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Abstract: Existing power anomaly detection is mainly based on a pattern
matching algorithm. However, this method requires a lot of manual work,
is time-consuming, and cannot detect unknown anomalies. Moreover, a
large amount of labeled anomaly data is required in machine learning-
based anomaly detection. Therefore, this paper proposes the application of
a generative adversarial network (GAN) to massive data stream anomaly
identification, diagnosis, and prediction in power dispatching automation
systems. Firstly, to address the problem of the small amount of anomaly data,
a GAN is used to obtain reliable labeled datasets for fault diagnosis model
training based on a few labeled data points. Then, a two-step detection process
is designed for the characteristics of grid anomalies, where the generated
samples are first input to the XGBoost recognition system to identify the
large class of anomalies in the first step. Thereafter, the data processed in
the first step are input to the joint model of Convolutional Neural Networks
(CNN) and Long short-term memory (LSTM) for fine-grained analysis to
detect the small class of anomalies in the second step. Extensive experiments
show that our work can reduce a lot of manual work and outperform the
state-of-art anomalies classification algorithms for power dispatching data
network.

Keywords: Anomaly identification; GAN; XGBoost; CNN+LSTM; fault
diagnosis; fault prediction

1 Introduction

With the acceleration of power grid construction and the expansion of its scale, various dispatch
automation systems have successively been built. Moreover, business interactions between the various
systems of local dispatching and county dispatching have become more frequent with the power
dispatching data network emerging. What followed was an exponential growth in the amount of power
dispatching data, along with the era of big data in the power dispatching data networks. To meet the
needs of a smart grid, an intelligent dispatch system should have a more comprehensive and accurate
data acquisition system, with a powerful intelligent security early warning function. It should also,
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and pay attention to the coordination of system safety and economy in dispatch decisions. Thus, when
the system fails, it can quickly Diagnose faults and provide fault recovery decisions.

At present, with the increase in dispatch data, the monitoring data of electric power dispatch
has the nature of a large, rapid, and continuous sequence that has the characteristics of streaming
data. Additionally, changes in the distribution of streaming data can introduce concept drift problems.
Current anomaly detection methods for dispatching data mainly include methods such as threshold
judgment based on a single system and analysis methods based on static offline data. The threshold
judgment method based on a single system has the following limitations: (i) the utilization rate of
equipment information and the correct rate of state evaluation are low; (ii) it is difficult to detect the
latent faults and fault types of equipment; (iii) the thresholds in relevant standards are fixed and it is
difficult to adapt to the differences in equipment operating conditions. The analysis method based on
static offline data has issues that include not being closely integrated with the operation system, being
unable to quickly reflect the operating status of the system, and being unable to detect anomalies in
time [1].

In the application scenario of grid, power big data has the characteristics of sequence, timing, and
large number, whereas the number of abnormal samples generated is relatively very small, and many
anomalies can be subdivided into smaller abnormalities. Therefore, in this paper we propose a novel
anomaly detection method of massive data flow in dispatch automation system. The contributions are
as follows:

1. First, we introduce GAN to the field of online data volume parsing and rapid anomaly
identification of dispatch automation systems, combining GAN with classical fault diagnosis
methods. With GAN, a large number of reliable labeled datasets are obtained for the training
of fault diagnosis models based on a few labeled data points, which not only greatly reduces
the time required for manually labeling the training data but also improves the accuracy of the
fault diagnosis models.

2. Then we propose a two-step detection algorithm. In the first step, the XGBoost algorithm is
selected to reduce the dimensionality of the data, remove redundant data, select the optimal
combination of features for the input parameters in the fault detection phase, and divide the
final processed data into a training set and test set for the training of the XGBoost fault
detection model used to obtain the diagnostic results of the large class of anomalies. Then the
data processed in the first step is then input into the joint CNN+LSTM model for fine-grained
analysis to detect the small class of anomalies. This takes advantage of the fact that CNN
can automatically extract features from massive data and that LSTM can handle time series
variations to combine the two algorithmic models to better handle various grid anomalies. The
two-step detection process integrates the characteristics of the grid data and fully utilizes the
advantages of various algorithmic models to obtain optimal diagnostic results.

3. Simulation results have shown that this method can achieve accurate and efficient grid fault
diagnosis and prediction. This method can discover safety hazards in the dispatch automation
system in real time and lays a good foundation for the safe, stable, high-quality, and economical
operation of the power grid.

The remainder of this paper is structured as follows: the second part presents the related work,the
third part presents the system model,the fourth part discusses the proposed fault diagnosis method,
the fifth part contains the experimental results and analysis, and the sixth part contains the conclusion.
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2 Related Work

In the field of smart grid anomaly detection, scholars from various countries have recently
used machine learning to actively explore, thereby achieving certain research results. For example,
Ying et al. [2] combined the rule-based method with the nearest neighbor-based method to design an
anomaly detection method for detecting network traffic in power systems. Also, Wang et al. [3] and
Yang et al. [4] used existing SVM as well as k-means anomaly detection methods to perform anomaly
diagnosis for the characteristics of power system data. Furthermore, Pang et al. [5] combined grid
structure with data characteristics to establish an anomaly detection framework based on the spectral
theory and analyzed its residuals. Additionally, Xu et al. [6] proposed an anomaly user behavior
detection method based on CNN-GS-SVM, which is better than the traditional method in terms of
accuracy and efficiency. Yang et al. [7] combined LightGBM with an improved LSTM model for
the anomalous power usage detection method, with their experimental results indicating that this
method had better anomaly detection accuracy and anomaly classification accuracy. Also, Li et al. [8]
used LSTM to extract features and used a traffic anomaly detection method based on an improved
SVM-embedded decision tree model, which has higher accuracy when compared to the traditional
method. All of these methods were used in combination with existing methods for the characteristics
of power data.

Other scholars have researched the time series problem of the power system. For example, Ul
Amin et al. [9] proposed an efficient Deep Learning Model for anomaly detection in video streams.
The model takes video segmentations as input using a shot boundary detection algorithm and uses
a Convolutional Neural Network (CNN) to extract salient spatiotemporal features. Lastly, Long
Short-Term Memories (LSTM) cells are employed to learn spatiotemporal features from a sequence
of frames per sample of each abnormal event for anomaly detection. The combination of CNN
and LSTM greatly improves the classification accuracy of anomalies data and the effectiveness of
the training process. However, the above literatures have a limitation that is the lack of training
and testing data. Therefore, we propose the use of GAN to generate data samples for training the
classification model. Yang et al. [10] quantified the historical data of transmission and substation
equipment using self-organizing neural networks, mined the changing patterns of data over time, and
combined autoregressive models and DBSCAN clustering methods to establish anomaly models. After
segmenting the power data time series into linear representations, Pei et al. [11] innovatively combined
the Venn diagram in graph theory with the nearest neighbor distribution density in the nearest
neighbor to achieve the goal of a high detection rate and low false alarm rate. Moreover, Wang et al. [12]
conducted hierarchical analyses and discussions on the importance of each dimension of power system
data and then combined the nearest neighbor method for electricity theft monitoring. Pan et al. [13]
used spectral theory to analyze the composition structure of satellite power system data and combined
association rules and clustering to learn data laws and build models for real-time detection. However,
the aforementioned methods are more for time-invariant power system data and are not applicable
in power systems with multiple data types and large volumes, while research on power system
anomaly detection methods with conceptual drift remains at the exploration stage. Additionally, the
dimensional size of data is one of the most important factors affecting the performance of anomaly
detection methods, while the number of data dimensions that must be monitored by the power dispatch
automation system business depends on the type of business. Therefore, it is necessary to use detection
methods that can have good detection effects in all dimensions [14,15].

Based on the aforementioned research on grid fault diagnosis methods, it can be concluded that
traditional grid fault diagnosis methods has the following drawbacks. First, insufficient data for
analysis. Second, having difficulty in finding hidden problems. Third, requiring a large number of
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manually labeled training datasets which is time-consuming and labor-intensive [16]. Additionally, grid
faults will become more diverse and the identification of grid faults will rely on more Key Performance
Indicators (KPIs). Thus, it is necessary to consider how to obtain a large number of reliable datasets in
a complex power grid. The most common practice involves extracting information from labeled cases
of known faults, with the extracted dataset being used to obtain fault diagnosis strategies through
supervised learning. However, few histories are available since experts do not tend to collect the values
of KPIs and the tags associated with the faults they solve. In particular, there are not many faults
in the real network and there are not many labeled cases for each particular fault. As a result, the
historical data available from the real network is not rich enough to achieve the results achieved by
using supervised techniques for building a diagnostic system. Moreover, the problem of not having
sufficient historical data can be solved by generative adversarial networks (GANs).

In recent years, GANs have been widely used in the fields of computer vision, image recognition,
and natural language processing as a typical method for implementing artificial intelligence, thereby
allowing people to appreciate its amazing ability in dealing with complex problems. A GAN consists of
two independent deep networks [17]: a generator and a discriminator. The generator accepts a random
variable that obeys the pg distribution of random variables and maps it to the data distribution. The
discriminator outputs 1 and 0 to distinguish the real samples from the generated ones, respectively.
During the GAN training process, samples are generated and classified separately using the generator
and discriminator to adversarially improve the performance. Experimental results have demonstrated
the potential of this framework by using this method for the recognition of MNIST handwritten
datasets. However, Wang [18] experienced some problems in the actual training process, such as
training difficulties and a lack of diversity in the generated samples, among other issues. The authors
of [19,20] proposed Wasserstein GAN (WGAN) to address the problems in [18], and the simulation
results showed that the framework can solve the problem of GAN training instability and ensure the
diversity of the generated samples. Mowlaei et al. [21] proposed an algorithm named Population-Scale
Genomic Data Augmentation based on Conditional Generative Adversarial Networks to enhance
the amount and diversity of genomic data by transforming samples already in the data rather than
collecting new samples. Zhang [22] first explained the reasons for GAN training instability from a
theoretical perspective. Then, Wasserstein distance was introduced to replace Jensen-Shannon (JS)
scatter and Kullback Leibler (KL) scatter and used as an optimization objective. Compared to the KL
scatter and JS scatter in the original GAN, the WGAN solves the gradient vanishing problem that
exists in the original GAN. Currently, GANs are mainly applied in the field of computer vision [23];
however, they are rarely used in communication systems.

The current anomaly detection methods for power dispatching data mainly include simple
threshold determination based on a single system and analysis methods based on static offline data.
The simple threshold determination method based on a single system has following limitations. On
the one hand, the equipment information utilization rate and status evaluation accuracy are low, and
on the other hand, it is difficult to detect latent faults and fault categories of the equipment. Moreover,
the fixed threshold in relevant standards and regulations is difficult to combine with the differences
in equipment operating conditions. The analysis method based on static offline data is not closely
connected with the production and operation system, and cannot quickly reflect the system operation
status and timely detect abnormal phenomena. Therefore, this paper uses machine learning algorithm
to realize anomaly detection of massive information flow.
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3 System Model

In this paper, we consider the power dispatch automation system presented in Fig. 1, including the
main network and the distribution network with separate acquisition workstations. Among them, the
main network data acquisition workstation mainly collects the message data in the main network; that
is, the message data sent from the remote control device of the factory station to the front-end processor
of the master station. The main network data acquisition workstation is mainly connected to the front
switch through the mirror port, and the front switch is connected to the front-end processor, while the
two front-end processors are used as a backup for each other. Connecting the two inter-standby front
switches can make the collected data more comprehensive and complete while preventing the data
source from being completely cut off when the data dispatching network equipment fails or undergoes
maintenance. The distribution network data collection workstation mainly collects the message data in
the distribution network, which is sent by the distribution automatic terminal of the plant station. The
plant station distribution automatic terminal sends data up to the main station in the security access
zone, while the message data is gathered to the security zone switch through isolating devices and the
distribution network data collection workstation is connected to the security zone switch through the
mirror port. Based on big data and Artificial Intelligence (AI) technology, the anomaly identification
and diagnosis servers perform the intelligent identification, diagnosis, and prediction of faults in the
power dispatching automation system.

In this paper, we study the characteristics, discrimination methods, and prediction techniques for
anomalies in massive information flow. First, we summarize the statute message structure and applica-
tion function classification. Second, we study the anomaly characteristics and fault analysis of massive
information flow to classify the dispatching flow anomaly. Finally, we implement massive information
flow anomaly identification, diagnosis, and prediction using a machine learning algorithm.

According to the characteristics of grid anomaly data, we designed an anomaly feature and fault
discrimination framework based on massive information streams (see Fig. 2). Firstly, for the data
generated by the power dispatching data network, we use the lossless acquisition to get the message
information stream. For the problem of insufficient anomalous data, we use WGAN-GP to obtain
enough reliable datasets with labels for the training of fault diagnosis models based on a few labeled
data points. Then, a two-step detection process was designed for the known anomaly characteristics
of the power grid. In the first step of this process, the generated samples are input into the XGBoost
recognition system to identify the large class of anomalies. Then, the data processed in the first step
are input into the joint CNN+LSTM model for fine-grained analysis to detect the small class of
anomalies.

Fig. 2 describes the complete process of anomalies detection in power dispatching data network.
First, we implement a preprocessing step on the collected data to remove irrelevant features which may
have a great influence to the classification module if had not been done. Second, we use the WGAN-
GP algorithm to expand samples. Then, the generated samples are put into the XGBoost recognition
system to classify the large class anomalies. In the end, samples that have not been identified will be
put into the joint CNN+LSTM model to realize the classification of small class samples.

The real-time attributes and reliability of the dispatching service information flow directly affect
the realization of each service function, which means that transmission delay should be guaranteed to
be within the required time range, with no packet loss or retransmission in case of loss. Due to some
problems in the design, setting, and maintenance of channels, equipment, and systems that cannot be
eliminated, “four remote” anomalies may occur. Some of these anomalies are in response to the real
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state of the site, while others are caused by various errors. Notably, these anomalies result in major
issues related to the operation of a power system and its maintenance personnel [24].

Figure 1: Power automatic dispatching system

Figure 2: Framework for anomaly classification and fault detection techniques in massive information
flow
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According to the formation mechanism and characteristic quantity of dispatching service infor-
mation flow anomaly for classification, this paper classifies the data flow fault anomaly into func-
tional anomaly, timeliness anomaly, communication anomaly, and integrity anomaly. The details are
presented in Fig. 3.

Figure 3: Classification of data flow faults
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(1) Functional anomalies

Functional anomalies contain the following cases. (a) Message disorder: the message is disas-
sembled since multiple 104 messages return confusing serial numbers or there are missing messages.
(b) Telemetry values are not refreshed: the telemetry value in the telemetry message has not changed
for a long time. (c) General recall not to return: no message is returned after sending the general
call command. (d) No SOE upload after action: the Sequence of Event (SOE) signal is not sent up
after the protection signal is actuated. (e) Send and receive test frame anomalies: when there is no
information interaction between the master and the distribution terminal, the master does not send
test frames and the terminal side sends test frames for a long time without any messages from the
master in between. In the 104 protocol, if the master does not send a message after a certain period or
the terminal does not send any messages, then both sides can send test frames by sending U frames at
the frequency. (f) Incorrect remote return message: the remote preset command should return “preset
successfully”, but instead returns “execute successfully.” Or the remote execution command should
have returned “execute successfully,” but instead returned “preset successfully.” (g) Inconsistent master
and standby channel data: messages on the master channel are inconsistent with the messages on the
standby channel, there are more or fewer messages, or the point number values sent up are inconsistent.
(h) Failure to establish a statute: Transmission Control Protocol (TCP) is successfully established, the
master sends the 104 statutes to start command (68 04 07 00 00 00), the distribution terminal does not
respond (68 04 0b 00 00 00), and application layer connection establishment fails.

(2) Time-sensitive anomalies

Time-sensitive anomalies contain the following cases. (a) Frequently sending telecommunication
jitter: The telecommunication signals are sent frequently for a short period, resulting in the failure
of the main station front to respond and the signal not changing. Frequent telemetry upload:
A large number of telemetry signals are frequently uploaded over a short period. (b) Frequent
channel switching: the active channel is frequently switched, with frequent switching of Internet
Protocol Address (IP) occurring in the messages. (c) Delays. (i) Slow telecommunications change after
protection: long change duration for telecommunication changes after protection actions. (ii) Slow
telemetry upload: telemetry signal upload time exceeds the standard duration. (iii) Transmit test and
receive duration: automatically detects the time delay between test frame transmission and test frame
reception; a time delay greater than the threshold value is considered abnormal. (iv) Slow SOE feed
after action: there is an SOE signal feed after the action, but it is not sent until long after the shift has
occurred. (v) Time extension between the remote process preset and the preset confirmation message.
(vi) Time delay between the preset and preset confirmation message of the remote control process and
the time delay between the execution and execution confirmation message is automatically detected,
while a time delay greater than the threshold value is considered an exception. (d) Irregular channel
switching: channel switching is infrequent and irregular (not a regularity that can be caused by normal
operation). (e) Offline anomalies: refreshing the online/offline status of power distribution terminals
based on TCP. This detects the offline status of the power distribution terminal and can periodically
count the number of times the power distribution terminal is offline, as well as the length of time it is
offline [25]. The number of offline times and abnormality thresholds for offline duration can be set,
with abnormalities being determined when the thresholds are exceeded.

(3) Communication anomalies

Communication anomalies contain the following cases. (a) Flow anomalies: traffic is counted
over a certain period based on IP address, and an abnormality is determined if the traffic exceeds
the set threshold or if the traffic curve is abnormal. (b) Communication retransmission anomalies:
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count the number of TCP retransmission messages over a certain period and the total number of
TCPs transmitted. The TCP retransmission rate over this period is calculated and compared to a TCP
retransmission rate threshold that can be set (e.g., 30%). If the retransmission rate is greater than the
set threshold, a “communication link retransmission rate too high” alert is provided, which may affect
service data transmission. (c) Reset connection anomalies: after analyzing the TCP layer message,
the master initiates a TCP connection request (SYN) to the distribution terminal. Subsequently, the
distribution terminal resets the TCP connection with the flag bit identified as Reset (RST), with an
exception being determined thereafter. (d) Disconnection anomalies: when the TCP layer message is
analyzed and the master initiates a TCP connection request (SYN) to the distribution terminal and
the distribution terminal subsequently disconnects the TCP connection with the flag bit (identified
as Finish (FIN)), an exception is determined. (e) Anomalous number of remote signals in the cycle:
the number of telegrams sent from the distribution terminal during the period is counted and the
threshold value is respectively set. If the number of telegrams is greater than the threshold value, it
is considered abnormal. (f) Anomalous number of uplink messages: the number of application layer
messages sent by the master station and distribution terminal during the period is counted separately,
the threshold value is set separately, and a value greater than the threshold value is considered
abnormal. (g) Anomalous number of downlink messages: the numbers of application layer messages
sent by the master station and distribution terminal over a certain period are counted separately, the
threshold value is set separately, and a value greater than the threshold value is considered abnormal.
(h) Periodic offline anomalies: the TCP transmission process reset flag RST is detected, the number
of reset messages is counted, and the number of times exceeding the threshold value is considered
abnormal. Detects frequent resetting of the distribution terminal and the existence of the periodic
offline phenomenon, while the length of each offline time is fixed.

(4) Integrity anomalies

Integrity anomalies contain (a) messages that are always mutilated (i.e., missing parts of their
content); (b) intermittently incomplete messages (i.e., incomplete or complete messages are sent
intermittently).

The network failure problem is first analyzed based on the specific network scenario. The most
serious fault for operators is a service interruption since this can directly affect user experience and
satisfaction. The causes of service interruptions in small areas are mainly linked to five types of
faults: uplink interference, downlink interference, coverage voids, nulling faults, and base station faults.
A mapping relationship between faults and symptoms was established to filter out useful network
parameters (check Tables 6 and 7 at the supplementary files).

4 System Fault Diagnosis and Prediction Based on GANs and Machine Learning

Considering the characteristics of power big data with sequence, timing, and large number, the very
small number of abnormal samples, and anomalies including smaller abnormalities, we first use GAN
to expand the number of effective samples, then propose a two-step detection algorithm to identify
the types of faults (see Fig. 4). In this two-step detection algorithm, XGBoost is used for identify the
coarse types of fault (see Fig. 5), and then CNN+LSTM is used for fine-grained analysis to detect the
small class of anomalies, where CNN can automatically extract features from massive data and LSTM
can handle time series variations to combine the two algorithmic models to better handle various grid
anomalies.
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Figure 4: Grid fault detection and diagnosis model based on GANs

Figure 5: Two-step detection

4.1 Dataset Introduction
The dataset used in this paper is the power grid data obtained from Nanjing Power Supply

Company of State Grid Jiangsu Electric Power Co., Ltd. (China) from 2021 to 2022. There are a
total of 15 million pieces of data, with a total of 4258 pieces of various fault data. Abnormal data
includes telemetry values are not refreshed, remote control failure (return-to-school overtime), remote
control failure (return-to-school error), remote control failure (implementation failure), general recall
cycle confusion, and message disorder. The original dataset format is in pcap format, which mainly
contains the header information of each layer protocol and the 104 protocol message information
defined by the power grid. The header information of each layer protocol includes characteristics
such as MAC source address, MAC destination address, IP source address, IP destination address,
source port number, destination port number, packet size, etc. The 104 message information includes
starting characters, APDU length, ISU identification, type identification, and other characteristics.
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However, the header information of each layer protocol has little help in anomaly identification, so we
removed the header information of each layer protocol and only retained the information of protocol
104. In the preprocessing stage of the dataset, we need to process and convert the original dataset into
the format read by the model. This process mainly includes the parsing of the original data, truncation
and supplementation, decimal conversion, normalization, and annotation of business labels. Among
them, parsing raw data involves dividing the collected raw data into four layers based on TCP/IP,
including Ethernet layer, IP layer, TCP layer, and 104 packet layer; Truncating and supplementing is
to unify the number of bytes in the data packet, truncate the excess parts, otherwise use −9999 as the
filling value; Decimal conversion is the process of converting hexadecimal to decimal, which facilitates
data processing. Normalization refers to scaling data into a unified space in the same proportion, such
as [−1, 1]. The annotation of business labels is to label samples according to the corresponding labels
of different types of datasets. Below are two examples of the discrimination between anomalies and
normal data:

104 Message data of Telemetry values are not refreshed

[Tue Dec 14 08:19:40 2021]: Z06810D6C51E0A 09 01 03000100 914000340800

[Tue Dec 14 08:19:46 2021]: 680401001E0A

[Tue Dec 14 08:19:47 2021]: 68040100D8C5

[Tue Dec 14 08:19:50 2021]: Z06810D8C51E0A 09 01 03000100 914000340800

[Tue Dec 14 08:19:51 2021]: Z06810DAC51E0A 09 01 03000100 914000340800

From the above five message data, we can see that there exists three continuous message having
the same telemetry value 3408. Thus, we can assure that Telemetry values are not refreshed anomaly
has occured.

104 Message data of General recall cycle confusion

[Wed Sep 14 00:18:24 2022]: 680E8C234CC0 64 01 06000100 000000 14

[Wed Sep 14 00:18:26 2022]: 680E56C08E23 64 01 07000100 000000 14

[Wed Sep 14 00:18:29 2022]: 680E6AC08E23 64 01 0A000100 000000 14

[Wed Sep 14 01:18:25 2022]: 680E9223F203 64 01 06000100 000000 14

[Wed Sep 14 01:18:27 2022]: 680E02049423 64 01 07000100 000000 14

From the above five message data, we can see that there exists sequential confusion from the
timestamp of the third message. Thus, we can assure that General ecall cycle confusion has occured.

4.2 Input Phase
Since different network states have different characteristics, network fault diagnosis and prediction

models must know which symptoms correspond to certain network states to identify multiple faults.
In this paper, we define S = [KPI1, KPI2, KPI3 . . . , KPIm], which is a vector containing m KPIs as an
input vector to characterize different network states. C = {FC1, FC2, FC3 . . . , FCn} represents the state
of the network (e.g., the network is working normally or has a fault).

The input data vector—consisting of a small sample of data collected from a heterogeneous
wireless network environment—is composed of all relevant KPIs for the cell under study. Depending
on the granularity required for the diagnostic process, different levels of temporal aggregation (hourly,
daily, weekly, monthly, etc.) can be used to collect these KPIs.
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If a network fault FCi occurs at T a certain time, then the network status for that time is represented
as follows:

SFCi =

⎡
⎢⎢⎣

KPIt−T+1
1 KPIt−T+1

2 · · · KPIt−T+1
m

KPIt−T+2
1 KPIt−T+2

2 · · · KPIt−T+2
m

...
...

. . .
...

KPIt
1 KPIt

2 · · · KPIt
m

⎤
⎥⎥⎦ (1)

where KPIt
m refers to the value of the m key performance indicator KPI at the time t.

At the input stage, a specific KPIi is selected and normalized. To ensure that their dynamic ranges
are similar and in this system, each key performance indicator KPI is separately normalized based on
the maximum value.

KPIi = KPIi

max(KPIi)
(2)

where KPIi refers to the normalized first key performance indicator and max(KPIi) refers to the first
maximum value of the occurrence of the first key performance indicator. This method is used to
transform the dynamic range of a specific indicator KPIi to ensure that all variables are within the
desired interval. This method only considers values that are not in the interval [0, 1] KPIi.

The normalized network state is represented as follows:

ŜFCi =

⎡
⎢⎢⎢⎣

K̂PI
t−T+1

1 K̂PI
t−T+1

2 · · · K̂PI
t−T+1

m

K̂PI
t−T+2

1 K̂PI
t−T+2

2 · · · K̂PI
t−T+2

m
...

...
. . .

...
K̂PI

t

1 K̂PI
t

2 · · · K̂PI
t

m

⎤
⎥⎥⎥⎦ (3)

4.3 Features Selection
Different exception has different features contributing to the anamoly discrimination.For exam-

ple, the definition of the telemetry value not refreshing anomaly is that within a certain period of time,
the telemetry value of the 104 message with the same station and telemetry value does not change in
three consecutive messages. Therefore, it is necessary to judge based on the starting character, type flag,
station number, telemetry value, and timestamp of the 104 message. Message disorder exception needs
to be determined based on whether the message sequence number is continuous. General recall cycle
confusion anomaly needs to be determined based on whether the timestamp order of the message
is correct. Similarly, other anomalies can be judged based on the corresponding features of the 104
message, so these features need to be selected as input features for XGBoost. However, CNN+LSTM
needs to consider the pre and post message relationship based on the input characteristics of XGBoost,
so an additional relative time with the target stream needs to be added.

4.4 GANs
The GAN framework is shown in Fig. 6. It is mainly based on the zero-sum game in game theory,

which must have two competing networks that then optimize their objectives simultaneously. The
first network, called generator G, outputs simulated samples based on Gaussian noise or uniform
noise. The second network, called the discriminator D, feeds samples from the true distribution or
samples generated by the generator network G to the discriminator D. The network attempts to
label a given sample as 0 (sample from the generator distribution) or 1 (sample from the true data
distribution). After some iterations, this competition will make both networks better at the task. In



IASC, 2023, vol.37, no.3 2837

particular, generator G can produce real samples that can fool humans. The objective function of the
optimization is

minGmaxDV(D, G) = EŜ : pr [logD(Ŝ)] + Ez∼pg [log(1 − D(G(Z)))] (4)

where pr represents the distribution of the normalized real data ŝ collected by the heterogeneous
wireless network, pg represents the distribution obeyed by the input noise, and G(Z) is used to represent
the mapping of the data space, where G is a differentiable function represented by a multilayer
perceptron D(ŝ). What is obtained is a scalar representing the probability that ŝ comes from the real
data distribution and not pg.

Figure 6: Framework for GANs

As a generative model in the GAN, G does not require a very strict expression for the generated
data (as traditional models do), which also avoids incomputability problems when the data are very
complex. Also, it does not need to perform some massive computational summatio. It only requires an
input of noise that obeys a certain law, a bunch of real data, and two networks that can approximate
the function. Through a constant game between the generator and the discriminator, when the
discriminator converges to stability, different network states converging to the real data distribution
are obtained through the generator Ŝ′

FCi
.
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m

⎤
⎥⎥⎥⎥⎦ (5)

A classical GAN algorithm minimizes the JS scatter between the true and approximate dis-
tributions. However, the JS metric is not continuous, and this gradient is not available in some
places. To overcome this drawback, Goodfellow et al. [19] proposed replacing the JS metric with the
Wasserstein distance, while WGAN guarantees the availability of the gradient in all places. Given
that the Wasserstein distance equation is very difficult to solve, WGAN uses Kantorovich-Rubinstein
duality to simplify the computation while introducing a fundamental constraint for the discriminator
to find the 1-Lipschitz function. The weights of the discriminator are trimmed to satisfy the constraint
within a certain range of hyperparameter control. The WGAN algorithm with a gradient penalty
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(hereafter referred to as WGAN-GP) uses a gradient penalty to enforce the 1-Lipschitz constraint
rather than weight clipping. In this paper, WGAN-GP is used to generate simulation data. The
optimization objectives are as follows.

L = Eŝ′∼pg [D(ŝ′)] − Eŝ∼pr [D(ŝ)] + uEs̃∼ps̃

[(∥∥∇s̃Dw(s̃)
∥∥ − 1

)2
]

(6)

where ŝ′ ∼pg represents the distribution obeyed by the data generated by the generator and ŝ∼pr is the
distribution obeyed by the real data, which in this case refers to the distribution of the normalized small
sample data collected under different network states in a heterogeneous wireless network environment.
s̃ is obtained by performing sampling on the whole data set consisting of real and generated data. In
this paper, we use ε∼uniform[0, 1] and then randomly interpolate the sampling on the concatenation of

ŝ′ and ŝ to obtain s̃ = εŝ+ (1− ε)ŝ′. Es̃∼ps̃

[(∥∥∇s̃Dw(s̃)
∥∥ − 1

)2
]

is a penalty term. The closer
∥∥∇s̃Dw(s̃)

∥∥
2

is

to 1 in the penalty term, the less penalty is expected, while u is the penalty parameter. The specific
implementation process of WGAN-GP is presented in Algorithm 1. The number of discriminant
iterations at the fixed generator is ncritic and the batch size is m. The hyperparameters of Adam’s
algorithm for discriminator as well as generator training are defined as follows: α is the learning rate
(used to control the step size), β1 is the exponential decay rate of the first-order moment estimation,
and β2 is the exponential decay rate of the second-order moment estimation.

Algorithm 1: WGAN-GP, u = 10, ncritic = 100, α = 0.001, β1 = 0.9, β2 = 0.999
1 Initialize the discriminator parameters w0 and initialize the generator parameters θ 0

2 while the generator parameter θ does not converge, do
3 for t = 1, . . . , ncritic

4 for i = 1, . . . , m
5 Get the real dataŝ∼pr, the noise z∼pz, and a random number ε∼uniform[0, 1]
6 ŝ′ ← G θ(z)
7 s̃ = εŝ + (1 − ε)ŝ′

8 L(i) ← Dw(ŝ
′
)] − Dw(ŝ) + uEs̃∼ps̃

[(∥∥∇s̃Dw(s̃)
∥∥ − 1

)2
]

9 end for

10 Training discriminators using Adam: w ← Adam
(

∇w

1
m

∑m
i=1 L(i), w, α, β1, β2

)
11 end for
12 Random sampling from pre z(i)

i=1

m ∼pz

13 Training generators with Adam: θ ← Adam
(

∇w

1
m

∑m
i=1 −Dw(G θ(z)), θ , α, β1, β2

)
14 end while

For the training of the discriminator and the generator, this study uses the adaptive moment
estimation (Adam) algorithm for parameter updating, which is defined as follows: t, the number of
steps to update; α, the learning rate, used to control the step size; θ , the parameters required to update;
fθ , the stochastic objective function with parameters θ , generally referred to as the loss function; gt, the
gradient obtained by deriving the objective function fθ ; β1, the exponential decay rate of the first-order
moment estimate; β2, the exponential decay rate of the second-order moment estimate; mt, the first-
order moment of the gradient gt, the expectation of the gradient gt; vt, the second-order moment of
the gradient gt, the expectation of the gradient gt

2; m̂t, the bias correction of mt; v̂t, the bias correction
of vt.
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The main idea of Adam is to use the first-order moment estimation and second-order moment
estimation of the gradient to dynamically adjust the learning rate of each parameter to achieve the
purpose of parameter updating. The advantage of Adam is that after bias correction, the learning
rate of each iteration is fixed in a certain range, making the parameters relatively stable. The specific
implementation process of Adam is provided in Algorithm 2.

Algorithm 2: Adam, = 0.001, β1 = 0.9, β2 = 0.999, σ = 10−8

1 Initialize the parameters θ0, initialize the first-order moments m0, initialize the second-order moments
v0, initialize the number of steps to update the update t = 0
2 While θ 0 is not converging, do
3 Update steps: t ← t + 1
4 Calculate the gradient of the original objective function fθ concerning the parameters: θgt: gt ←
∇θft(θt−1)

5 Calculate the first-order moments of the gradient: mt ← β1 ∗ mt−1 + (1 − β1) ∗ gt

6 Calculate the second-order moments of the gradient: vt ← β2 ∗ vt−1 + (1 − β2) ∗ gt
2

7 Correction for first-order moments mt: m̂t ← mt/(1 − β t
1)

8 Correction for second-order moments vt: v̂t ← vt/(1 − β t
2)

9 Update parameters θt: θt ← θt−1 − α ∗ m̂t/(
√

v̂t + σ)

10 end while
11 Return θt

4.5 XGBoost
Extreme gradient boosting (eXtreme Gradient Boosting, XGBoost) is an improved algorithm

based on the gradient boosting decision tree (GBDT) in terms of computational speed, generalization
performance, and scalability. The original GBDT algorithm builds a new decision tree model in
the direction of gradient descent of the previous model loss function at each iteration during
training, pruning it after constructing the decision tree. Unlike the original GBDT, XGBoost adds
the regularization term to the loss function during the construction phase of the decision tree. This
process can be described by the following equation:

Fobj
(m) =

∑N

i=1
L(yi, ŷ(m)

i ) + �(fm) (7)

where L(yi, ŷ(m)

i ) is the loss function that measures the difference between the predicted value ŷ(m)

i and
the target value yi, which, in the text, means the difference between the predicted network state label
and the true network state label.

L(yi, ŷ(m)

i ) = (yi − ŷ(m)

i )2 (8)

�(fm) is the regularization term, defined as

�(fm) = γ T + 1
2
λ

∑T

j=1
wj

2 (9)

where T refers to the number of leaf nodes, λ is the regularization parameter, γ is the learning rate,
and wj denotes the predicted value of the j leaf node.
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Let ŷ(m−1)

i denote the optimal solution to the existing (m − 1) tree and the second-order Taylor
expansion of the loss function Fobj

(m) at ŷ(m−1)

i be

Fobj
(m) =

∑T

j=1

[
Gjwj + 1

2
(Hj + λ)wj

2

]
+ γ T (10)

where:

Gj =
∑

i∈Ij
∂ŷ(m−1)L(yi, ŷ(m−1)) (11)

Hj =
∑

i∈Ij
∂2

ŷ(m−1)L(yi, ŷ(m−1)) (12)

Ij is defined as the index set of samples whose values are associated with the leaf node j.

Assuming that the structure of the decision tree has been determined, the predicted value at each
leaf node can be obtained by making the derivative of the loss function zero, which can be written as:

wj
∗ = − Gj

Hj + λ
(13)

Substituting the predicted values into the loss function yields the minimum value of the loss
function:

Fobj
∗ = −1

2

∑T

j=1

Gj
2

Hj + λ
+ γ T (14)

Fobj∗F ∗
obj is the final loss function, and the smaller its value, the closer it is to the actual result,

indicating a better structure of the tree.

4.6 CNN+LSTM
A CNN is a feed-forward neural network with artificial neurons that respond to a portion of

the surrounding units in the coverage area and excels for large image processing. A CNN consists of
one or more convolutional layers and a top fully connected layer (corresponding to a classical neural
network), while also including associative weights and a pooling layer. This structure allows CNNs
to exploit the 2D structure of the input data. Compared to other deep learning structures, CNNs
can give better results in fields like image recognition [26]. This model can also be trained using a
backpropagation algorithm. Compared to other deep feed-forward neural networks, CNNs require
fewer parameters to be considered, which has resulted in the CNN being a widely used deep learning
structure.

An LSTM is a special type of recurrent neural network (RNN), while an RNN is a type of neural
network used for processing temporal data, compared to the general neural network, it can handle
sequence-changing data [27]. Moreover, LSTM is mainly designed to solve the gradient disappearance
and gradient explosion problems during the training of long sequences. Simply, this means that an
LSTM can have better performance in longer sequences when compared to an ordinary RNN. Thus,
for temporal features, LSTM can be used to identify them and CNN can handle data with massive
variable features. For message feature issues, CNN can be used to identify them, while the combination
of the two (i.e., LSTM+CNN) can handle a variety of anomalous grid features.

In this paper, we use the XGBoost and CNN+LSTM frameworks to train the data and then use
the trained model to predict the state of the network at a certain period (i.e., to label the otherwise
unknown data collected). In addition, another benefit of using XGBoost is that an importance score
can be obtained for each attribute after a boosted tree has been created. In general, the importance
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score measures the value of an attribute in the model to enhance the construction of the decision tree.
The more an attribute is used in the model to build a decision tree, the more important it is. Therefore,
in this study, we also used the feature importance ranking function of the XGBoost framework to
preprocess the data and select the most relevant performance metrics that affect the measurement of
the network state. Using this algorithm, a trade-off can be made between the accuracy of the test set
and the complexity of the model. Moreover, considering the characteristics of the grid anomaly data,
the XGBoost-processed data is further fed into the joint CNN+LSTM model for fine-grained analysis
to achieve the efficient and reliable detection of grid faults.

4.7 Parameters Settings
The default parameters are used for GAN, SVM, CNN, KNN, RT, and XGBoost. The WGAN-

GP parameter settings are shown in Section 4.2. The CNN+LSTM model construction includes
convolutional layer, pooling layer, LSTM layer, and fully connected layer. In training model stage,
Firstly, construct a CNN convolutional neural network. The CNN neural network model of this
system uses a one-dimensional CNN based model, which includes four convolutional layers, two
maximum pooling layers, two LSTM layers, and two fully connected layers. The number of neurons in
Conv1 and Conv2 is 256, the size of the kernel is 3, and the step size of all zeros filling is 1; The number
of neurons in Conv3 and Conv4 is 128, with a kernel size of 2 and a zero fill step size of 1; The kernels
of the two maximum pooling layers are 2, with a zero fill step size of 2; Two LSTM layers are connected
in parallel with CNN, with 128 and 256 neurons respectively and 64 input data sizes. The number of
neurons in two fully connected layers is 128. Each pool layer uses batch normalization. The activation
function used by the four convolution layers is ReLU function. The Adam optimization algorithm of
the training model is the maximum 30 epochs, and the learning rate is 0.001. The network uses early
stop, that is, when the training is within 5 epochs, the loss function does not improve, then the training
is terminated. After the business recognition model is constructed, the divided training set is input to
automatically extract features, and the model is trained based on the extracted features, continuously
adjusting model parameters to generate a business recognition model. Save the trained initial model.
At this stage, the number of layers of CNN, the connection order of convolution layer and pooling
layer, the size and number of convolution cores, and the selection of activation function will all affect
the training effect of the model.

5 Performance Analysis

In this paper, the data set is from the power grid of Nanjing Power Supply Branch of Jiangsu
Electric Power Co., Ltd. (China). From year 2021 to 2022. There are a total of 15 million pieces of
data, and a total of 4258 pieces of various fault data. For abnormal data, the original PCAP data
packet is screened out to only contain 104 message information, and the TCP information in front of
the 104 data is removed, and only the ASDU part of the 104 message is retained. According to the
meaning represented by each byte of the 104 message, it is then converted into CSV format as input
data, and the specific exception classification is introduced in Section 4.

To demonstrate the performance of the identification methods, this study involved conducting
various comparative experiments on massive data anomaly identification methods for dispatch
automation systems based on the combination of GANs and machine learning. This includes GAN
parameter selection, the performance analysis of various algorithms, and the comparison of two-step
anomaly detection methods with individual algorithms.
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5.1 GAN Parameter Selection
For the generation samples, we compared and analyzed two algorithms—classical GAN and

WGAN-GP—thus selecting the best generation samples and testing the best generation sample ratio.

Two testing methods are established in this paper. One is to test the generated samples against the
model trained with the original data (generated data accuracy), while the other is to test the generated
samples against the original data by training the model with the generated samples (generated model
accuracy). The samples generated by the two algorithms are compared. The test set for testing the
generative model accuracy is the same as the original data set required to generate the samples, while
the original model for testing the generative data accuracy is the same as the original data set required
to generate the samples. For example, the number of raw samples for telemetry value non-refreshing
anomalies is 1069.

The accuracy of the generated data was first tested. These results are presented in Table 1. From
Table 1, it can be seen that the optimal generation ratio of WGAN-GP is much larger than that of the
classical GAN generation algorithm.

Table 1: Model accuracy for various generation ratios

Generating method accuracy Generation rate

1:0.5 1:1 1:1.5 1:2 1:2.5 1:3

Classical GAN 1 1 0.92 0.83 0.79 0.73
WGAN-GP 1 1 1 1 0.97 0.85

Next, the accuracy of the generated models was tested. The data generated by selecting the best
generation ratio of each algorithm was input to the XGBoost algorithm for training to get the model,
and the generated model was tested with the same original anomaly samples shown in Table 2. In
Table 2, it can be seen that the accuracy of the generated model of WGAN-GP is slightly higher than
that of the classical GAN generation algorithm. Based on comprehensive consideration, the WGAN-
GP algorithm was chosen to expand the samples.

Table 2: Best generated ratio model accuracy

Generation algorithm Classical GAN WGAN-GP

Optimal generation ratio 1:1 1:2
Generating model accuracy 0.93 0.96

5.2 Algorithm Performance Analysis
Since some of the algorithms have a demand on the number of datasets, we selected three

anomalies with a large number of datasets from a variety of anomalies: telemetry not refreshed, total
call cycle confusion, and message disorder. The test set accuracies are presented in Table 3.

From Table 3, we can see that both the XGBoost and CNN+LSTM models have high recognition
accuracy for all anomalies, while CNN+LSTM has higher sensitivity to temporal anomalies such
as total call cycle chaos. Therefore, in the next two-step anomaly detection method, the first step
uses XGBoost to analyze the large class of anomalies, while the second step of fine-grained anomaly



IASC, 2023, vol.37, no.3 2843

detection then inputs the recognition results of the first step into the joint CNN+LSTM model to
output the results.

Table 3: Test set accuracy

SVM CNN KNN Random forest XGBoost CNN+LSTM

Telemetry is not
refreshed

1 0 0 1 1 0.93

General recall cycle
confusion

0.74 0.46 0.92 0.82 0.95 1

Message disorder 1 0.76 0 1 1 1
Normal 1 1 1 1 1 1

5.3 Two-Step Anomaly Detection Method
To demonstrate the superiority of the two-step detection method, we compared the two-step detec-

tion method with several algorithms in terms of test accuracy. The algorithms used for comparison
include XGBoost and CNN+LSTM (see Table 4). Taking the exception of remote control failure
as an example, the major category of remote control failure anomalies can be subdivided into three
subcategories based on more detailed fault causes: return-to-school timeout, return-to-school error,
and execution failure. Notably, both are data sets augmented by the WGAN-GP generation method.
The results are presented in Table 4.

Table 4: Comparison of test set accuracy

Detection method Accuracy of major
category anomalies

Accuracy of small class anomalies

XGBoost 0.98 return-to-school timeout 0.46
return-to-school error 0.96
execution failure 1

CNN+LSTM 0.98 return-to-school timeout 0.92
return-to-school error 0.74
execution failure 1

Two-step test method 0.98 return-to-school timeout 0.99
return-to-school error 1
execution failure 1

It can be seen from Table 4 that for the detection of large categories of anomalies, the accuracy
rates of the three methods are the same. However, for the detection of small class anomalies, the
accuracy rate of using only XGBoost algorithm or CNN+LSTM algorithm is lower than that of the
two-step detection method, so the two-step detection method can effectively improve the identification
accuracy of small class anomalies.
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5.4 Comparison of Classification Accuracy before and after Sample Expansion
It can be seen from Sections 4.1–4.3 that after many experiments and evaluation, we have

determined that the sample generation algorithm is WGAN-GP and the anomaly identification
algorithm is a two-step detection algorithm, that is, first use XGBoost to test large class anomalies
and then use CNN+LSTM to detect small class anomalies, in order to further prove that the method
proposed in this paper can achieve efficient and reliable power grid fault diagnosis. We compared
the accuracy of various anomalies before and after sample expansion. This section uses a two-step
detection algorithm and selects three common anomalies for comparison, namely, Telemetry values
that are not refreshed, General recall cycle confusion, and Message disorder. Before expansion, the
number of three types of anomalies samples is 1635, 397, and 2006, respectively. The WGAN-GP
algorithm is used to expand the original sample to the expanded sample ratio of 1:2. The test set is the
original sample, and the number is 100. The comparison results are shown in the following table. It
can be clearly seen from the Table 5 that after the expansion of WGAN-GP samples, the recognition
accuracy has been greatly improved, with an increase of 15%–24%. Therefore, after expanding the
samples based on WGAN-GP algorithm, the two-step detection algorithm proposed in this paper can
achieve efficient and reliable power grid fault diagnosis, effectively solving the problems of insufficient
experimental training mark samples and low recognition accuracy.

Table 5: Test set accuracy

Before sample expansion After sample expansion

Telemetry is not refreshed 0.85 1
General recall cycle confusion 0.76 1
Message disorder 0.81 1

6 Conclusion

In this paper, we propose an anomaly identification, diagnosis and prediction method based
on GAN and two-step detection method for massive data flow of dispatching automation system
according to the characteristics of abnormal data in power grid. First of all, WGAN-GP is used to
generate a large number of reliable data that match the characteristics of power grid anomaly data,
which solves the problem of insufficient labeled data set in machine learning. Secondly, a two-step
detection method is designed. First, XGBoost is used to detect large-category anomalies, and then
CNN+LSTM is used to detect small-category anomalies, which solves the problem of low accuracy
of traditional machine learning in identifying power grid anomalies. The experimental results show
that the algorithm proposed in this paper can achieve efficient and reliable power grid fault diagnosis.
However, this paper mainly focuses on identifying known anomalies in the power grid. There are still
many unknown anomalies waiting for us to discover, so we will further explore the possible unknown
anomalies in the power grid with the help of unsupervised learning.

Funding Statement: This work was supported by the Technology Project of State Grid Jiangsu Electric
Power Co., Ltd., China, under Grant J2021167.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



IASC, 2023, vol.37, no.3 2845

References
[1] X. Xu, “Game theory for distributed IoV task offloading with fuzzy neural network in edge computing,”

IEEE Transactions on Fuzzy Systems, vol. 30, no. 11, pp. 4593–4604, 2022.
[2] F. H. Ying, N. Z. Xu and Y. T. Ji, “Anomaly detection of power data network service flow based on

KTLAD,” Journal of Beijing University of Posts and Telecommunications, vol. 31, no. 16, pp. 108–111, 2017.
[3] H. J. Wang, Z. Q. Li, H. Zhao and Y. J. Yue, “Research on abnormal power consumption detection based

on SVM in AMI environment,” Electrical Measurement and Instrumentation, vol. 26, no. 21, pp. 64–69,
2014.

[4] Y. P. Yang and Z. H. Xu, “Application research of outlier detection method based on cluster analysis in
power grid data quality management,” Modern Electronic Technology, vol. 28, no. 15, pp. 137–139, 2016.

[5] Z. Pang, M. N. Li and J. D. Li, “ANOMALOUS: A joint modeling approach for anomaly detection on
attributed networks,” in Twenty-Seventh Int. Joint Conf. on Artificial Intelligence (IJCAI-18), vol. 33, no.
25, pp. 3513–3519, 2018.

[6] Y. Xu, S. A. Li and Y. H. Huang, “Detection of abnormal power consumption behavior of users based on
CNN-GS-SVM,” Control Engineering, vol. 28, no. 16, pp. 1989–1997, 2021.

[7] Z. D. Yang, J. W. Dong, G. J. Cai, X. J. Kai and M. Sha, “Research on abnormal electricity consumption
detection method based on LightGBM and LSTM model,” Electrical Measurement and Instrumentation,
vol. 28, no. 17, pp. 1738–1749, 2022.

[8] D. Li, Z. W. Jiang, Y. W. Zeng, Y. Q. Huang and Y. W. Xu, “LDSAD-based network traffic anomaly
detection in power monitoring system,” Zhejiang Electric Power, vol. 21, no. 33, pp. 87–92, 2022.

[9] S. Ul Amin, M. Ullah, M. Sajjad, F. Alaya Cheikh, M. Hijji et al., “EADN: An efficient deep learning
model for anomaly detection in videos,” Mathematics, vol. 24, no. 18, pp. 243–257, 2022.

[10] Y. J. Yang, G. M. Sha and Y. F. Cai, “Anomaly detection method for status data of power transmission and
transformation equipment based on big data analysis,” Chinese Journal of Electrical Engineering, vol. 21,
no. 19, pp. 53–59, 2015.

[11] T. Pei and D. L. Qin, “Power data anomaly detection method based on time series extraction and Voronoi
diagram,” Electric Power Construction, vol. 31, no. 24, pp. 105–110, 2017.

[12] Y. Wang, L. Dong and X. Z. Huang, “Detection method for weighted power line stealing electricity based
on analytic hierarchy process,” Science Technology and Engineering, vol. 27, no. 17, pp. 96–103, 2017.

[13] D. W. Pan, D. D. Li and J. Zhang, “Anomaly detection for satellite power subsystem with associated rules
based on kernel principal component analysis,” Microelectronics Reliability, vol. 55, no. 3, pp. 2082–2086,
2015.

[14] X. Xu, T. Huang, Z. Xu, Q. Li, H. Qin et al., “DisCOV: Distributed COVID-19 detection on X-Ray images
with edge-cloud collaboration,” in 2022 IEEE World Congress on Services (SERVICES), Barcelona, Spain,
pp. 23, 2022.

[15] Q. Li, L. Wang, Z. Xu, D. Wang, X. Xu et al., “A correlation graph based approach for personalized and
compatible web APIs recommendation in mobile App development,” IEEE Transactions on Knowledge and
Data Engineering, vol. 35, no. 6, pp. 5444–5457, 2023.

[16] Z. Xu, L. Wang, L. Wang, Y. Kai and S. Shimizu, “Hierarchical adversarial attacks against graph-neural-
network-based IoT network intrusion detection system,” IEEE Internet of Things Journal, vol. 9, no. 12,
pp. 9310–9319, 2022.

[17] L. Zhang, “A knowledge-driven anomaly detection framework for social production system,” IEEE
Transactions on Computational Social Systems, vol. 32, no. 21, pp. 1–14, 2022.

[18] L. Wang, “Intrusion detection for maritime transportation systems with batch federated aggregation,”
IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 2, pp. 2503–2514, 2023.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley et al., “Generative adversarial nets,”
in Int. Conf. on Neural Information Processing Systems, MIT Press, Cambridge, MA, USA, pp. 2672–2680,
2014.

[20] M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial networks,”
arXiv:1701.04862, 2017.



2846 IASC, 2023, vol.37, no.3

[21] C. J. Mowlaei, E. M. and X. Shi, “Population-scale genomic data augmentation based on conditional
generative adversarial networks,” in Proc. of the 11th ACM Int. Conf. on Bioinformatics, Computational
Biology and Health Informatics, New York, NY, USA, pp. 1–6, 2020.

[22] L. Zhang, “Integrated CNN and federated learning for COVID-19 detection on chest X-ray images,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 31, no. 23, pp. 1243–1249,
2022.

[23] Q. Li, Y. Yang, Z. Xu, W. Rafique and J. Ma, “Fast anomaly identification based on multiaspect data
streams for intelligent intrusion detection toward secure Industry 4.0,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 9, pp. 6503–6511, 2022.

[24] K. Li, “Time-aware missing healthcare data prediction based on ARIMA model,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 21, no. 27, pp. 257–273, 2022.

[25] Z. Xu, X. Xu, L. Wang, Z. Zeng and Y. Zeng, “Deep-learning-enhanced multitarget detection for end-
edge–cloud surveillance in smart IoT,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12588–12596,
2021.

[26] L. Huang, G. Xu and D. Samaras, “Wasserstein GAN with quadratic transport cost,” in 2019 IEEE/CVF
Int. Conf. on Computer Vision (ICCV), Seoul, Korea (South), pp. 4831–4840, 2019.

[27] Y. Yang, “ASTREAM: Data-stream-driven scalable anomaly detection with accuracy guarantee in IIoT
environment,” IEEE Transactions on Network Science and Engineering, vol. 21, no. 25, pp. 1, 2022.

Supplementary Materials

Table 6 is a mapping table of the name of anomalies and their abbreviation. Table 7 gives a clear
description of the cause and representative phenomena of the anomalies.

Table 6: Network KPI parameters

KPI parameters Symbolic

104 messages 104_M (104 message)
Type identification TY (type)
Timestamp TS (timestamp)
Site number SN (site number)
Reconnect message RM (reconnect message)
Telemetry values Telemetry
Reason for transmission TR (transmission reason)
State value SV (state value)
Operation content OC (operation content)
Message serial number MO (message ordinal)
Original code OC (original code)
Telecontrol device TD (telemetry device)
Channel switching CS (channel switch)
Timeout TO (timeout)
Timescale difference TSD (timestamp difference)
Duplicate address IPD (IP duplication)
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Table 7: Relationship between fault cause and KPIs

Anomaly
classification

Anomaly subcategories Representational phenomena KPI

Telemetry values are Telemetry was not refreshed due No reconnected messages for unchanged data in 104_M
not refreshed to line measurement and control parsed messages TY

device failure at the station end TS
Telemetry

Telemetry not refreshed for
message reconnection due to
communication anomaly

Reconnected messages exist for unchanged data
in parsed messages

104_M
TS
SN
RM
Telemetry

Remote control Return-to-school overtime There is a preset activation message, but there is 104_M
failure no subsequent activation confirmation, remote TY

control execution, remote control confirmation,
or remote control message with transmission
reason 48/49/50

TR

Return-to-school error There is a preset activation message and a 104_M
subsequent remote execution error message with
transmission reasons 48/49/50

TYTR

Implementation failure An end-of-remote message exists, but the status 104_M
value of the subsequently returned telecommand
message does not match the status value after the
normal execution of the remote message
operation command

TY
OC

General recall cycle – Timestamps are not in normal chronological 104_M
confusion order TS
Message disorder Lost or disordered messages due No reconnect messages for this plant station in the 104_M

to excessive communication
latency

parsed messages recorded within a certain time MO

Message loss or disorder due to
message reconnection caused by
communication anomaly

Reconnect messages from this plant exist in the
parsed messages recorded within a certain period

104_M
MO
RM

Remote unit 104 Substation errors Original code error; the message does not match 104_M
protocol false online,
message loss

104 message statute OC

Telemetry data not refreshed due
to line measurement and control
device failure

Field station telemetry values do not change
within a certain time frame

104_M
TY
Telemetry

Frequent switching of – The frequency of channel switching of the 104_M
station-side
telecontrol devices

station-side telecontrol device is too high for a
certain period

TD

Telemetry value error – Telemetry values are not within the specified 104_M
anomaly range TY
Time information – Time scale information is too different from the 104_M
anomaly normal time scale TS
Information flow – The time scale difference between the request and 104_M

(Continued)
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Table 7 (continued)
Anomaly
classification

Anomaly subcategories Representational phenomena KPI

delay anomaly reply messages exceeds the specified timeout TSD
period TO

Wrong channel IP – Consecutive message IP duplication at the same 104_M
setting station IPD
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