compute the centroid of I3

Return I3

The new crossover UFSX creates offspring with a smaller number of features and selects features
from the candidate set that are less similar. Thus, UFSX creates offspring that are closer to the optimal
solution.

5.7 The Mutation Operator UFSM
The mutation operator aims to diversify the search in order to explore different promising regions

of the search space of the problem. We designed a new mutation operator UFSM that involves
exchanging a randomly selected feature i of the individual I with the less similar feature in F-I. The
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time complexity of UFSM operator is O (k n) where n is the number of features in the original set F,
and k is the number of features included in the mutant individual, as shown in Table 4.

Table 4: Pseudo-code for mutation operator

Algorithm UFSM Operator

Input: Individual I
Set of all feature F

Output: The new individual (Inew)

Select randomly a feature i from I
Select a feature j from F-I such that j is the farthest feature from i
I←(I − {i}) ∪ {j}
Return Inew

5.8 Replacement and Stopping Condition
The final step is to replace the old population with the new population based on the selection

strategy. GAk-MEANS algorithm terminates at the end to announce the best solution in hand when
the predetermined number of generations is reached.

6 Evaluation Framework

We implemented GAk-MEANS algorithm for UFS problem using Spyder (Python 3.8) software.
Next, we explain the used datasets, the experiments settings, and the performance measures.

6.1 Datasets
Experiments have been conducted on 5 datasets of various types. The datasets are hand-written

image dataset USPS [44], face image datasets COIL20 [45], spoken letter recognition dataset Isolet
[46], biological dataset Lung [47], and face image dataset Orlraws10P [48]. Datasets description is
summarized in Table 5, which shows a considerable diversity in the number of instances, features, and
classes. LB refers to the lower bound of k, and UB refers to the upper bound of k. The search for
an optimal value of k is handled implicitly during the exploration of the search space of the UFS
problem. The value of k is changed gradually, and for each value make a run of GAk-MEANS. The
best solution according to the classification accuracy with the small value of k is returned.

Table 5: Data sets used in our experiments

Dataset #instances #features #classes {LB, UB}
USPS 9298 256 10 {10, 100}
Isloet 1560 617 26 {10, 250}
COIL20 1440 1024 20 {10, 250}
Lung 203 3312 5 {30, 400}
Orlraws10P 100 10304 10 {30, 1000}
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6.2 GA Parameters Settings
There are some user-specified parameters that have been learnt from our comprehensive exper-

iments by changing the experimental parameters and carrying out multiple runs of the algorithm
with different parameters’ values including the population size, probability of crossover operation,
probability of mutation operation, and number of iterations. Population size is the number of
individuals in a population. The probability of crossover operation referred to the probability of
crossover to occur in each iteration. For each individual, a randomly generated floating-point value is
compared to the crossover probability, and if it is less than the probability, crossover is performed;
otherwise, the offspring are identical to the parents. The probability of mutation operation is the
probability of mutation occurrence for the individual. For each individual, a randomly generated
floating-point value is compared to the mutation probability, and if it is less than the probability,
mutation is performed. The number of iterations, also called number of generations, refers to the
number of cycles before the termination. Table 6 shows these parameters.

Table 6: Common parameters for all datasets

Parameters Value

Population size 50
Probability of crossover operation 0.5
Probability of mutation operation 0.02
Number of iterations 50

6.3 Performance Measure
Results are evaluated in terms of the number of selected features, accuracy, and time. Classification

accuracy is measured as the percentage of the samples that were correctly classified. The accuracy of
each method was measured by using naïve Bayes classifier with 10-cross-validation. To evaluate the
goodness of the final set of features, the accuracy of the original data with full set of features was
compared with the accuracy of the data containing only selected features.

7 Results and Discussion

This section presents the results of the experiments on GAk-MEANS and analyses its perfor-
mance in terms of classification accuracy, run time, and the number of selected features. In addition,
the performance of GAk-MEANS has been compared with the results of other genetic algorithms.
Furthermore, the performance of GAk-MEANS is compared with the state-of-the-art unsupervised
feature selection techniques.

7.1 Evaluating the Performance of GAk-MEANS
The performance of GAk-MEANS is shown in Table 7. Results were averaged over 10 indepen-

dent runs. F and Fs refer to the total number of original features and selected features, respectively.
ACC refers to the classification accuracy and STDDEV(ACC) refers to the Standard Deviation of
accuracy.
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Table 7: Performance evaluation of GAk-MEANS algorithm

Datasets Results without FS Results with FS
F ACC Fs Reduction

#features
ACC Improvement

in ACC
STDDV
(ACC)

Best solution (fitness
function value)

USPS 256 0.7857 70 72.66% 0.8107 3.18% 0.023 0.2122
Isloet 617 0.7942 150 75.69% 0.8306 4.58% 0.024 0.298
COIL20 1024 0.8229 70 93.16% 0.8539 3.77% 0.017 0.2724
Lung 3312 0.8571 196 94.08% 0.9113 6.32% 0.035 0.068648
Orlraws10P 10304 0.95 398 96.14% 0.96 1.05% 0.017 0.490431

Fig. 2 shows the values of the accuracy in the y-axis and the number of selected features in the
x-axis for each dataset. We observed that accuracy increases with a reduction in the number of features.

Figure 2: The accuracy and the number of selected features for each dataset

Based on the results, we observed that GAk-MEANS has the ability to select a small number of
features. After applying GAk-MEANS algorithm on the given datasets and the dimension size had
become smaller, we found that, the selected subset of features by our proposed method had a higher
classification accuracy than all features’ accuracy. The positive effect of a small number of features is
clearly visible if we look at the results of the accuracy as shown in Table 7. In particular, GAk-MEANS
is able to significantly reduce the size of the features by 86.35% on average (72%–96%, 14%), which
leads to an increase of the accuracy by 3.78% on average (1.05%–6.32%) compared to using all features.

7.2 Comparisons of GAk-MEANS and Other Genetic Algorithms
Table 8 compares GAk-MEANS performance to other genetic algorithms. In particular, GAk-

MEANS are compared with the genetic algorithm using Sammon Error Function (GA-SEF) [20],
and the genetic algorithm using Sum of Squared Error Function (GA-SSEF) [16]. Table 8 shows the
result on different datasets.
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Table 8: Result of applying different algorithms on different datasets

Datasets Results without FS Results with FS

F ACC Criterions GAk-MEANS GA-SEF GA-SSEF

USPS 256 0.7857 Fs
ACC
Time
STD(ACC)

70
0.8107
2244.567s
0.0234

112
0.7703
1846.70 s
0.0261

79
0.7104
1071 s
0.0183

Isolet 617 0.7942 Fs
ACC
Time
STD(ACC)

150
0.8306
1883.441s
0.0235

153
0.7295
10703.97s
0.0361

103
0.6677
508.34 s
0.0383

COIL20 1024 0.8229 Fs
ACC
Time
STD(ACC)

70
0.8539
737.316 s
0.0173

159
0.8167
27827.45 s
0.0140

102
0.7896
360.11 s
0.0286

Lung 3312 0.8571 Fs
ACC
Time
STD(ACC)

196
0.9173
706.095 s
0.0354

300
0.9064
40486.17 s
0.0104

200
0.9049
243.43 s
0.0222

Orlraws10P 10304 0.95 Fs
ACC
Time
STD(ACC)

398
0.96
4331.49 s
0.0169

1681
0.94
149230 s
0.0227

2031
0.95
464.92 s
0.0116

Table 9 shows the percentage of the improvement in GAk-MEANS compared to other algorithms
in terms of reducing the number of features, improving the accuracy, and reducing the time.

Table 9: Comparing GAk-MEANS with other algorithms

% Improvement in GAk-MEANS vs.
GA-SEF

% Improvement in GAk-MEANS vs.
GA-SSEF

Reduction
#Features

Improvement
in ACC

Decrease in
Time

Reduction
#Features

Improvement
in ACC

Decrease
in Time

USPS 37.50% 5.24% −0.22 11.39% 14.12% −1.10
Isloet 1.96% 13.86% 0.82 −45.63% 24.40% −2.71
COIL20 55.97% 4.55% 0.97 31.37% 8.14% −1.05
Lung 34.67% 1.20% 0.98 2.00% 1.37% −1.90
Orlraw10P 76.32% 2.00% 0.97 80.40% 1.00% −8.32
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When comparing with the genetic algorithm using the Sammon Error Function, GAk-MEANS
on average is able to reduce the size of the features by 41.29% and improve the accuracy by 5.37%
with reduced time by 70.71%. When comparing with the genetic algorithm using the Sum of Squared
Error Function, GAk-MEANS on average is able to reduce the size of the subset of selected features
by 15.91% and improve the accuracy by 9.81% with an increase in time by 3 factors. Based on the
result, we observed that our proposed algorithm consumes less time than the Sammon Error function,
but more time than the Sum of Squared Error Function. According to the results of applying these
different algorithms, we found that the proposed algorithm overcomes the comparative methods by
selecting a small number of features that provide superior classification accuracy in a reasonable period
of time.

The proposed GAk-MEANS gave better performance based on the classification accuracy and
time overall datasets. Our algorithm achieves a higher level of dimensionality reduction by selecting
a smaller number of features than other methods. The superior performance of GAk-MEANS could
be attributed to several factors. A new fitness function is designed to guide the search toward the
promising regions involving relevant solutions. Furthermore, a new smart crossover and mutation
operators are used instead of classical operators to increase the diversity of the population with greater
fitness and provide a mechanism for escaping from a local optimum. Unlike other genetic algorithms,
which randomly generate the initial population, in GAk-MEANS algorithm we developed a procedure
to carefully generate the initial individuals; each individual regroups in a cluster a subset of similar
features intended to improve the search and to converge quickly to a satisfied near-optimal solution.

7.3 Comparisons of GAk-MEANS and Machine-Learning Techniques
In this section, we conducted experiments to compare the performance of GAk-MEANS and the

state-of-the-art ML based unsupervised feature selection methods. Four ML methods are compared
with the proposed algorithm; similarity-based methods: Laplacian Score (LS) and SPEC, sparse
learning-based methods: MCFS, and NDFS. We specified the number of selected features to be
uniform in all methods for each dataset, according to the obtained number of selected features from
GAk-MEANS in Section 6. Table 10 shows the result of applying these different methods on different
datasets in terms of the accuracy and time consuming.

Based on Table 10 we observed that, in the case of USPS dataset, GAk-MEANS outperformed
ML methods where the rate of improvement is 15.47%. According to the time metric, NDFS consumes
more time than all methods. Regarding the Isolet dataset, GAk-MEANS outperformed ML methods
where the improvement rate is 23.29%. In the case of COIL20 dataset, GAk-MEANS outperformed
ML methods where the rate of improvement is 25.60%. Regarding the Lung dataset, GAk-MEANS
outperformed ML method where the rate of improvement is 1.32%. In the case of Orlraws10P dataset,
GAk-MEANS outperformed ML methods where the rate of improvement is 2.67%. Based on the
result, we make the following observations: GAk-MEANS outperforms the Laplacian Score, SPEC,
MCFS, and NDFS for all datasets in terms of accuracy. On the other hand, GAk-MEANS consumes
more time than other methods, except in the case of USPS where NDFS method consumes more time
than other approaches.
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Table 10: Result of applying GAK-MEANS and different UFS algorithms

Dataset Algorithm Accuracy Time

USPS (Number of selected features = 70) Gak-MEANS 0.8107 2244.56 s
Laplacian Score 0.4466 13.162 s
SPEC 0.8083 174.732 s
MCFS 0.7482 157.823 s
NDFS 0.8052 4023.61 s

Isolet (Number of selected features = 150) GAk-MEANS 0.8306 1883.44 s
Laplacian Score 0.6032 0.537 s
SPEC 0.7462 6.869 s
MCFS 0.6089 2.485 s
NDFS 0.7365 7.215 s

COIL20 (Number of selected features = 70) GAk-MEANS 0.8539 737.316 s
Laplacian Score 0.6472 0.287 s
SPEC 0.6194 10.320 s
MCFS 0.7090 2.070 s
NDFS 0.74375 8.796 s

Lung (Number of selected features = 196) GAk-MEANS 0.9173 706.095 s
Laplacian Score 0.9162 0.062 s
SPEC 0.9064 0.301 s
MCFS 0.9171 0.546 s
NDFS 0.8817 48.196 s

Orlraws10P (Number of selected features = 398) GAk-MEANS 0.96 4331.49 s
Laplacian Score 0.95 0.0311 s
SPEC 0.90 0.3472 s
MCFS 0.95 3.3068 s
NDFS 0.94 837.561 s

Based on the results, we found that GAk-MEANS can increase the accuracy by 13.67% on average
with 88.76% average increase in time. We observed that, for Lung and Orlraws10P datasets, since the
number of features is challenging and greater than the number of samples, the performance of GAk-
MEANS is better than other algorithms, but the improvement rate is small. On the other hand, for
USPS, Isolet, and COIL20 where the number of features is less than in Lung and Orlraws10P, and less
than the number of samples, GAk-MEANS performs better than other algorithms.

8 Conclusion

In this paper, a new genetic algorithm combined with the k-Means algorithm for unsupervised
feature selection is proposed to find a low-dimension subset of features. The proposed method is
evaluated by using a set of datasets varying in dimensionality. The experiments demonstrate the
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effectiveness of the proposed method where the number of features is reduced, and the classification
accuracy is better than using all features. It also overcomes the other comparative methods by
obtaining better classification accuracy with a small number of selected features based on five common
datasets. GAk-MEANS can significantly reduce the size of the subset of selected features by 86.35%
on average, which leads to an increase of the accuracy by 3.78% on average compared to using
all features. When comparing with the genetic algorithm using the Sammon Error Function, GAk-
MEANS on average can reduce the size of the subset of selected features by 41.29% and improve the
accuracy by 5.37% with reduced time by 70.71%. When comparing with the genetic algorithm using
the Sum of Squared Error Function, GAk-MEANS on average can reduce the size of the subset of
selected features by 15.91% and improve the accuracy by 9.81% with an increase in time by 3 factors.
When compared with the machine-learning based methods, we observed that GAk-MEANS is able to
increase the accuracy by 13.67% on average with 88.76% average increase in time. Finally, according
to this study, we can conclude that carefully designed genetic algorithms can lead to competitive
techniques for solving the UFS problem.
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