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Abstract: As time and space constraints decrease due to the development of
wireless communication network technology, the scale and scope of cyber-
attacks targeting the Internet of Things (IoT) are increasing. However, it is
difficult to apply high-performance security modules to the IoT owing to the
limited battery, memory capacity, and data transmission performance depend-
ing on the size of the device. Conventional research has mainly reduced power
consumption by lightening encryption algorithms. However, it is difficult to
defend large-scale information systems and networks against advanced and
intelligent attacks because of the problem of deteriorating security perfor-
mance. In this study, we propose wake-up security (WuS), a low-power security
architecture that can utilize high-performance security algorithms in an IoT
environment. By introducing a small logic that performs anomaly detection
on the IoT platform and executes the security module only when necessary
according to the anomaly detection result, WuS improves security and power
efficiency while using a relatively high-complexity security module in a low-
power environment compared to the conventional method of periodically exe-
cuting a high-performance security module. In this study, a Python simulator
based on the UNSW-NB15 dataset is used to evaluate the power consumption,
latency, and security of the proposed method. The evaluation results reveal
that the power consumption of the proposed WuS mechanism is approxi-
mately 51.8% and 27.2% lower than those of conventional high-performance
security and lightweight security modules, respectively. Additionally, the laten-
cies are approximately 74.8% and 65.9% lower, respectively. Furthermore, the
WuS mechanism achieved a high detection accuracy of approximately 96.5%
or greater, proving that the detection efficiency performance improved by
approximately 33.5% compared to the conventional model. The performance
evaluation results for the proposed model varied depending on the applied
anomaly-detection model. Therefore, they can be used in various ways by
selecting suitable models based on the performance levels required in each
industry.
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1 Introduction

Internet of Things (IoT) technology collects, stores, and analyzes data using sensors and
wired/wireless communication technologies on various objects, and refers to an interconnected
device system [1]. All objects in the IoT have IDs for identification, communication, detection, and
calculation functions. This technology can increase productivity and automate tasks in Industry 4.0.
The IoT market is expected to grow to USD 131 billion by 2025. Moreover, the IoT network is expected
to connect more than 75 billion devices through its use as an essential and efficient technology in
various fields such as manufacturing, energy, home, transportation, disaster, and medical care [2].

With an increase in the number of IoT entities, billions of IoT devices are being connected
to more extensive wireless networks. Therefore, a security solution for IoT is crucial because all
the data sent and received are transmitted to another entity or server following collection and use.
Particularly, because the confidentiality and integrity of data transmitted and received in the IoT must
be maintained, IoT security and the protection of personal information are important issues that need
to be resolved [3]. However, because most nodes composed of IoT devices operate on batteries, the data
processing capacity is low, and the storage and bandwidth are limited, rendering the application of a
complete security suite challenging [4]. Therefore, utilizing complex security solutions that perform
data protection, authentication, and anomaly detection while maintaining the performance of core
functions (e.g., continuous data collection and sharing and control of other devices) is difficult because
of a lack of resources.

Conventionally, researchers have attempted to propose new security architectures tailored to data
processing, power consumption, and battery life requirements or to use combinations of conventional
security solutions to realize IoT security. However, these approaches are limited in terms of the data
storage space and processing capabilities, which affect their efficiency in resource-constrained IoT
environments. Furthermore, existing solutions have primarily focused on improving the resource sup-
ply systems or lightening of specific modules to reduce power consumption [5]. Although lightweight
encryption algorithms such as Rivest–Shamir–Adleman (RSA), digital signature algorithms (DSA),
and PRESENT have gained popularity with the rapid development of the IoT industry, these
approaches have failed to provide a high-performance security suite that is essential in an increasingly
complex network environment [6,7]. These studies sought to maximize the efficiency of IoT device
resources in situations wherein the battery and computing power are constrained and security features
are designed with technical limitations [8]. However, with the continuous increase in the number of
objects being connected to wireless networks, the demand for a higher level of security is increasing,
thus necessitating an energy-security-optimized solution that facilitates efficient power management
while maintaining the system and security performance at a certain level. Therefore, research for
the development of a low-power security architecture that can provide high-performance security
solutions for IoT platforms is required.

In this paper, we propose a wake-up security (WuS). This low-power security architecture operates
as a high-performance security module only when a threat is detected owing to the addition of anomaly
detection logic to the IoT platform. It can improve the power efficiency of conventional methods that
periodically execute the entire security module regardless of abnormal operations. This is because the
proposed method consumes low power by periodically waking only the anomaly detection logic and
consumes significant power only when necessary. Therefore, the WuS mechanism proposed in this
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study can solve the problem of lightweight solutions with limitations in security performance and
scalability and provide high security performance and power efficiency suitable for IoT platforms and
service levels. To evaluate the proposed WuS mechanism, the power consumption, latency, and security
performance of the proposed module are measured, compared, and analyzed using a Python simulator
based on the UNSW-NB15 dataset.

This study entailed the development of a novel approach for providing high-performance security
solutions in resource-constrained IoT environments using the proposed WuS low-power security
architecture. The primary contributions of this study are as follows:

• Novel methods for providing a high level of security capability without lightening the security
modules in resource-constrained IoT environments were examined.

• Using real-world network traffic datasets, the proposed WuS architecture was evaluated and
compared with conventional methods. The results demonstrate that WuS improves power
efficiency and security performance over conventional approaches.

The remainder of this paper is organized as follows. Section 2 presents an overview of the IoT and
the results of conventional research on IoT security vulnerabilities. Further, studies on conventional
lightweight security techniques for resource-limited IoT security are compared and analyzed. Section 3
introduces WuS mechanisms. Thereafter, in Section 4, the performance of conventional and proposed
WuS models is evaluated by conducting simulations in terms of power consumption, latency, and
security performance. Finally, Section 5 presents the conclusions and future research directions.

2 Related Work
2.1 Internet of Things and Security

IoT is a term for the future of the Internet and ubiquitous computing and refers to the state in
which humans and objects, including home appliances, vehicles, and machinery, are connected over
the Internet [9]. IoT provides new applications through cooperation between intelligent sensors and
objects without direct human intervention [10]. Machine-to-machine (M2M) technology, a connection
procedure between the Internet, mobile environments, and intelligent devices, is classified as the
foundation of the IoT. Moreover, the IoT can be built through a combination of radio frequency
identification (RFID) and other sensors with everyday objects.

The purpose of the IoT is to authenticate all things and human connections without time and
space constraints. Therefore, possible limitations such as security, communication, optimization, and
legal rights must be addressed. Conventionally, to derive a security solution for the IoT, many studies
have classified and analyzed its security vulnerabilities. Particularly, an attack surface is defined as
a potential threat that allows unauthorized users to access a system and extract data. In general,
attack surfaces can be classified as physical devices, networks, clouds, webs, and application interfaces
[11]. The IoT may include hardware devices, such as RFID and sensing technologies, which supervise
and interact with the processing between objects in real time. However, physical devices have limited
resources depending on the size of the circuit and are prone to losses owing to natural disasters, simple
accidents, and physical attacks. Wired and wireless networks that connect IoT devices to network
technologies are essential for IoT systems. To provide users with a high level of service, the network
scale and mobility between users and devices should be expanded. However, as the network service
surface expands, it can be exposed to potential security threats, such as hacking, spoofing, denial
of service (DoS), and man-in-the-middle attacks [12]. Furthermore, cloud computing technology
enables remote access to shared service resources without time and space constraints and facilitates
information collection and sharing. This technology can overcome resource limitations, which are
significant constraints of IoT platforms [13] and can serve as a base technology for realizing the vision
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of IoT [14]. However, they are vulnerable to malicious attacks based on unauthorized access such as
cross-site request forgery (CSRF), structured query language (SQL) injection, and cross-site scripting
(XSS). Moreover, maintaining the integrity is challenging; thus, database leakage and privacy problems
can occur. Moreover, in the case of web and application license interfaces, there is a risk of personal
and sensitive information being abused, because services are provided through most remote access
services and mobile devices. Thus, attacks such as malware, spyware, DoS, and wiretapping may occur.
However, owing to the open nature of mobile operating systems, conducting a thorough security check
via a third party is challenging [15,16]. Owing to the interconnected and interdependent characteristics
of the IoT environment, vulnerabilities to new attacks that have not been discussed previously may be
included. Table 1 summarizes IoT attack surfaces [11].

Table 1: IoT attack surfaces [11]

Attack surface Description

� Physical attacks
Physical device � Node capture attacks

� User tracking

� Wireless based attacks (e.g., jamming, DoS, man-in-the-middle attack,
wormholes sinkhole)

Network services � Routing attacks
� Attacks on networks ports
� Internet attacks (viruses, intrusion and hacking, DDoS, replay attack,

identity theft)

� Malicious attacks (e.g., XSS, SQL injection flaws, cross-site request
forgery (CSRF) and insecure storage)

Cloud services � Attacks on data integrity vulnerability
� Privacy breaching attacks
� Insider attacks
� Flooding attacks

� Malwares, spyware and virus
Web & application � DoS

� Eavesdropping
� Bluesnarfing, and bluejacking

Potential new attacks � Interconnected IoT environment
by exploiting � Interdependent IoT environment

� Social IoT environment

To protect an IoT platform from the threats listed in Table 1, the potential threats must be
identified and blocked through continuous monitoring. To respond to various aspects of security
threats and provide security services, security mechanisms according to the types of security services
are provided in prior art. Table 2 summarizes the types of security mechanisms for each IoT security
service.
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Table 2: Examples of security mechanisms for security services [6]

Security service [17] Security mechanisms

Confidentiality Message encryption, sign-encryption
Integrity Hash function, message signature
Availability Pseudo-random frequency hopping, access control, intrusion prevention

systems, firewalls
Non-repudiation Message signature
Authentication Chain of hash, message authentication code
Privacy Pseudonymity, unlikability, k-anonymity, Zero-Knowledge Proof (ZKP)

2.2 Lightweight Encryption Algorithm
In a conventional digital communication environment, transmitted and received data are

encrypted and authenticated, and an encryption technique is primarily used to prevent data misuse
and abuse. However, traditional encryption algorithms are unsuitable for resource-constrained IoT
environments including physical devices. Consequently, lightweight encryption algorithms that can
be used in low-power environments have been actively conducted [18]. Table 3 lists representative
lightweight encryption algorithms.

Table 3: Lightweight encryption algorithms [19]

Encryption Algorithm Block size Key size

AES (Advanced Encryption Standard) [20] 128 bits 128, 192, 256 bits
ARIA (Academy, Research Institute, Agency) [21] 128 bits 128, 192, 256 bits
KLEIN [22] 64 bits 64, 80, 96 bits
PRESENT [23] 64 bits 80 bits
LEA (Lightweight Encryption Algorithm) [24] 128 bits 128, 192, 256 bits
CLEFIA [25] 128 bits 128, 192, 256 bits
KATAN [26] 32, 48, 64 bits 80 bits
QTL [27] 64 bits 64, 128 bits
ANU [28] 64 bits 80, 128 bits

In addition to the cryptographic algorithms listed in Table 3, numerous lightweight cryptographic
algorithms exist and several studies on lightweight cryptographic algorithms are still in progress.
Conventional lightweight encryption algorithms mainly improve standard lightweight encryption
or propose new algorithms suitable for a specific environment. Moreover, a lightweight encryption
algorithm is developed by reducing the structure and block size of the algorithm and simplifying the
formula [29]. Because IoT devices are lightweight, several methods using ciphertext policy attribute-
based encryption (CP-ABE) technology have been proposed to facilitate safe offloading of data into
cloud environments [30]. In addition, various approaches have been proposed to enhance data security,
such as revisiting traditional shift cipher techniques and developing secure cryptosystems using DNA
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cryptography and steganography [31,32]. Many studies have been conducted on methods to lighten
the encryption algorithm to overcome the limitations of IoT resource constraints.

2.3 Security Solutions for Low-Power Environments
Several studies have been conducted on low-power security architectures or proposed a con-

vergence security solution with other technologies, rather than lightening the traditional encryption
algorithm and improving its performance. Table 4 summarizes the key technologies, limitations, and
open issues in studies on security solutions in low-power environments. According to Table 4, four
types of conventional low-power security solutions have been proposed: frameworks, architectures,
protocols, and algorithms.

Table 4: Research on security solutions of low-power environment

Research Type Key technologies Open issues

� Trust management framework
that implements mixed and
lightweight ciphers

� The rules of the framework are
dependent on the findings of
the study

[33–35] Framework � Intrusion detection system using
software-defined network and

� Contains elements that degrade
security performance

deep learning � Failure to consider responses
after detecting abnormal behavior

� Low-power, low-cost architecture
with in-house modules

� Depending on a specific module
� Security was suggested by

[36–41] Architecture � Authentication scheme in a cloud
computing environment

implementing authentication
and identification steps, but the
system complexity increased

� Performance improvement of
security module is not considered

� Low-power security protocol
targeting distributed network

� Leverage traditional lightweight
cryptographic algorithms

[42,43] Protocol environments and specific
secure channels

� Research on memory
management transactions due to
data immutability is needed

� Energy-management algorithm
for attacks on the IoT

� Lack of research on security
performance

[44–48] Algorithm � Mutual authentication algorithm
� Network and system compression

� Focused on specific performance
improvement for each algorithm

algorithms
� Potential security threat

prediction model

Regarding framework type, a security and privacy protection framework combined with multilevel
trust management was proposed, and a user-centered privacy protection service was provided via the
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introduction of a hybrid encryption algorithm and lightweight encryption [33]. IoT-based healthcare
systems have emerged as promising areas wherein patient data can be stored and transmitted securely
[34]. This framework can provide the processing power to register personal health information (PHI)
while limiting protection leakage in medical emergencies. However, momentary judgment errors may
occur during opportunistic computing and support node-selection processes and may include factors
that degrade security performance such as a short key with a low trust level. Intrusion detection
systems that use software-defined networks with programmable approaches to separate the control
and data planes have also been proposed [35]. Such systems were optimized to avoid burdening IoT
devices; however, they were not considered for the response process after anomaly detection.

In contrast, in the case of low-power architecture, a self-developed sensor or authentication
scheme in a cloud computing environment was proposed. To implement low-power, low-cost IoT
networks for smart agriculture, the Indian Institute of Technology Hyderabad (IITH), remotely
for monitoring soil moisture content, was used as the sink and sensor nodes to extend the system
life by approximately 83% [36]. Additionally, through the introduction of cloud technology to IoT,
security robustness is ensured based on the authentication system, and the communication costs are
reduced [38,39]. However, the conventional low-power architecture solution has limitations such as an
increase in the system complexity and latency because the results depend on a specific module or the
introduction of a separate authentication system.

In the case of protocol solutions for low-power environments, low-power security protocols
targeting a distributed network environment, including a blockchain or a specific security channel,
have been proposed. A low-power blockchain protocol implemented by nodes in a blockchain network
was proposed, and lightweight software that downloaded valid data structures was implemented [42].
Although this study can increase privacy while maintaining a constant communication cost, errors may
occur because of the fork function of the blockchain and data characteristics owing to immutability.
Furthermore, an energy-efficient security protocol for wireless sensor network (WSN) systems is
proposed [43]. It comprises a mutual authentication mechanism and a symmetric security channel
and is light weight with an AES encryption-based security channel. However, it offers weak reliability
for a protocol with an executed log; thus, impersonation, eavesdropping, and spoofing attacks may
occur.

Finally, in the case of low-power algorithms, energy-management algorithms for attacks targeting
IoT, mutual authentication, and network and system compression have been proposed. The storage
compression consensus (SCC) algorithm, which compresses the blockchain on each device to secure
the storage capacity, reduces the storage capacity by 63% compared to the existing algorithms
[44]. A secure and lightweight mutual authentication algorithm in the Dolev-Yao attack model
[45] and an energy consumption management algorithm to improve the lifespan of IoT against
battery consumption attacks have also been proposed [46]. These algorithms have proven their
effectiveness on specific evaluation indicators such as memory capacity, security performance, and
energy efficiency. However, they cannot degrade other performance evaluation indicators or utilize
high-performance security. Furthermore, to predict potential security threats in IoT environments,
researchers have explored algorithms such as the improved radial basis function neural network [47].
However, with the increasing complexity of IoT networks, adversaries have devised new ways to exploit
system vulnerabilities; this has resulted in the development of abusive adversarial agents and attack
strategies [48].

Conventional studies on security solutions for low-power environments can reduce overall power
consumption and memory usage. However, reaching the level at which the optimal energy security
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solution is applied is challenging because the security performance deteriorates when security-related
logic is not considered or when the weight is reduced. Particularly, conventional solutions have
prioritized lightweight logic that performs a security function, such as a cryptographic algorithm,
among many types of logic, which is insufficient to defend against cyberattacks occurring on a large-
scale network. Moreover, in a conventional IoT platform, computing performance, such as data
processing, is more critical than security performance. Consequently, many studies have highlighted
or did not consider the security module. To overcome these limitations, this study simultaneously
improves the power efficiency and security performance by applying high-performance security
modules in a low-power environment.

3 Proposed Method
3.1 Wake-Up Security Architecture

The WuS mechanism adds a small amount of logic to perform anomaly detection on the IoT plat-
form and operates the security module only when necessary to utilize the high-performance security
module in a low-power environment. Fig. 1 shows a structural diagram of the WuS mechanism.

Figure 1: Wake-up security mechanism

WuS is located within the input part of the IoT platform and includes a microcontroller unit
(MCU) corresponding to the control logic, a sensor that receives external signals, a security module
that performs security functions, and memory. WuS logic is separated from security modules, which
perform security functions and detect abnormal behavior by receiving data from sensor units that
collect external signals. The total power efficiency can be improved by waking up a high-performance
security module only when an abnormal behavior occurs. In other words, when no abnormal
behavior occurs, the other logics are switched to the power-saving mode, and only the WuS logic
remains active. For anomaly detection technology, studies on realistic datasets and learning methods
have been actively conducted [49], and there may be differences in performance depending on the
machine-learning algorithms and datasets. The anomaly-detection model used in the WuS logic is not
generated by the IoT platform itself. Instead, it uses an external platform with sufficient resources
to perform data preprocessing, normalization, feature extraction, dataset training, segmentation, and
classification. The generated model can be updated continuously depending on the situation. In this
study, an anomaly-detection model was constructed using a decision-tree classifier learned from the
UNSW-NB15 dataset. The model performed pattern-based detection based on 15 highly correlated
label values among the traffic information. Moreover, the anomaly-detection model can be applied
by selecting a conventional anomaly-detection model based on IoT functions and user preferences.
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Because the already learned model was added to the WuS logic to detect it, it is possible to detect it in
advance with very little energy compared with conventional high-performance and lightweight security
modules. Moreover, the saved memory space can only store and manage logs containing meaningful
information, making it easier to track and manage security audits and control histories.

3.2 Operation of WuS Mechanism
According to the operating principle of the WuS mechanism, the flowchart comprises an

abnormal-behavior detection step and a security check step. A flowchart of the operational structure
of the WuS mechanism is shown in Fig. 2.

Figure 2: WuS mechanism flow chart

The operation of the IoT, including WuS logic, is as follows: The IoT periodically or irregularly
receives signals from the outside. The signal data received by the sensor mounted on the IoT enter
the abnormal-behavior detection stage using WuS logic. The WuS logic, which performs anomaly
detection in the WuS mechanism, may utilize conventional anomaly detection techniques, such as
attack pattern-based detection of known attacks, transmission signal anomaly detection, and integrity
detection of transmitted and received data. That is, all the received signals are classified according
to the outlier criteria of the anomaly-detection model applied to the WuS logic. After the detection
of abnormal behavior, such as an abnormality in integrity violation, the WuS logic calls the high-
performance security module to perform security measures corresponding to additional detection and
response. Anomaly detection using the WuS logic can be performed even when the security module
operates. In contrast, if no abnormal behavior occurs, the changes generated by the received traffic
are updated and saved without invoking a separate security module. This method has a lower latency
than the conventional method, which periodically scans through the security module regardless of
abnormal behavior, and enables a quick response to additional threats. Particularly, it is possible to
efficiently detect abnormal behaviors and manage response logs by saving resources in environments
where many events do not occur.

The specifications of the security module are as follows: When the logic detects abnormal behavior,
it reports the abnormal detection results to the MCU, corresponding to the control logic. Subsequently,
the security module is activated after receiving an anomaly detection event from WuS. In this case, the
security module may differ depending on the service and industry provided by the IoT platform. In this
study, we assumed that deep packet inspection (DPI) is used for the security function of the security
module. Generally, DPI involves analyzing data in depth by checking whether the entire string matches
the received data [50]. However, because of the problem of complicating the signature depending on the
data format, data inspection is performed by configuring a regular expression for a network intrusion
detection system. Most DPI applications are based on pattern-based checking using a finite-state
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machine (FSM) to recognize languages expressed by regular expressions and use signature matching
[51]. The security module that performs DPI maintains the power-saving mode during typical times in
the absence of attacks. However, after the detection of abnormal behavior, it is awakened by the control
logic. Consequently, the security module switches to the active state, performs DPI to determine
whether an actual attack has occurred and the level of intrusion, and transmits it to an external
server to implement countermeasures. This method can improve the performance of the IoT security
architecture compared with the conventional method of processing all data in external networks using
cloud technology. Furthermore, by limiting the scope of data leakage, the WuS mechanism can prevent
secondary damage such as the leakage of personal and sensitive information. Following the completion
of all security-related tasks, the security module reports problems and measures to the MCU and then
returns to sleep mode. The control logic updates and patches the IoT devices and memory.

The use of energy-efficient mechanisms is crucial in resource-constrained IoT environments where
energy consumption is directly related to the system complexity and circuit size of embedded systems.
The WuS mechanism utilizes a power-saving mode when no abnormal behavior is detected following
the completion of security work, resulting in lower power and memory consumption. Compared to
conventional methods of reducing the complexity of modules that perform specific functions, the
WuS mechanism can provide high-quality services for IoT platforms by reducing unnecessary power
consumption. Thus, relatively complex security solutions or energy-security optimal solutions can be
utilized even in resource-constrained IoT environments. In this way, the WuS mechanism is expected to
enable the implementation of high-performance security functions at the level of a complete security
suite, which is necessary for a highly secure IoT network.

4 Evaluation
4.1 Evaluation Environment
4.1.1 Experimental Environment

In this study, the power consumption, latency, and security performances of the proposed
and comparative models were measured, compared, and evaluated using a Python-based simulator.
The simulation was conducted in a PC environment using Windows 10 Home, RAM 8 GB, and
11th Gen Intel(R) Core(TM) i5–1135G7 @ 2.40 GHz. The simulation was evaluated using the
“UNSW_NB15_testing-set.csv” for the UNSW-NB15 public dataset. This dataset comprised 16,235
traffic events: 12,326 normal and 3,909 attack traffic events. The simulation measured the power
consumption, latency, and security performance during the analysis of the entire dataset.

4.1.2 Dataset and Detection Model

In this study, the UNSW-NB15 dataset was used to detect abnormal behavior. This dataset was
generated by capturing real network traffic using the IXIA PerfectStorm tool of the CyberScope
Laboratory of the Australian Cyber Security Center (ACCS), which consisted of normal and nine
abnormal traffic [52]. Moreover, this dataset included nine attack types with 49 features: fuzzers,
analysis, backdoors, DoS, exploits, generics, reconnaissance, shellcode, and worms. Therefore, the
threat model used in this study was based on the UNSW-NB15 dataset, which provides a complex
and dynamic environment for evaluating intrusion detection systems and security mechanisms in a
network. In the simulation evaluation, an experiment was conducted based on binary classification
depending on the presence or absence of an attack on normal and attack traffic using the “label”
feature value.
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Data preprocessing, encoding, and normalization were performed on the UNSW-NB15 dataset
using the GitHub open-source code for the network intrusion detection system (NIDS) [53]. In the
simulation evaluation, “UNSW_NB15_testing-set.csv” was used for the UNSW-NB15 dataset. The
dataset consists of 45 features and 81,173 rows, excluding null values, with normal traffic accounting
for 75.99%, and abnormal traffic accounting for 24.01%. A data frame with categorical properties
was generated through one-hot encoding, and data normalization was performed using the MinMax
Scaler for the generated data frame. Consequently, the binary dataset consisted of 81,173 rows and
61 columns, and the “label” features were classified as “normal” and “abnormal.” To extract other
meaningful features, the linear relationship between two variables was analyzed using the Pearson
correlation coefficient method. The larger the absolute value of the coefficient, the stronger the
relationship between the variables. In this study, 15 features with a target feature label and correlation
coefficient of 0.3 or higher were selected [53].

Simulations were performed using a normalized binary classification dataset. Among the binary
datasets from which the feature extraction was completed, 80% and 20% were randomly partitioned
into the training and test data, respectively, and a decision tree was used for training. A decision tree is
a supervised learning model that classifies and regresses data using a set of rules. Because the resulting
model has a tree structure, it has been used in many previous studies [54]. The tree-based binary
classification results showed an accuracy of approximately 98.1, mean absolute error (MAE) and mean
squared error (MSE) of approximately 0.019, and root mean square error (RMSE) of approximately
0.138. The trained basic dataset has a uniform distribution of normal and attack traffic. In this
study, the distribution of attack traffic was arbitrarily adjusted for the simulation evaluation. The
modified dataset is divided into three sections according to the number of attacks. The first, second,
and third sections distributed 60%, 5%, and 35% of the total attack traffic, respectively. Fig. 3 shows
the distribution of the actual and redistributed attack traffic obtained by calculating the cumulative
amount of attack traffic.

Figure 3: Distribution of attack traffic

4.1.3 Comparative Models and Assumptions

The simulation evaluation compared the proposed WuS mechanism with a high-performance
lightweight security module-based mechanism. In the proposed model, the security module operates
when anomalies are detected using the WuS logic, which detects abnormal behavior. In this case, the
security module was the same as the high-performance security module of the conventional model.
However, in the conventional model, the high-performance or lightweight security module operates
periodically regardless of abnormal behavior. In this study, the entire dataset is evaluated as a single
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scenario, whereas in the conventional model, a security module is operated for each traffic event. Zero-
day attacks were not considered in this experiment.

A conventional comparative model can be divided into two models that use only a high-
performance security module or a lightweight security module. Although both high-performance and
lightweight security modules perform DPI for every traffic event, the difference lies in the amount
of power and computation consumed. The power consumption ratio of each logic is based on the
complexity of the cryptographic algorithm. Complexity refers to the amount of resources required
to complete a program after executing it and is generally proportional to the size of the input
value. The larger the input value of the system, the more power it consumes [55]. High-performance
security modules require greater memory and battery capacities, resulting in larger circuits. With an
increase in the circuit size, the power consumption increases with complexity. Therefore, the higher the
performance of the security module, the more complex the encryption algorithm. Table 5 presents a
comparison of the complexities of the encryption algorithms [56,57].

Table 5: Comparison of complexities of encryption algorithm [56,57]

Algorithm Before encryption After encryption After decryption

XOR 130 KB 130 KB 130 KB
DES (Data Encryption Standard) 130 KB 188 KB 130 KB
Triple-DES (TDES) 130 KB 360 KB 130 KB
Blowfish 130 KB 544 KB 130 KB

The power consumption ratio of each security module was determined based on the complexity
after encryption, as illustrated in Table 5. WuS logic has a complexity value of XOR because it
performs anomaly detection based on binary classification data. Blowfish, which has the highest
complexity among the cryptographic algorithms listed in Table 5, is assumed to be the complexity
value of the high-performance security module. Furthermore, the lightweight security module was
divided into DES and TDES, and both lightweight models were included in the experiment. Table 6
lists the power consumption setting values for each security module.

Table 6: Power consumption of each security module [56,57]

Method High-performance
security module

Lightweight security module WuS logic

Algorithm Blowfish DES TDES XOR
Total power 544 mW 188 mW 360 mW 130 mW

According to Table 6, the high-performance security module consumes 544 mW of power for each
traffic event, whereas the lightweight security module consumes 188 and 360 mW. In contrast, the
proposed model consumes 130 mW of power for each traffic event and operates the high-performance
security module only when abnormal behavior is detected in the WuS logic, consuming an additional
544 mW of power.
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4.2 Evaluation Results and Analysis
In this study, we present a comparative analysis of the proposed WuS mechanism against existing

models that use high-performance and lightweight security modules. We conducted experiments to
evaluate the power consumption, latency, and security performance of each model and analyzed
the results. To evaluation power consumption, we calculated the power consumption ratio of each
security module mathematically, based on the spatial complexity of the cryptographic algorithm, as
shown in Table 6. For latency evaluation, we used a Python simulator implemented each comparison
model to measure the operating time of the security module or logic according to the traffic flow.
Finally, for security performance, we measured the detection accuracy and efficiency using well-known
confusion matrices and machine-learning prediction accuracy formulas. The specific evaluation results
are presented as below.

4.2.1 Power Consumption

Power comprises dynamic and static power, which can be expressed as follows [46]:

P = Pstatic + Pdynamic (1)

Static power (Pstatic) refers to the constant leakage current present even when the circuit is disabled
[58]. In contrast, the dynamic power (Pdynamic) has different values depending on the circuit capacity
(C), voltage (V ), and frequency (F). This can be expressed as [59]:

Pdynamic = C × F × V 2 (2)

As presented in Table 6, the amount of power consumed by each security module was set based
on the complexity value of the encryption algorithm. This shows that as the complexity of the
module increases, the power consumption increases proportionally with the circuit size. Furthermore,
in the simulation, the total power consumption was calculated by ignoring static power, and the
power consumption for each model was calculated and measured. The length of each traffic flow
or transaction is not reflected in the power consumption calculation.

Fig. 4 shows a graph of the accumulated power consumption for every 100 traffic cycles over time.
“WuSM” represents the WuS Mechanism, whereas “HPSM” represents the high-performance security
mechanism. Moreover, in the case of a lightweight security mechanism, “LSM1” has the complexity of
DES, whereas “LSM2” has the complexity of TDES. LSM1 had the lowest total power consumption
because it consumed power for every traffic type, and its value was similar to that of the proposed
model. Furthermore, other models, except WuSM, consume power for all traffic; therefore, the power
consumption increases faster over time. Particularly, the HPSM consumes the highest power increase
with the steepest slope. However, the WuSM slope of the graph differed according to the attack
frequency. This is because when WuSM detects abnormal behavior, the high-performance security
module is activated and additional power is consumed. The power consumption increased with the
steepest slope in the first section and highest attack frequency. Moreover, it can be observed that
the power consumption increases with the gentlest slope in the second section, which has the lowest
attack frequency. In terms of the total power consumption, WuSM consumed approximately 107.3%
less power than HPSM, 37.2% less power than LSM2%, and 28.3% more power than LSM1. WuSM
consumes the second-least power of the total power consumption. Based on these results, the WuS
mechanism is expected to consume less power in an environment with fewer abnormal behaviors. Thus,
WuS can improve the power efficiency of resource-constrained IoT platforms.
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Figure 4: Evaluation results of accumulated power consumption

In addition to the accumulated power consumption, the instantaneous power consumption
evaluation results are presented in Fig. 5.

Figure 5: Evaluation results of instantaneous power consumption

Other models, except WuSM, draw a horizontal line because they always consume the same
amount of power, regardless of the abnormal behavior. However, in the case of WuSM, it is evident
that the difference in the instantaneous power consumption is large according to the attack frequency.
The most power was consumed in the first section, whereas the least power was consumed in
the second section. In the second section, the power consumption of WuSM is less than that of
LSM2. The experiments revealed that the proposed WuS mechanism demonstrated improved power
efficiency compared with conventional methods. This is because of the anomaly detection logic, which
selectively activates high-power-consumption security modules only when an abnormal behavior is
detected, thereby resulting in reduced power consumption. Compared with traditional models, which
exhibit increased power consumption with the complexity of the module, WuS implemented a power
consumption strategy that was dependent on the anomaly detection status, which improved the
efficiency in module operations. The WuS mechanism is particularly useful in low-power environments
with infrequent infringement situations because it improves efficiency via the reduction of power
consumption upon the detection of normal behavior. Our results show that the proposed mechanism
can provide a high level of security without reducing the security modules in resource-constrained IoT
environments, as demonstrated by the improved power efficiency observed in our experiments using
real-world network traffic datasets.
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4.2.2 Latency

Latency refers to the time at which a security module and its related logic operate. In the
simulation, the DPI, which operates the security module, was modeled as a mathematical operational
device. The evaluation results for latency when comparing the accumulated execution time for every
100 traffic instances are shown in Fig. 6.

Figure 6: Evaluation results of accumulated latency

According to the evaluation results shown in Fig. 6, the total latency was the smallest for WuSM
and highest for HPSM. The latencies of all the models, except WuSM, increased proportionally with
time. However, the latency of WuSM differed in the slope of the rising graph according to the attack
frequency. In the first section, the latency of WuSM increased faster than that of LSM2. Thereafter, in
the second section, the latency of WuSM barely increased and increased again as it entered the third
section. This is because WuS operates the security module when an abnormal behavior is detected in
WuSM; the greater the latency, the greater the slope of the graph. As the amount of analyzed traffic
increases toward the latter part of the dataset, the latency difference between each module gradually
increases. Thus, based on these results, the WuS mechanism is expected to experience more minor
delays in an environment with less abnormal behavior, thereby improving system efficiency and service
availability. In addition to the latency, the instantaneous latency evaluation results are shown in Fig. 7.

Figure 7: Evaluation results of instantaneous latency

Referring to the results in Fig. 7, the latency of WuSM in the first and third sections was longer
than that of the HPSM, and, on average, the latency of LSM2 was the least required. WuSM had the
shortest instantaneous latency in the second section, whereas the other models had longer latencies
than the other sections. The experimental results clearly indicate that WuSM significantly affected the
latency, with the degree of impact varying based on the attack frequency. This is because WuSM is
designed to adapt the logic behavior based on anomaly detection, resulting in improved operational
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efficiency. Consequently, WuSM improves the latency performance compared to conventional security
mechanisms by reducing the battery usage time and improving the processing speed in low-risk
situations.

4.2.3 Security Performance

The security performance was evaluated by dividing it into detection accuracy and efficiency.
In the evaluation, the average value was calculated by measuring the performance every 1,000 traffic
cycles using the confusion matrix. The definition of the confusion matrix is the same as that in Table 7.

Table 7: Confusion matrix for evaluating security performance

Normal (predict) Abnormal (predict)

Normal (actual) TP (True Positive: The number of
cases correctly detected as normal
traffic)

FN (False Negative: The number of
cases incorrectly detected as
abnormal traffic)

Abnormal (actual) FP (False Positive: The number of
cases incorrectly detected as normal
traffic)

TN (True Negative: The number of
cases correctly detected as abnormal
traffic)

The detection accuracy is a measure of the probability that each model will succeed in detecting
abnormal traffic; that is, it indicates the ratio of correctly detected abnormal traffic to all abnormal
traffic in the dataset. The ratio was calculated using the following formula:

Detection Accuracy = TN
Number of Abnormal Data

× 100 (3)

The detection efficiency is an evaluation index that checks the degree to which the operation
of each model significantly impacts the IoT security. This confirms the accuracy of the model in
predicting the normal or abnormal traffic. In other words, it measures how accurately each model can
detect whether incorrect detection wastes power or increases the waiting time. This can be calculated
using the following formula, which measures the prediction accuracy of machine learning [60]:

Detection Efficiency = TP + TN
TP + TN + FN + FP

× 100 (4)

Fig. 8 shows the evaluation results for the detection accuracy calculated using Eq. (3) as an average
for every 100 traffic cycles. Because all the models except WuSM perform DPI for all traffic types,
they have the same detection accuracy and efficiency for the same dataset scenario. Therefore, in the
security performance evaluation of this study, HPSM, LSM1, and LSM2 were unified and marked as
“Conventional Methods (CM).”

According to the evaluation results, all models exhibited a high detection accuracy of 93% or
higher for the entire section. Because zero-day attacks were not considered in this study, the detection
accuracy of CM was 100%. However, WuSM may differ in detection accuracy depending on the
anomaly-detection model. The detection accuracy of WuSM using the decision-tree algorithm was
an average of approximately 96.5%. WuSM exhibited a relatively low and irregular detection accuracy
in the first section; however, it increased as traffic was collected. In the third section, where the attack
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traffic increased again, the accuracy decreased; however, a high accuracy of more than 96% was
achieved.

Figure 8: Evaluation results of detection accuracy

Fig. 9 shows the evaluation results calculated by averaging the detection efficiencies measured
using Eq. (4), for every 100 traffic events.

Figure 9: Evaluation results of detection efficiency

According to the evaluation results, WuSM achieved a high detection efficiency of approximately
98% on average. The detection efficiency may vary depending on the performance of the anomaly-
detection model applied to WuSM. However, the CM operated a security module for each traffic event;
thus, it operated as if it were detecting all the abnormal traffic. Consequently, the detection efficiency
of CM was an average of approximately 32.8%, which was significantly lower than that of WuSM,
and this figure decreased over time. Thus, as the amount of traffic increases, the detection efficiency
of WuSM performing primary detection significantly increases. Although the security performance of
the proposed scheme can vary depending on the specific anomaly-detection algorithms and models
utilized in the WuS logic and high-performance security modules, the results show that in case of
similar performance of the applied models, the detection accuracy of the proposed scheme and
conventional methods are comparable. However, the detection efficiency was significantly improved
with WuSM owing to its ability to minimize unnecessary behavior when operating security modules.
This optimized efficiency ultimately results in improved security performance in resource-constrained
IoT environments.
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5 Conclusion and Future Work

This study devised a low-power security architecture, WuS, which presents a novel approach for
providing high-performance security solutions in IoT environments with limited resources. In contrast
to conventional methods that are reliant on lightening of specific security modules, WuS involves
the addition of a small anomaly detection logic that can activate the high-performance security
modules only when an attack is suspected. This approach significantly reduces the power consumption
and improves the power efficiency. Consequently, the use of relatively complex security solutions
or optimal energy security solutions is facilitated even in resource-constrained IoT environments.
A key contribution of this study is the discussion on methods for providing high-level security
capabilities without lightening the security modules. The proposed WuS architecture was evaluated
using the UNSW-NB15 public dataset, and the results demonstrated its superiority over conventional
methods in terms of power consumption, latency, and security performance. By leveraging a learned
anomaly detection algorithm, WuS can effectively detect attacks while consuming minimal power,
thus rendering it a promising solution for energy-efficient IoT security. The evaluation revealed that
WuSM consumed approximately 107.3% less power than the HPSM and 37.2% less power than LSM2.
Furthermore, the latency of WuSM was the lowest among all models, and the instantaneous latency
was larger in the interval with a high attack frequency. Finally, among the security performance
evaluation indicators, the detection accuracy achieved high values of 100% for CM and 96.5% for
WuSM. The detection efficiency was improved by approximately 33.5%, with approximately 32.8% for
CM and 98% for WuSM. The security performance of WuSM may vary depending on the performance
of the anomaly-detection model. In future studies, a realistic model will be developed by adding
an actual security module corresponding to a complete security suite. The evaluation in this study
was designed based on the operating principle of the proposed architecture. However, implementing
hardware and software modules with embedded systems will yield more realistic results. Moreover, by
combining artificial intelligence, it is possible to research automatic data processing methods and select
an anomaly-detection model suitable for flexible environmental changes in the IoT platform, field of
application, and data characteristics. For example, when developing a machine-learning model, the
proposed architecture can detect unknowns, not specific types of attacks, by variously thresholding
the signatures for anomalous behaviors.
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