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Abstract: The complexity of application scenarios and the enormous volume
of point cloud data make it difficult to quickly and effectively segment the
scenario only based on the point cloud. In this paper, to address the semantic
segmentation for safety driving of unmanned shuttle buses, an accurate and
effective point cloud-based semantic segmentation method is proposed for
specified scenarios (such as campus). Firstly, we analyze the characteristic
of the shuttle bus scenarios and propose to use ROI selection to reduce
the total points in computation, and then propose an improved semantic
segmentation model based on Cylinder3D, which improves mean Intersection
over Union (mIoU) by 1.3% over the original model on SemanticKITTI
data; then, a semantic category division method is proposed for road scenario
of shuttle bus and practical application requirements, and then we further
simplify the model to improve the efficiency without losing the accuracy.
Finally, the nuScenes dataset and the real gathered campus scene data are
used to validate and analyze the proposed method. The experimental results
on the nuScenes dataset and our data demonstrate that the proposed method
performs better than other point cloud semantic segmentation methods in
terms of application requirements for unmanned shuttle buses. Which has
a higher accuracy (82.73% in mIoU) and a higher computational efficiency
(inference speed of 90 ms).
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1 Introduction

Autonomous driving has emerged as a prominent research topic in academia and industry.
According to the report, China would be able to market driverless cars under certain conditions by
2025 [1]. In 2020, civilian car ownership reached 273.40 million, up 7.74 percent from 2019 [2]. While
automobiles make people’s life easier, the issue of road accidents cannot be overlooked. In China, there
were 244,676 road accidents only in the year 2020, with 61,703 deaths and 250,723 injuries, resulting in
direct property losses of about 1.3 billion Yuan [2]. As a result, the development and implementation
of safe and dependable driverless technology can drastically reduce traffic accident rates, as well as
casualties and property damage.
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The rapid improvement of deep learning technologies [3–6] over the previous decade has resulted
in significant progress in autonomous driving. Lidar, as one of the most important sensors for self-
driving cars, can directly acquire 3D environmental information and has been widely researched. To
ensure the safety and dependability of self-driving cars [7], it is critical to parse and semantically
segment scene element information at the smallest unit of sensing data (each pixel in an image, each
point in a point cloud). The task of point cloud semantic segmentation technology is to assign a
semantic information label to each point in the point cloud. Although point clouds can obtain 3D
coordinates of their surroundings, processing point clouds remains a difficult task [8].

Accurate point cloud semantic segmentation enables self-driving cars to achieve full-scene seman-
tic parsing and classification within the perception range, providing important supporting information
for subsequent scene understanding, and cognitive and other perception tasks (such as decision-
making and path planning). However, the sparsity and disorder of point clouds, the distinguishability
among objects, and the unbalanced data samples all pose significant challenges to road scene semantic
segmentation technology. Although advances in point cloud semantic segmentation technology have
been made, the large volume of point cloud data, as well as the complex and variable application
scenarios, make it difficult to achieve satisfactory results in specific scenarios. As a result, for campus
application scenarios, this paper proposes a point cloud-based semantic segmentation method for
campus unmanned shuttle buses. In this method, the characteristics of a campus for self-driving cars
are first analyzed, and then a semantic segmentation model based on Cylinder3D [9] was proposed
for efficiently and effectively segmenting the environment. The main contributions of this paper are
as follows:

(1) A point clouds-based semantic segmentation model for the unmanned shuttle bus is proposed
based on the campus scenarios. The mIoU (mean intersection over union) of the proposed method on
the SemanticKITTI dataset is 1.3% better than that of Cylinder3D.

(2) We propose to use an ROI (Region of Interest) selection for fast computation and a method
for dividing the semantic categories based on the road characteristics of unmanned shuttle buses. The
segmentation model is simplified based on the semantic categories to ensure computational efficiency
without sacrificing accuracy.

(3) The proposed method is tested and validated in a real-world campus setting to demonstrate its
accuracy and efficiency.

The structure of this paper is organized as follows: Section 2 presents the related works. The
problem definition is introduced in Section 3. Section 4 gives the details of the proposed model, and
the experiments are conducted in Section 5. The conclusion is followed in Section 6.

2 Related Work

Point cloud segmentation is a crucial task in point cloud processing. Early point cloud segmenta-
tion techniques primarily use geometric information features based on ground segmentation to achieve
good segmentation results through hand-crafted feature clustering, model fitting, and region growing
[10–12]. Although such point cloud segmentation methods produce some segmentation results, they
have several limitations. The hand-crafted features based solely on geometric features cannot meet
the practical application requirements for unmanned vehicles in complex and changing traffic scenes.
Because of the tremendous success of deep learning technology, the processing of point clouds using
deep neural networks for object detection [13–16], semantic segmentation [17], and object tracking [18]
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have become hot research topics. Deep learning-based point cloud segmentation techniques can be
divided into two categories based on data processing methods: direct methods, and indirect methods.

The direct processing method takes points as input directly. PointNet, as a seminal work,
constructs the network for classification and segmentation using MLP (Multi-layer Perceptron) and
max pool [19]. Because of PointNet only extracts pointwise and global features, Qi et al. further
proposed PointNet++ to extract hierarchical features by using FPS (Farthest Point Sampling) and
set abstraction module [20]. This model is widely used as the backbone for point-based point cloud
analysis models. Wang et al. construct a neighborhood graph using kNN (k-Nearest Neighbor) and
propose the DGCNN model [21]. An edge convolution operator is introduced in this model, and a
hierarchical dynamic graph structure is used to extract local-global features. Because of the irregularity
and disorder of point clouds, the convolution operation will have the problem that the convolution
kernels will vary at different positions. To address this issue, Li et al. proposed the PointCNN model
[22], in which the point cloud is first transformed to a fixed convolution kernel position region and
then the convolution operation is performed. Because of the non-Euclidean structure of point clouds,
Wang et al. propose a GNN (Graph Neural Networks) model that aggregates local information
using a graph attention module [23]. Hu et al. investigated the point cloud semantic segmentation
downsampling method and discover that random sampling produces competitive results. They then
proposed RandLA-Net, which combines local information using local spatial coding and attention
pooling [24].

In the indirect processing method, the laser point cloud is transformed into a regular structure
by projecting into a bird’s-eye-view (BEV)/range-view (RV) image or voxelization to overcome the
irregularity of the point cloud, so that semantic segmentation of the point cloud can be performed
directly using regular convolution operators. Lawin et al. proposed to project the point cloud onto
a set of synthetic 2D images, then 2D-CNN is used to extract the semantic features of these images,
and the semantic prediction scores of all images are re-projected back to the point cloud to obtain the
final point-wise segmentation results [25]. Wu et al. transformed the point cloud into an RV image and
propose SqueezeSeg [26], an end-to-end model based on CNN, to directly output point-wise labels, the
result is further refined by conditional random field (CRF). However, SqueezeSeg is still far from being
practical, Wu et al. further improve the model structure, and training loss, and proposed SqueezeSegV2
[27], and a domain adaption training pipeline is proposed to reduce the need for large annotated data.
Xu et al. investigate the difference in feature distribution between a LiDAR image and a regular RGB
image and propose SqueezeSegV3, which uses spatially-adaptive convolution to extract informative
features [28]. Occlusions will occur in the RV image, so Zhang et al. projected the point cloud into
the BEV image and propose PolarNet [29]. The BEV image partition is based on Polar coordinates to
fully utilize the characteristics of the LiDAR scan. In 2016, Huang et al. used 3D CNN to solve the 3D
point cloud labeling problem. The point cloud is divided into voxels, and the 3D CNN is used to extract
the voxel-wise features and predict voxel labels. The point in a voxel is assigned the same label as the
voxel for the point-wise label [30]. Tchapmi et al. proposed the SEGCloud model [31], which uses 3D
FCNN (Fully Convolutional Neural Network) [32] to predict coarse voxel labels and then uses trilinear
interpolation and fully connected CRF to transfer the predictions back to 3D points and refine the
semantic labels on the points. Because of the sparsity of the point cloud, many voxels are empty after
voxelization. Using 3D CNN directly on voxels will consume a significant amount of computational
power and memory on empty voxels. Graham et al. propose a submanifold sparse convolutional
network to improve 3D semantic segmentation efficiency [33]. Tang et al. proposed a highly efficient
point cloud inference engine to accelerate sparse convolution computation [34]. Zhu et al. proposed
the Cylinder3D model [9], which partitions point clouds using cylindrical voxelization and then uses
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3D sparse convolution to obtain semantic segmentation results. PVCNN, which combines point-based
and voxel-based methods, significantly improves accuracy and speed in semantic segmentation tasks
[35].

In summary, a lot of work for point cloud-based semantic segmentation has been proposed and
achieves relatively good results, while they are still encountered the problem of balance between
accuracy and speed in practical applications. Therefore, a more efficient and accurate method is
required in specified scenarios.

3 Problem Definition

In this paper, we focus on the perception of the surrounding environment problem by the
unmanned shuttle bus. The only sensor in use is LiDAR. As shown in Fig. 1, we scan the environment
using a single spinning LiDAR. The white car represents the shuttle bus, and the LiDAR is mounted
on the bus’s roof. The scanned point clouds are colored by the reflected intensity of the object, and
the image in the top-right corner is only for visualization.

Figure 1: The LiDAR data

Based on the point cloud data and the requirement for the safe driving of unmanned shuttle bus
in specific environments, we design a model that directly input the point sets and output the semantic
labels of interested points. Where the interested points are chosen based on the specific application
scenarios and the shuttle bus’s computational efficiency.

4 Our Approach

According to the problem definition, the framework of our approach is shown in Fig. 2. In the
framework, the point cloud is obtained from a spinning LiDAR first. Then based on the characteristics
of the shuttle bus and its application scenarios, the region of interest (ROI) is derived and the semantic
category is classified. After that, the processed point cloud is fed into a segmentation model for
semantic segmentation to obtain the point labels. The following subsections will give the details of
each step.
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Figure 2: The framework of the proposed approach predicts the semantic labels of point clouds

4.1 Point Cloud Acquisition
The point cloud is obtained by spinning the laser emitter, and the horizontal FOV (Field of View)

is 360°. Because the points of one frame are not obtained at the same time, the point cloud acquisition
must accurately capture a frame of data. Because we need a semantic segmentation model, so we train
the model based on widely used benchmark datasets that do not require the acquisition step. During
the experimental validation phase, we use the LiDAR drive method integrated into the ROS (Robot
Operating System) to acquire data for online testing or to record the ROS bag for offline testing. In
ROS, point clouds can be separated automatically in frames one by one.

4.2 Data Preprocessing
The purpose of this paper is to predict the semantic labeling of environment points. And the

primary goal of semantic segmentation is to allow unmanned shuttle buses to accurately parse their
surroundings to ensure accurate decision-making, planning, and control of unmanned shuttle buses.
The detection range of the LiDAR sensor is up to 200 meters, but as the distance between the sensor
and the object increases, the hit laser points become fewer and the data becomes sparser, making the
segmentation results less reliable. Furthermore, the larger the amount of data, the longer the processing
time and the unmanned vehicle’s decision control response time. The laser points generated by a typical
LiDAR sensor, Velodyne HDL-32E, can reach up to 695,000 per second with a range of 100 meters.
Given that the HDL-32E’s sampling frequency is 10 Hz, each frame of the point cloud can contain up
to 69,500 points. However, the detection range is not equal contributions in 360° horizontal FOV for
the shuttle bus, whose speed is limited to a relatively low speed. As a result, preprocessing the point
cloud is required to improve the reliability of the semantic segmentation results without increasing
processing time.

Given that the LiDAR sensor has a detection range of 200 meters and that the unmanned shuttle
bus is typically limited to less than 20 km/h. And the speed of dynamic objects in the environment is
also limited. As a result, the long-distance objects located on the bus’s side and rear have almost no
effect on normal vehicle driving. Therefore, we designed the region of interest based on vehicle driving
speed, braking comfort, and other factors to reduce the amount of data calculation while ensuring
safe driving.

Let the bus is running at a constant speed v, the LiDAR data collection and processing time be
te, and the processing result feedback time to the bus actuator be tc, Then the minimum front area
distance df min for safe driving is

df min = db + vte + vtc (1)

where db is the national standard vehicle braking distance [36], and the calculation formula is as
follows:

db = 0.15 × v + v2

130
(2)

Furthermore, a certain threshold dc must be maintained to obtain the final front area distance df ,
taking into account the smoothness and comfort of braking as well as the comfort of pedestrians or
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other vehicles in the scene,

df = df min + dc (3)

A certain amount of redundancy is added to the road width for the bus’s side, and a 10-meter space
is set aside for the bus’s rear. As a result, the safety perception area of the shuttle bus is calculated for
various speeds, as shown in Table 1. In this table, the data processing time te and feedback time tc are
assumed to be 100 ms and 200 ms, respectively. The table shows that the minimum distances in the front
area are, respectively, 3.08 m, 5.24 m, and 7.76 m for speeds of 10 km/h, 15 km/h, and 20 km/h. They
are quite short distances, and we also take the comfort of the passengers into account while setting
the front distance df at 50 meters. Concerning the side and rear of the bus, we only focus on emergent
situations around the bus, and the distances are set smaller than the front area, which are 10 m for the
rear of the bus, and 20 m for the side of the bus by considering the width of the road. Therefore, the
safety perception distance is set at 50 m in front, 20 m on the side, and 10 m in the back.

Table 1: Safety perception area of the shuttle bus

Speed db (m) te (ms) tc (ms) Response
distance
(m)

Front Rear Side

df min (m) df (m) Reserved
distance
(m)

Road
width
(m)

Reserved
distance
(m)

10 km/h 2.27 100 200 0.81 3.08 50 10 7.5 ∗ 2 20
15 km/h 3.98 100 200 1.26 5.24 50 10 7.5 ∗ 2 20
20 km/h 6.08 100 200 1.68 7.76 50 10 7.5 ∗ 2 20

The segmentation objects within the scenes can be divided into three major categories: traffic par-
ticipants (cars, pedestrians, etc.); traffic infrastructure (driving roads, sidewalks, etc.); and other scene
targets (trees, grass, buildings, etc.). The accurate segmentation of traffic participants is the foundation
for ensuring the safe operation of unmanned shuttle buses, and the accuracy of segmentation must be
ensured. The traffic participants are specifically divided into four categories based on the semantic
segmentation category division of the typical dataset [37,38] and the characteristics of the shuttle bus
scenario: Car, Large Vehicle, Bicycle, and Pedestrian. Considering that the differences between bicycles
and motorcycles in terms of driving speed and appearance (as shown in Fig. 3) are not significant,
and there is no significant difference in the processing logic of unmanned shuttle vehicles for both of
them, the paper classifies both bicycle and motorcycle as a single vehicle to improve data separability.
Traffic infrastructure is divided into two categories: Drivable area and Sidewalk. Other scene targets
are divided into three categories: Vegetation, Manmade area, and Other Flat area. Table 2 displays the
final scene segmentation categories.

So, in summary, when a frame of the point cloud is collected by Lidar sensor, the data preprocess-
ing is used to select the points in the ROI, and then feed into the semantic segmentation model. To
train the model, the ground truth labels of the training dataset are divided into 9 categories as shown
in Table 2.
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(a) motorcycle (b) bicycle

Figure 3: The point cloud data of motorcycle and bicycle

Table 2: The scene segmentation categories

ID Category ID Category

1 Bicycle 6 Other flat
2 Large vehicles 7 Sidewalk
3 Car 8 Manmade
4 Pedestrian 9 Vegetation
5 Drivable

4.3 Semantic Segmentation
The semantic segmentation model of this paper is shown in Fig. 4. This model is based on the

Cylinder3D model. The point cloud is first voxelized by cylindrical partition, then two branches (point
branch and voxel branch) are used for feature extraction, and finally, the voxel features are de-voxelized
and concatenated with point features to estimate the semantic label of each point.

In the voxel partition and feature generation stage, a Local-feature Adaptive Extraction Module
(LAEM) is proposed for effective voxel feature extraction. The details of LAEM are given below:

For a point cloud P = {(pi, ai, li) |i = 1, 2, · · · , N } , pi ∈ R
1×3 with N points, where i indicates ith

point, pi represents the 3D coordinates (x, y, z) in the Cartesian coordinate system, ai is the intensity,
and li is the corresponding semantic label of point pi. Transform P from Cartesian coordinates to
cylindrical coordinates, and then the point cloud can be voxelized based on cylindrical partition [9].
Then for a point in a voxel, the point feature fi can be encoded as

fi = (pi ⊕ piv ⊕ (piv − pic) ⊕ ai) (4)

where piv = (ρ, θ , z) is the cylindrical coordinate of point pi, ρ is the vertical angle, θ indicates the
horizontal angle, pic is the center coordinate of the voxel that includes piv, (piv − pic) then indicates the
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position offset of the point piv with respect to the center point pic, ⊕ is concatenation operation. Because
both pi and piv have z coordinates, so fi ignores the second z in piv and obtains 9-dim features.
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Figure 4: The semantic segmentation model

Cylinder3D combines the point features within a voxel using max-pool to obtain the voxel feature.
However, points in the voxel are located in different positions and contribute differently to the voxel
feature. Therefore, this paper proposes to use an attention mechanism [39] to design LAEM. A 32-
beam LiDAR frame can contain more than 60,000 points, but the number of points within each voxel
varies. Padding operations are required to ensure the efficiency of parallel operations while adding
extra memory and computation consumption [40]. In contrast, we design a local-global position
encoding module Ai to estimate the weight of points in a voxel.

Ai = (pi ⊕ piv ⊕ (piv − pic) ⊕ ai ⊕ Ii) (5)

where Ii is the coordinate of the voxel where point pi located. As shown in Fig. 5, within the voxel, the
positional encoding module of the point pi contains both the global coordinate pi and piv as well as
the local offset (piv − pic). To ensure computational efficiency and avoid adding additional data, the
voxel coordinate Ii is explicitly added to the position encoding module. So that the points differ from
one another, even if they have the same offset but are in different voxels. And then MLP is followed
to estimate the weight ωi

ωi = g(Ai, W) (6)

where g(·) are MLP followed by softmax, and W are the learnable parameters.

Weighted aggregation can then be used to fuse the point features within a voxel.

f v = Pg(MLP(fi) � ωi), i in v (7)

where Pg(·) represents the feature aggregation operation, which can be addition or max aggregation,
f v is the feature of voxel v, and i in v indicates the index of point pi located in voxel v.
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The voxel features extracted by LAEM are then fed into the backbone network to extract semantic
features. The backbone is the same as Cylinder3D and is shown in Fig. 6. In the backbone network,
the voxel features are first fed into an asymmetrical convolutional block (3D-AsyConv), the 3D sparse
convolution (SpConv) is followed to downsample the features, then the features are fed into the next
3D-AsyConv block. When the global feature is extracted, the DeSpConv is used to upsample the
feature to the original dimension. Finally, a dimension-decomposition-based context modeling module
is used to generate the final voxel features. More details can be found in [9].

Vox mapV

SpConv:SparseConv3D   DeSpConv:DeSparseConv3D

3D
-A

syC
onv

3D
-

A
syC

onv

SpC
onv

SpC
onv

3D
- A

syC
onv

3D
-

A
syC

onv

D
eSpC

onv

3D
-

A
syC

onv

D
eSpC

onv

D
D

C
M

output feature

3D
-

A
syC

onv

SpC
onv

D
eS

pC
onv

s Sigmoid Function

3D-AsyConv: 3D Asymmetrical Conv Block DDCM:Dimension-Decomposition based Context Modeling

Iuput

3×1×3

1×
3×

3

3×1×3

1×
3×

3 3×1×1

1×
1×

3

Iuput

s s s

Element-wise Addition Element-wise Multiplication

Figure 6: The backbone



2716 IASC, 2023, vol.37, no.3

The voxel features are concatenated with point branch features, which are obtained by several
MLP layers, to estimate the final semantic results. In addition to the training loss function, we use
cross-entropy and Lovasz-softmax loss functions.

5 Experiments

In this section, experiments based on datasets and our data are carried out to validate the proposed
method.

5.1 Experimental Platform and Configuration
In all experiments, we use a platform with an Intel Core i9–10850 K 3.6 GHz CPU, an NVIDIA

GeForce RTX 3090, 64 G RAM. The operating system is Ubuntu18.04. In addition, we use an
unmanned shuttle bus, as shown in Fig. 7, to capture our dataset, the detailed information is listed
in Table 3.

Figure 7: The unmanned shuttle bus

Table 3: Parameters of the unmanned shuttle bus

Overall Length 3.5 m; width 1.5 m
Max speed: 40 km/h
Max climbing degree: 20%

Drive system Drive mode: Rear wheel single
motor
Rated power: 5 kW
Rated voltage: 48 V
Rated rotational speed: 3500 rpm
Speed feedback error: ±0.1 m/s

Underlying systems Communication
protocol: CAN
Development
environment:
MATLAB/Simulink

(Continued)
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Table 3 (continued)

Steering system Steering form: Front axle
Ackermann steering
Response time <100 ms
Rated power: 400 W
Rated voltage: 48 V

Power system Battery form: Lead
battery
Rated voltage: 48 V
Rated current: 100 A
Capacity: 7 kwh

Braking system Brake form: Four-wheel disc
brake
Brake motor power: 400 W
Response time < 200 ms
Maximum deceleration: 0.7 g

LiDAR Velodyne HDL-32E

5.2 Experimental Results on Dataset
The SemanticKITTI and nuScenes datasets are used first to validate the effectiveness of the

proposed model. For the fair comparison, the dataset evaluation keeps the same class categories as
the original dataset, the data processing method as Cylinder3D, and no ROI selection. Concretely, in
the SemanticKITTI dataset, the point cloud is voxelized and the voxel resolution is 480 × 360 × 32,
and the voxel range is set to ρ ∈ [0, 50], θ ∈ [−π , π ], z ∈ [−3, 2]. The original point cloud features are
encoded with a dimension of 9, the number of categories is set to 20, the batch size is set to 2, and 40
epochs are trained. The data are shuffled before being fed into the network to increase the network’s
robustness, the initial learning rate will be set to 0.001, and the learning rate will be updated using
the cosine annealing algorithm, evaluated every 4599 iterations, and the model will be trained using
the Adam optimization algorithm. When training on the nuScenes dataset, the learning rate is set to
0.002, and the number of categories is set to 16. Because of the different dataset sizes, model evaluation
is performed every 8000 iterations to save the best model, and the rest of the settings remain the
same as when training on the SemanticKITTI dataset. To evaluate the performance of different
methods, we follow the metrics of SemanticKITTI and nuScenes to use the mIoU over all classes
in our paper, the mIoU is as follows:

mIoU = 1
C

C∑

c=1

TPc

TPc + FPc + FNc

(8)

where C is the number of classes, TPc, FPc and FNc correspond to the number of true positive, false
positive, and false negative predictions for class c, respectively.

5.2.1 SemanticKITTI

Table 4 shows the comparison results of the proposed method with various semantic segmentation
models on the SemanticKITTI dataset. It can be seen that the proposed method has excellent
performance under a combination of various IOU and mIoU evaluation metrics. When compared
to methods based on point cloud projection to 2D images, such as Polar-Net [29] based on the bird’s-
eye view and SqueezeSegV3 [28] based on range view, the proposed method improves mIoU metrics by
13% and 14.6 percent, respectively. There is also a significant improvement in segmentation accuracy
when compared to methods that operate directly on points, such as RandLA-Net [24] and KPConv
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[41]. In addition, the proposed method outperforms PVCNN [35] by 2.2% and Cylinder3D by 1.3%
in mIoU.

Table 4: Results on SemanticKITTI

Methods PointNet++ RandLA-Net PolarNet SqueezeSegv3 KPConv PVCNN Cylinder3D Ours
Car 53.7 94.1 93.8 92.5 96 96.2 96.1 96.5
Bicycle 1.9 20 40.3 38.7 32 50.6 63.6 63.9
Motorcycle 0.2 20.3 30.1 36.5 42.5 50.4 59.8 61.1
Truck 0.9 41.2 22.9 29.6 33.4 53.6 58.6 59.2
Other-vehicle 0.2 22 28.5 33 44.3 57.4 58.6 59.4
Person 0.9 37.3 43.2 45.6 61.5 67.4 72.9 74.6
Bicyclist 1.0 40.1 40.2 46.2 61.6 67.1 67.9 65.4
Motorcyclist 0.0 6.3 5.6 20.1 11.8 50.3 38 38.2
Road 72.0 90.3 90.8 91.7 88.8 90.2 90 91.9
Parking 18.7 54.2 61.7 63.4 61.3 67.6 65.1 66.9
Sidewalk 41.8 66.7 74.4 74.8 72.7 75.4 75.5 77.2
Other-ground 5.6 14.7 21.7 26.4 31.6 21.8 29.3 29.2
Building 62.3 79.3 90 89 90.5 91.3 91.0 91.4
Fence 16.9 54.9 61.3 59.4 64.2 66.9 65.5 67.3
Vegetation 46.5 77.5 84.0 82 84.8 85.1 83.4 87.3
Trunk 13.8 59.5 65.5 58.7 69.2 73.4 71.8 73.5
Terrain 30.0 60.6 67.8 65.4 69.1 71.0 68.5 71.9
Pole 6.0 43.7 51.8 49.6 56.4 64.3 62.6 65.3
Traffic 8.9 38.2 57.5 58.9 47.4 67.3 65.6 68.4
mIoU 20.1 48.5 54.3 55.9 58.9 66.7 67.6 68.9

5.2.2 NuScenes

Table 5 shows the comparison results of the proposed method with typical semantic segmentation
models on the nuScenes dataset, where the Cylinder3D model results are retraining results based on
the official source code. It can be seen that the proposed method performs better for pedestrians, cars,
and motorcycles, which are the main participants in traffic scenarios. Although the bicycle is only 32.5,
it is 4.9% higher than Cylinder3D, and the total mIoU is 2% higher compared to Cylinder3D.

Table 5: Results on nuScenes

Methods PolarNet Salsanext Cylinder3D Ours

Barrier 65.1 68.9 71.5 73.5
Bicycle 19.8 25.1 27.6 32.5
Bus 76.3 77.1 82.8 90.1
Car 86.3 85.1 86.7 86.6
Construction-
vehicle

28.6 31.5 37.3 43.3

Motorcycle 63.8 61.9 70.0 73.4
Pedestrian 54.9 69.2 74.4 76.2
Traffic-cone 43.5 48.1 50.8 54.6
Trailer 43.9 49.2 57.3 57.6

(Continued)
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Table 5 (continued)

Methods PolarNet Salsanext Cylinder3D Ours

Truck 66.1 65.7 79.2 80.3
Drivable 94.8 94.2 95.9 94.9
Other-flat 65.8 62.7 69.8 71.3
Sidewalk 71.4 68.9 72.6 72.9
Terrain 71.1 70.3 72.8 73.2
Manmade 82.0 81.2 86.9 87.1
Vegetation 80.9 80.5 86.0 86.1
mIoU 63.4 65.0 70.1 72.1

The experimental results on two datasets show that the proposed method outperforms other
methods. However, because the data preprocessing step and category division are not validated, the
proposed method is evaluated further on our data in the following section.

5.3 Experimental Results on Our Data
To validate the validity and reliability of the proposed method for the specified scenario (for

example, campus), the nuScenes dataset categories are reclassified according to the categories listed in
Table 2, then the model is trained and evaluated in the nuScenes dataset, while analyzed and validated
in our data.

Table 6 shows the results in the nuScenes dataset based on the categories in Table 2, and Fig. 8
shows some of the visualization results. It can be seen that the total mIoU of the model reaches
82.73%. For important traffic participants (pedestrians, cars, bicycles, large vehicles, etc.), the lowest
segmentation IoU reaches 74.32%. For the passable area segmentation IoU reaches 95%, and the
lowest IoU is for the sidewalk, which also reaches 73.5%.

Table 6: Results on nuScenes dataset with 9 categories

ID Category IoU

1 Bicycle 74.32
2 Large vehicles 87.54
3 Car 86.10
4 Pedestrian 77.14
5 Drivable 95.18
6 Other flat 75.77
7 Sidewalk 73.50
8 Manmade 89.27
9 Vegetation 85.63

mIoU 82.73
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Image Ground Truth Prediction of our method

noise bicycle large vehicle car driveable other flat sidewalk manmade vegetationpedestrian

Figure 8: The visualization results on nuScenes dataset with 9 categories

Fig. 9 compares the point numbers of every point cloud frame and the relative inference time
consumption with and without ROI selection. As can be seen, the prepared time without ROI takes
approximately 33 ms, whereas the prepared time with ROI and ROI selection takes nearly the same
time. One frame point cloud with ROI reduces the number of points from 60 thousand to 35 thousand,
and the inference time is reduced from approximately 143 ms to approximately 90 ms. In addition, the
semantic category is reduced from 16 to 9 and the difference of inter-class is increased, therefore, the
backbone model is streamlined accordingly.

We use ROS (Robot Operation System) as the system of the unmanned shuttle bus to evaluate
our method on the shuttle bus, and the working flowchart of the point cloud process node is shown
in Fig. 10.
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Without ROI With ROI

Without ROI With ROI

Without ROI - Prepare time for inference 

ROI selection 

With ROI - Prepare time for inference 

Figure 9: The comparison with and without ROI selection. Top: The preparation time of the point
cloud; middle: The point numbers; bottom: The inference time of one frame

Parameter and model 
checkpoint load

Point cloud 
preprocess

Model 
inference

Start
Publish 
results

End

Node
/velodyne_points

Loop until no input data

Figure 10: The point cloud inference node in ROS

Based on the ROS node, we test the inference time of the model with different modules and list
the results in Table 7. Where the baseline is the model used in Section 5.2.2. It can be seen that the
category division reduces network complexity, the streamlined model reduces the number of learned
parameters, reduces the computational and memory pressure of the hardware, and collaborates with
the region of interest, resulting in a 38 percent decrease in final inference time, and the inference time
is less than 100 ms when compared to the frequency of 10 HZ of LIDAR collected data, which can
meet the real-time requirements.

Finally, the unmanned shuttle vehicle is used to collect and label data in various scenes on campus,
and Fig. 11 depicts the images corresponding to the scenes with collected point cloud data. Fig. 12
gives the segmentation results in the campus and Fig. 13 gives the detail of the segmentation results.
It can be seen that the proposed method has a good segmentation effect.
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Table 7: Inference time of point cloud

Baseline 9 categories ROI selection Backbone streamline Inference time (ms)
√ 146√ √ 143√ √ √ 103√ √ √ √ 90

Figure 11: The corresponding image of our data

Figure 12: (Continued)
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Image Groud Truth Prediction of our method
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Figure 12: The segmentation results with our data

Figure 13: The detail of our segmentation results
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The proposed method shows good performance according to the experimental results on
SemanticKITTI, nuScenes dataset. After being integrated into ROS, the proposed method only spends
90 ms to obtain the segmentation results in our shuttle bus test platform. Which demonstrates the
accuracy and efficiency of the proposed method.

6 Conclusion

Based on the existing point cloud segmentation model, this paper proposes a point cloud semantic
segmentation method for an unmanned shuttle bus scenario. We design a semantic category division
method based on the characteristics of the shuttle bus scenario, analyze the shortcomings of the
existing semantic segmentation model, and design a local feature adaptive extraction module to
improve the feature extraction effect. The proposed method has obvious advantages in overall accuracy
and efficiency, as demonstrated by experimental validation on SemanticKITTI, nuScenes, and actual
collected data, and serves as a good guarantee for the safe operation of an unmanned shuttle bus. The
next step will be to validate various extreme cases to improve the method’s practicality and robustness
while combining images with point clouds to achieve more accurate segmentation will also require
further research.
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