
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2023.039718
Article

Enhanced Metaheuristics with Machine Learning Enabled Cyberattack
Detection Model

Ahmed S. Almasoud*

Department of Information Systems, College of Computer and Information Sciences, Prince Sultan University,
Riyadh, 12435, Saudi Arabia

*Corresponding Author: Ahmed S. Almasoud. Email: almasoud@psu.edu.sa
Received: 13 February 2023; Accepted: 14 April 2023; Published: 11 September 2023

Abstract: The Internet of Things (IoT) is considered the next-gen connection
network and is ubiquitous since it is based on the Internet. Intrusion Detection
System (IDS) determines the intrusion performance of terminal equipment
and IoT communication procedures from IoT environments after taking
equivalent defence measures based on the identified behaviour. In this back-
ground, the current study develops an Enhanced Metaheuristics with Machine
Learning enabled Cyberattack Detection and Classification (EMML-CADC)
model in an IoT environment. The aim of the presented EMML-CADC model
is to detect cyberattacks in IoT environments with enhanced efficiency. To
attain this, the EMML-CADC model primarily employs a data preprocessing
stage to normalize the data into a uniform format. In addition, Enhanced
Cat Swarm Optimization based Feature Selection (ECSO-FS) approach is
followed to choose the optimal feature subsets. Besides, Mayfly Optimization
(MFO) with Twin Support Vector Machine (TSVM), called the MFO-TSVM
model, is utilized for the detection and classification of cyberattacks. Here,
the MFO model has been exploited to fine-tune the TSVM variables for
enhanced results. The performance of the proposed EMML-CADC model
was validated using a benchmark dataset, and the results were inspected under
several measures. The comparative study concluded that the EMML-CADC
model is superior to other models under different measures.

Keywords: Metaheuristics; cyberattack detection; machine learning; cat swarm
optimization; security

1 Introduction

The Internet of Things (IoT) has developed significantly and is performing an important role in the
day-to-day lives of human beings [1]. IoT nodes make use of internet protocol addresses and connect
to the internet. Such self-configured smart nodes are directed over most cutting-edge application
areas, namely, smart education, home automation, decision analytics, smart grids, smart cars, process
automation, industrial development, health care system, and many more [2,3]. As per experts, the
future is here in which the community exists with as many connected gadgets alike the individuals
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surviving on this globe. If the volume of applications for IoT increases, the risks also increase in
terms of misusing the IoT gadgets for malignant activities such as spying on others, disruption of
power networks, remote control of building control systems and even potentially operating traffic
signals [4,5].

Conventional firewalls were used for packet filtering earlier, which had many disadvantages, such
as rigid pre-defined rules for effective external network assaults. These assaults are very familiar to
security specialists. So, there exists a demand for the incorporation of an extra Intrusion Detection
System (IDS) with a firewall which alarms the system administrator in case of doubtful signs of
anomalies [6]. This method allows the security of adaptable networks by which the anomaly-related
IDS can provide a few valuable reviews to network administrators in terms of new and original attack
forms as they appear. In general, a firewall necessitates an up-gradation together with an example of
the attack types encountered earlier so that it can identify it in future encounters [7,8].

Based on the detection technologies utilized by the system, IDS may be split into Misused-
related IDS (MIDS) and Anomaly-related IDS (AIDS). AIDS has the merit of identifying new
forms of intrusions [9,10]. It accomplishes a profile of usual operations via Machine Learning (ML)
technique. Whenever the activities of a recent subject diverge from its ordinary profile, it is classified
as an ‘intrusion’ conduct created by distinct algorithms [11]. Based on well-known system defects
and intrusion designs, MIDS has the potential to identify a few distinctive attacks in a precise
manner. However, it heavily depends on pre-defined security plans to identify strange attacks on
the system, which results in a lack of identification altogether [12]. With the arrival of big data in
recent times, conventional IDSs that depend upon signature-oriented recognition methodologies can
be enhanced using ML and Artificial Intelligence (AI) techniques to achieve high-precision design
based on previous attack data [13]. Such ML methods might depend on a single classifier using one
classification method or multi-classifiers that employ different classification models simultaneously.

In the literature [14], the researchers developed an IDS and implemented and evaluated the
precision of the technique. This novel IDS applies a hybrid placement approach related to a multi-agent
scheme. This novel scheme contains data management modules, data collection modules, response
modules, and analysis modules. To validate the proposed model, this study employed Deep Neural
Network (DNN) architecture to detect intrusions. The researchers in the study conducted earlier [15]
demonstrated an IDS-based ML method for implementation into an IoT platform as a Service. In
this study, Random Forest was employed as a classifier to detect the intrusions while Neural Network
(NN) classification was deployed for identifying the intrusion.

In the study conducted earlier [16], the researchers presented feature clusters in terms of Flow,
Transmission Control Protocol (TCP), and Message Queuing Telemetry Transport (MQTT) through
the UNSW-NB15 data feature. Then, the researchers overcome the challenges such as the curse
of dimensionality, imbalanced dataset, and overfitting. Next, the study employed supervised ML
techniques such as Artificial Neural Networks (ANNs), Random Forest (RF), and Support Vector
Machine (SVM) on the cluster. Hawawreh et al. [17–21] presented advanced anomaly detection
methodologies that could validate and learn through data gathered from TCP/IP packets. It embraces
a successive training procedure, implemented by Deep-FeedForward Neural Network (DNN-FFNN)
and Autoencoder (AE) structure, estimated by two popular network datasets.

The current study develops an Enhanced Metaheuristics with Machine Learning enabled Cyber-
attack Detection and Classification (EMML-CADC) model in an IoT environment. The proposed
EMML-CADC model primarily employs data pre-processing to normalize the data into a uniform
format. In addition, the Enhanced Cat Swarm Optimization-based Feature Selection (ECSO-FS)
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approach is applied to choose the optimal feature subsets. Besides, Mayfly Optimization with Twin
Support Vector Machine (MFO-TSVM) model is also utilized for the detection and classification
of cyberattacks. The MFO model has been exploited to fine-tune the TSVM variables to achieve
enhanced results. The proposed EMML-CADC model was experimentally validated for its perfor-
mance using a benchmark dataset, and the results were inspected under several measures.

2 Materials and Methods

In this study, a novel EMML-CADC model is developed to enhance the efficiency of cyberattack
detection in an IoT environment. To attain this, the proposed EMML-CADC model primarily employs
data pre-processing to normalize the data into a uniform format. In addition, the ECSO-FS approach
is applied to choose the optimal feature subsets. Besides, the MFO-TSVM model is also utilized for
the detection and classification of cyberattacks. The details related to each module are elaborated on
in the succeeding sections.

2.1 Design of ECSO-FS Model
At the initial stage, the ECSO-FS model is developed to select an optimal subset of features. CSO

approach is inspired by two features of cats Seeking Model (SM) and Tracking Mode (TM). In the CSO
approach, the cat possesses the location, including the D-dimensional vector, the velocity of dimension
and the fitness value, which denote the flag for detecting the incidence of SM or TM and the addition
of the cat into the fitness function (FF) value. The ‘finish’ solution would be the optimum position of
the cat and sustain the optimum one until the process is over [22].

To model the features of cats in resting period and alert, SM is employed. It consists of seeking a
memory pool (SMP), seeking a range of the selected dimension (SRD), counts of dimension to change
(CDC), and self-position considering (SPC). The process included in SM is shown below:

Step l: Generate j copies of the present position of catk, where j = SMP. After the SPC value
becomes real, consider j = (SMP −1). Then, retain the existing position of the candidate.

Step 2: For every copy based on CDC, subtract the existing values of SRD per cent and substitute
them with prior values.

Step 3: Describe Fitness Value (FS) for all the candidate points.

Step 4: If each FS is unequal, define the selection possibility of the candidate point, after which
assume the selection possibility of the candidate point as 1.

Step 5: Define the Fitness Function (FF) for each cat. Once the FF value for each cat is equal,
then the selection probability of the cat becomes 1, or else the Pi probability is defined as given below:

Pi = |Fi − Fb|
Fmax − Fmin

(1)

Now Fi denotes the fitness value, Fmax indicates the maximal fitness value, Fmin represents the
minimum fitness value, Fb = Fmax is provided for the minimization problem. Finally, Fb = Fmin is
given for the maximization problem.

TM signifies the following mode of CSO in which the case aims at tracing the target and food.
The process is shown below.

Step 1: Upgrade the velocity of each dimension using Eq. (2).

Step 2: Ensure the velocity is at a high range. Once the new velocity is over-ranged, it is regarded
as ‘equal to limit’.
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Vk,d = Vk,d + r1c1

(
Xbest,d − Xk,d

)
(2)

Step 3: Upgrade the location of the catk using (3).

xk,d = Xk,d + Vk,d (3)

Xbestd indicates the position of the cat with optimum fitness, Xk,d denotes the position of catk, and
c1 indicates the acceleration coefficient used for the expansion of velocity of the cat in moving towards
the solution space. ECSO algorithm is derived with the help of chaotic concepts in the CSO algorithm
rather than using rand, i.e., random value. A chaotic local search technique is introduced based on
search strategies to improve the efficiency of CSO in accomplishing the optimum solution [23]. The
suggested method aggravates the search method and drives them for progression to a position where
the optimum solution is highly possible to be reached. This increases the capability of the exploitation
process. Chaos is a popular event in natural non-linear systems. Its ergodic quality, especially traversing
each state within a certain range without repetition, is extensively used as a supplementary process to
escape from local optimum. In this study, the sinusoidal chaotic map is used to generate the applicable
chaotic set. The map was generated using Eq. (4).

Ck = 2.3Ck−1 sin ( pi ∗ Ck−1) (4)

In this case, the initial value of the chaotic map is set to 0.8.

The purpose of the CSO technique is to identify the optimum feature subset for the offered dataset
with superior classification accuracy and lesser features. At this point, it can be combined with a single
weight indicator, and the same FF can be utilized as follows:

fitness = ω1 × acc (classifier) + ω2 ×
(

1 − s
p

)
, (5)

Here, p typifies the total amount of features, and s refers to the quantity of the chosen features. At
this point, the values of ω1 and ω2 are 1 and 0.001, correspondingly. acc (classifer) implies the classifier
accuracy achieved in the TSVM classifier, provided as follows.

acc (classifier) = nc

nc + ni

× 100%. (6)

At this point, ni and nc stand for the number of inaccurate and accurate classification samples
correspondingly.

2.2 Process Involved in TSVM-Based Classification
In this process, the chosen features are passed onto the TSVM model for the classification process

[24]. TSVM model finds two kernel-generated non-parallel functions called ε-insensitive downbound
function f1 (x) = Ker (xt, Ut) w1 + b1 and an up-bound function f2 (x) = Ker (xt, Ut) w2 + b2,
correspondingly. The formula for TSVM is given below:

min
1
2
‖y − ε1e − (

Ker
(
U , Ut

)
w1 + b1e

)‖2 + C1etη1

Subjected to,

y − (
Ker

(
U , Ut

)
w1 + b1e

) ≥ ε1e − η1, η1 ≥ 0 (7)

and

min
1
2
‖y + ε2e − (

Ker
(
U , Ut

)
w2 + b2e

)‖2 + C2etη2
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Subjected to,(
Ker

(
U , Ut

)
w2 + b2e

) − y ≥ ε2e − η2, η2 ≥ 0 (8)

In Eq. (8), the regularization parameter is C1, C2 > 0, and the input parameter is ε1, ε2 > 0; the
vector of the slack variable is η1 and η2. The dual problems are expressed as follows:

max − 1
2

β t
1Q1

(
Qt

1Q1

)−1
Qt

1β1 + RtQ1

(
Qt

1Q1

)−1
Qt

1β1 − Rtβ1

Subjected to

0 ≤ β1 ≤ C1e (9)

and

max − 1
2

β t
2Q1

(
Qt

1Q1

)−1
Qt

1β2 + StQ1

(
Qt

1Q1

)−1
Qt

1β2 + Stβ2

Subjected to

0 ≤ β2 ≤ C2e (10)

where S = (y + ε2e), and Q1 = [Ker (U , Ut) e]. Furthermore, the w1, w2, b1, b2 values are defined by:[
w1

b1

]
= (

Qt
1Q1 + ∇I

)−1
Qt

1 (R − β1)

and[
w2

b2

]
= (

Qt
1Q1 + ∇I

)−1
Qt

1 (S + β2) ,

Here, ∇ > 0 and I indicate the identity matrix. The term ∇I is added by the matrix Qt
1Q1 to

make a positive definite matrix. Fig. 1 illustrates the structure of the support vector machine (SVM).
The kernel estimation function is evaluated for a sample, x ∈ Rn, by taking the average of the kernel-
generated process.

Figure 1: Structure of SVM
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2.3 Design of MFO-Based Parameter Tuning
In this study, the MFO model is exploited to fine tune [25–27] the TSVM variables for enhanced

results. MFO algorithm is a robust hybrid algorithm which is designed as per the male mayfly’s repro-
ductive behaviour in terms of attracting females through dance. This process merges the advantage of
the Firefly Algorithm (FA) and Genetic Algorithm (GA), according to particle swarm optimization
(PSO). The MFO algorithm locally searches two populations and updates the speed and position based
on particular rules. Individual male adjusts their position by comparing themselves with others [28].
The speed and position of individual males are defined as follows:

xk+1
i = xk

i + vk+1
i (11)

vk+1
i = vk

i + a1e−βr2
p
(
pbesti − xk

i

) + a2e−βr2
g
(
gbest − xk

i

)
(12)

X k
i indicates the location of i-th mayfly in k-th iteration; vk

i represents the speed of i-th mayfly at
k-th iteration; pbesti signifies the optimal location that i-th mayfly has accomplished; a1 and a2 denote
the positive attraction coefficients; rp characterizes the Cartesian distance between mayfly location and
the optimum location of an individual. Females fly towards males for breeding, and this also clarifies
the mating process. The optimal female is allotted to the optimal male, and thus the location and speed
of females are decided, which are shown below:

vk+1
i = vk

i + a2e
−βr2

mf
(
xk

i − yk
i

)
, f (yi) > f (xi) (13)

vk+1
i = vk

i = fl ∗ r, f (yi) ≤ f (xi) (14)

yk+1
i = yk

i + vk+1
i (15)

Amongst others, vk
i denotes the speed of female i-th mayfly in the k-th step, yk

i indicates the location
of female i-th mayfly in the k-th step, rmf represents the speed of female mayfly from male, and fl implies
the arbitrary movement coefficient. The basic MFO algorithm is a mating procedure between male
and female populations. Based on the abovementioned principles of male-attracting-the-female, the
crossover function is implemented using the location quantity of two populations. In the following
equations, the crossover operation is demonstrated.

offspring1 = L ∗ male + (1 − L) ∗ female (16)

offspring2 = L ∗ female + (1 − L) ∗ male (17)

Here, L indicates an arbitrary number within a specific interval; male corresponds to an individual
male mayfly; female implies an individual female mayfly; and offspring denotes the individual mayfly.
In the principle of observance of population size constant and late generation population, once it
accomplishes the best fitness value, the respective parameter of the preceding generation population
is replaced. In other terms, the preceding generation’s population would remain constant. Now, f(x),
i.e., the objective function, must be utilized for the selection and evaluation of the targeted population.
Fig. 2 depicts the flowchart of the MFO technique.
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Figure 2: Flowchart of MFO

3 Results and Discussion

In this section, the proposed model was experimentally validated using the UNSW-NB15 dataset
(https://research.unsw.edu.au/projects/unsw-nb15-dataset). The dataset contains a total of 2,540,044
records or network connections, and there are 10 different classes of attacks that can be detected,
along with a class representing normal network traffic. Here are the details of the number of records
for each class of attacks: Backdoor: 1746 DoS: 12264 Exploits: 44525 Fuzzers: 24246 Generic: 215481
Reconnaissance: 55604 Shellcode: 1511 Worms: 130 Analysis: 200 Normal: 93000. For experimental
validation, ten-fold cross-validation is used.

The results were investigated under several measures. The proposed model is simulated using
Python 3.6.5 tool on PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD.
The parameter settings are given as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count:
50, and activation: ReLU. Table 1 reports the overall classification results achieved by the EMML-
CADC model on distinct class labels. Fig. 3 illustrates a brief overview of precn, recal, and detection
rate (DR) outcomes accomplished by the proposed EMML-CADC model under different classes. The
figure indicates that the EMML-CADC model accomplished enhanced outcomes in every class. For
instance, with normal class, the EMML-CADC model achieved precn, recal, and DR values such as
82.36%, 86.60%, and 86.35%, respectively. At the same time, with the exploits class, the EMML-CADC
system attained precn, recal, and DR values such as 82.68%, 82.15%, and 80.75%, correspondingly.
Moreover, with the Generic class, the proposed EMML-CADC method yielded precn, recal, and DR

https://research.unsw.edu.au/projects/unsw-nb15-dataset
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values such as 80.89%, 84.98%, and 97.23%, respectively. Also, with the worms class, EMML-CADC
methodology accomplished precn, recal, and DR values such as 86.29%, 83.39%, and 83.78%.

Table 1: Results of the analysis of the EMML-CADC technique under various measures and class
labels

Labels Precision Recall Detection rate Accuracy F-score MCC

Normal 82.36 86.60 86.35 92.16 90.85 81.53
Analysis 87.25 81.04 72.09 88.29 90.84 81.53
Backdoor 82.61 81.30 66.39 92.64 89.81 80.85
DoS 81.20 79.24 95.94 90.96 88.69 80.15
Exploits 82.68 83.15 80.75 88.10 88.21 79.67
Fuzzers 85.43 81.54 77.28 92.38 94.27 87.16
Generic 80.89 84.98 97.23 90.34 88.75 82.72
Reconnaissance 87.35 78.50 70.76 91.95 93.33 81.69
Shellcode 85.24 85.13 72.61 91.43 91.61 84.77
Worms 86.29 83.39 83.78 90.54 91.27 85.29
Average 84.13 82.49 80.32 90.88 90.76 82.54

Figure 3: Precn, recal, and DR analysis results of EMML-CADC technique under distinct class labels

Fig. 4 demonstrates a brief overview of accuy, Fscore, and Mathew Correlation Coefficient (MCC)
values accomplished by EMML-CADC methodology under different classes. MCC provides a bal-
anced measure of classification performance. The MCC value ranges from −100 to 100, where a score
of 100 represents a perfect prediction, 0 represents a random prediction, and −100 represents a total
disagreement between the prediction and the true labels. The figure infers that the proposed EMML-
CADC system accomplished enhanced outcomes under every class. For example, with typical class, the
EMML-CADC model achieved an accuy of 92.16%, Fscore of 90.85% and MCC of 81.35% correspond-
ingly. Meanwhile, with the exploits class, the presented EMML-CADC method accomplished precn,
recal, and DR values such as 88.10%, 88.21%, and 79.67%, respectively. Additionally, with the Generic
class, the proposed EMML-CADC algorithm attained precn, recal, and DR values such as 90.34%,
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88.75%, and 82.72% correspondingly. Likewise, with worms class, the proposed EMML-CADC model
yielded precn, recal, and DR values such as 90.54%, 91.27%, and 85.29%, respectively.

Figure 4: Accuy, Fscore, and MCC analysis results of EMML-CADC technique under distinct class labels

Table 2 and Fig. 5 demonstrate a brief overview of Elapsed Time (ET) analysis results achieved by
the proposed EMML-CADC model on training (TR) and testing (TS) data. The experimental results
demonstrate that the EMML-CADC model required the least ET values under both TR and TS data.
For instance, under normal class, the proposed EMML-CADC model obtained an ET of 4.0500 and
2.0280 s on TR and TS data, respectively. Meanwhile, with the DoS class, the EMML-CADC method
attained an ET of 0.0110 and 0.0260 s on TR and TS data correspondingly. Eventually, with a generic
class, the presented EMML-CADC methodology obtained an ET of 1.9220 and 0.0510 s on TR and
TS data, respectively. Along with that, with the worms class, the EMML-CADC system reached an
ET of 0.0030 and 0.0320 s on TR and TS data correspondingly.

Table 2: Elapsed time analysis results of EMML-CADC technique with TR and TS datasets

Elapsed time (sec)

Labels Training phase Testing phase

Normal 4.0500 2.0280
Analysis 0.0230 0.0490
Backdoor 0.0600 0.0420
DoS 0.0110 0.0260
Exploits 1.0650 0.0770
Fuzzers 1.0660 0.0240
Generic 1.9220 0.0510
Reconnaissance 0.1530 0.0410
Shellcode 0.0090 0.0580
Worms 0.0030 0.0320
Average 0.8362 0.2428
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Figure 5: ET analysis results of EMML-CADC technique with TR and TS datasets

Table 3 and Fig. 6 provide a brief illustration of Computational Time (CT) analysis results
achieved by the EMML-CADC model on TR and TS datasets. The experimental results demonstrate
that the EMML-CADC system required the least CT values under both TR and TS datasets. For
example, with normal class, the EMML-CADC model achieved a CT of 0.9200 and 0.0381 s on TR
and TS datasets, respectively. In the meantime, with the DoS class, the EMML-CADC model obtained
a CT of 0.0110 and 0.0034 s on TR and TS datasets correspondingly. Finally, with generic class,
the proposed EMML-CADC model obtained a CT of 0.0940 and 0.0140 s on TR and TS datasets,
respectively. In addition to these, with worms class, the proposed EMML-CADC model obtained a
CT of 0.0010 and 0.030 s on TR and TS datasets correspondingly.

Table 3: Computational time analysis results of EMML-CADC technique with TR and TS datasets

Computational time (sec)

Labels Training phase Testing phase

Normal 0.9200 0.0381
Analysis 0.0120 0.0056
Backdoor 0.0050 0.0031
DoS 0.0110 0.0034
Exploits 0.0980 0.0110
Fuzzers 0.0250 0.0240
Generic 0.0940 0.0140
Reconnaissance 0.0150 0.0100
Shellcode 0.0010 0.0030
Worms 0.0010 0.0030
Average 0.1182 0.0115



IASC, 2023, vol.37, no.3 2859

Figure 6: CT analysis results of EMML-CADC technique with TR and TS datasets

Table 4 and Fig. 7 portray the results of comparative DR analysis between the EMML-CADC
model and other existing models. The results indicate that the proposed EMML-CADC model
achieved better performance than other models. For instance, with standard class, the EMML-CADC
model achieved a higher DR of 86.35%, whereas Particle Swarm Optimization (PSO)-light Gradient
Boosting Machine (GBM), CMLW, Opt. Convolution Neural Network (CNN), Naïve Bayes (NB),
and K-Nearest Neighbor (KNN) models achieved the least DR values such as 80.85%, 57.68%,
78.08%, 52.70%, and 83.60%, respectively. In addition, with the Denial of Service (DoS) class, the
EMML-CADC system attained a high DR of 95.94%, while PSO-Light GBM, CMLW, Opt. CNN,
NB, and KNN techniques achieved the least DR values, such as 15.40%, 15.60%, 36.22%, 33.50%,
and 97.70%. In line with these, with generic class, EMML-CADC methodology presented a high DR
of 97.23%, whereas PSO-Light GBM, CMLW, Opt. CNN, NB, and KNN approaches exhibited the
least DR values, such as 84.34%, 96.20%, 96.19%, 42.80%, and 44.80%, correspondingly. At last, with
worms class, the EMML-CADC method offered a high DR of 83.78%, whereas PSO-Light GBM,
CMLW, Opt. CNN, NB, and KNN techniques accomplished the least DR values, such as 77.78%,
33.67%, 54.55%, 40%, and 51.15%, correspondingly.

Table 4: Detection rate analysis results of EMML-CADC and other existing techniques under distinct
class labels

Detection rate (%)
Labels PSO-Light GBM CMLW Opt.-CNN NB KNN EMML-CADC

Normal 80.85 57.68 78.08 52.70 83.60 86.35
Analysis 26.67 46.09 36.19 1.80 63.50 72.09
Backdoor 51.28 1.54 8.92 46.50 34.90 66.39
DoS 15.40 15.60 36.22 33.50 97.70 95.94
Exploits 48.56 37.68 43.17 61.30 58.80 80.75
Fuzzers 45.63 33.67 40.88 58.60 20.00 77.28
Generic 84.34 96.20 96.19 42.80 44.80 97.23

(Continued)
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Table 4 (continued)

Detection rate (%)
Labels PSO-Light GBM CMLW Opt.-CNN NB KNN EMML-CADC

Reconnaissance 31.33 89.76 23.80 40.00 33.80 70.76
Shellcode 64.47 3.70 47.35 50.00 30.00 72.61
Worms 77.78 33.67 54.55 40.00 51.15 83.78
Average 52.63 41.56 46.54 42.72 51.83 80.32

Figure 7: Detection rate analysis results of EMML-CADC and other existing techniques under distinct
class labels

A comparison study was conducted between the EMML-CADC model and other techniques
in terms of accuracy, and the results are shown in Table 5 [29]. Fig. 8 depicts the comparative accuy

examination results achieved by the EMML-CADC model against recent techniques. The improved
Extreme Learning Machine (I-ELM) model achieved a slightly low accuy of 67.01%, whereas the
Expectation-maximization model reported a moderately improved accuy of 78.47%. Followed by
Logistic Regression (LR) and NB models demonstrated slightly enhanced accuy values such as
83.15% and 82.07%, respectively. In line with this, PSO-Light GBM, TSDL_DT, and Decision Tree
(DT) models demonstrated considerably higher accuy values, such as 86.68%, 85.56%, and 85.56%,
respectively. However, the presented EMML-CADC model outperformed all other methods and
achieved the highest accuy of 90.88%.

Fig. 9 shows the comparative False Acceptance Rate (FAR) analysis results accomplished by
the EMML-CADC method and existing methods. The I-ELM model presented the highest FAR of
31.96%, whereas the Expectation-maximization model achieved a moderately lesser FAR of 23.79%.
Next, LR and NB models accomplished slightly lesser FAR values, such as 18.48% and 18.56%,
correspondingly. In line with this, PSO-Light GBM, TSDL_DT, and DT methodology illustrated
significantly lesser FAR values, such as 10.62%, 15.78%, and 15.78%, correspondingly. However,
the proposed EMML-CADC model achieved the least FAR of 9.12% and outperformed all other
methods.
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Table 5: Comparative analysis results of EMML-CADC and other existing techniques [29]

Methods Accuracy FAR

PSO-Light GBM 86.68 10.62
Expectation-maximization 78.47 23.79
TSDL_DT 85.56 15.78
Decision tree model 85.56 15.78
LR model 83.15 18.48
Naive Bayes 82.07 18.56
I-ELM 67.01 31.96
EMML-CADC 90.88 9.12

Figure 8: Accuy analysis results of EMML-CADC and other existing techniques

Figure 9: FAR analysis of EMML-CADC technique with recent algorithms
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By looking into the above-mentioned tables and figures, it is apparent that the EMML-CADC
model accomplished superior results over other methods.

4 Conclusion

In this study, a novel EMML-CADC model has been developed to enhance the efficiency of
cyberattack detection in an IoT environment. To attain this, the proposed EMML-CADC model
primarily employs data pre-processing to normalize the data into a uniform format. In addition, the
ECSO-FS approach is applied to choose the optimal feature subsets. Besides, the MFO-TSVM model
is utilized for the detection and classification of cyberattacks. Here, the MFO model has been exploited
to fine-tune the TSVM variables for enhanced results. The performance of the proposed EMML-
CADC technique was validated using a benchmark dataset, and the results were inspected under
several measures. The comparative study results conclude that the EMML-CADC method is superior
to other existing approaches under distinct measures. In future, advanced deep learning classifiers can
be involved in the proposed method to improve intrusion detection efficacy in IoT platforms.
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