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Abstract: Traffic prediction is a necessary function in intelligent transporta-
tion systems to alleviate traffic congestion. Graph learning methods mainly
focus on the spatiotemporal dimension, but ignore the nonlinear movement
of traffic prediction and the high-order relationships among various kinds of
road segments. There exist two issues: 1) deep integration of the spatiotempo-
ral information and 2) global spatial dependencies for structural properties.
To address these issues, we propose a nonlinear spatiotemporal optimization
method, which introduces hypergraph convolution networks (HGCN). The
method utilizes the higher-order spatial features of the road network captured
by HGCN, and dynamically integrates them with the historical data to weigh
the influence of spatiotemporal dependencies. On this basis, an extended
Kalman filter is used to improve the accuracy of traffic prediction. In this
study, a set of experiments were conducted on the real-world dataset in
Chengdu, China. The result showed that the proposed method is feasible and
accurate by two different time steps. Especially at the 15-minute time step,
compared with the second-best method, the proposed method achieved 3.0%,
11.7%, and 9.0% improvements in RMSE, MAE, and MAPE, respectively.

Keywords: Intelligent transportation systems; traffic prediction; hypergraph
convolution networks; spatiotemporal optimization

1 Introduction

With the rapid development of information technology, artificial intelligence [1] involves many
interdisciplinary subjects such as human–machine interaction [2] and health state estimation [3], and
brings new elements to intelligent transportation systems (ITS). Traffic prediction is the cornerstone
of ITS [4]. By learning potential traffic information and rules, ITS can predict the traffic states in the
future, so as to take appropriate traffic control measures in time. Thus, accurate and reliable prediction
plays an important role in practical traffic applications, such as traffic guidance and signal control.
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Traditional traffic prediction mainly relies on subjective judgment. The data-driven method [5]
relies on direct data analysis, and offers higher accuracy in the fields of intelligent recommendation
[6,7], behavioral analysis [8] and blockchains [9]. It is found that the potential spatiotemporal evolution
rules and characteristics of traffic states from massive data, which have become the mainstream
for traffic state analysis [10,11]. Traffic data is critical for accurate traffic prediction [12]. It is a
spatiotemporal dataset with spatial structure differences and dynamic changes over time. Temporally,
traffic data of all nodes on the road network structure can be regarded as a time series, the observed
value of each node is obviously correlated with that of its adjacent time steps [13–15]. Spatially, the
traffic states of a certain road segment are correlated with the nearby locations or the relevant areas
[16,17]. The prediction models that only consider the influence of historical data or adjacent road
segments are not fully applicable to spatiotemporal traffic data. Nowadays, the models have evolved
to the spatiotemporal dimensions.

Deep learning models have been extensively applied in traffic prediction [18]. As an important
part, the graph learning methods [19,20] utilize the graph structure and the corresponding node
features to learn the internal geometric relations of the structural data, by mapping the features of the
graph to the feature vectors with the same dimension in the embedding spaces. To utilize such spatial
features, it’s appropriate to formulate traffic networks as graphs [21]. They can not only retain the
original structural information and multi-dimensional features of traffic data, but also show strong
expressive ability and self-training performance. Recently, traffic prediction utilizes graph learning
models, which have a good interpretation for the model results [22–24].

Despite the empirical success of the aforementioned techniques, two issues in traffic prediction
enabled by graph learning still exist: 1) Traffic prediction is a complex process, the nonlinear
optimization parameters of multiple dependencies cannot be determined, which limits the models to
capture the spatiotemporal evolution characteristics of traffic states [25]; 2) It fails to consider the
higher-order relationship between spatial structures, and integrate these associated data uniformly.

Hypergraph convolutional networks (HGCN) [4] have a strong ability of higher-order spatial
representation in information transfer between graph structures. Additionally, extended Kalman filter
(EKF) can approximate linearize the nonlinear state-space model, and utilize the model parameters to
estimate the spatiotemporal states, which are suitable for estimating the complex traffic states in road
networks [26,27]. Motivated by this, a nonlinear spatiotemporal optimization method of hypergraph
convolution networks (HGC-NOM) is proposed. The method utilizes the higher-order spatial features
of the road network captured by HGCN, and dynamically integrates them with the historical data
to weigh the influence of spatiotemporal dependencies. On this basis, EKF is used to improve the
accuracy of online traffic prediction. The major contributions of this work can be summarized as
follows:

(1) To optimize these nonlinear parameters of multiple dependencies in the process of spatiotem-
poral fusion, the proposed method utilizes recursive least squares (RLS) to identify the dynamic
weights of the factors of the higher-order spatial features and the historical data, and utilizes EKF
to online update the state vector-values reflecting the actual traffic environment, so as to improve the
generalization ability and prediction accuracy.

(2) In view of the lack of considering correlated spatial characteristics of non-adjacent road
segments, the higher-order spatial feature extraction model based on HGCN is presented. The
hypergraph structures are constructed by connecting non-adjacent road segments with hyperedges.
On this basis, the Laplacian matrix on the hypergraph is defined, and HGCN utilizes Chebyshev
polynomials to capture the implicit spatial features of different segments.
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(3) Extensive experiments were confirmed the validity of the proposed method and the characteris-
tic contribution of spatiotemporal fusion factors. The experimental results show that the performance
of the proposed method is superior to that of the state-of-the-art methods.

The rest of the work is organized as follows: Section 2 describes the state-of-the-art methods.
In Section 3, the model of HGCN is introduced. Section 4 explains the proposed method in detail.
Section 5 illustrates the experimental results and discusses the feasibility. Finally, Section 6 concludes
the work.

2 Related Work

Traffic prediction is the key to the realization of traffic control and guidance, and it is the premise
to reduce traffic congestion and improve travel efficiency. With the rapid development of information
technology, traffic spatiotemporal data is increasingly abundant. The models gradually evolve from
historical statistical methods to the deep learning methods [28–30] based on spatiotemporal fusion.

Historical statistical methods mainly used the significant temporal relationship between historical
data, as well as traffic flow, average speed and other parameters to make prediction. Jing et al. [31]
assessed the multistep speed predictive performance of eight different models using 2-min road
segment speed data collected from remote traffic microwave sensors. Kong et al. [32] utilized particle
swarm optimization algorithm to calculate traffic parameters from the aspects of accuracy, immediacy
and stability, and applied the fuzzy classification method to convert the predicted parameters into the
congestion states recognized by residents. Liu et al. [33] integrated the traffic features extracted and
the measured values of microwave sensors for state estimation, proposed a combination method of
state-space model and EKF, and adaptively predicted the changes of traffic conditions. Considering
the complexity of traffic conditions, Zhu et al. [34] identified the fitted historical data, weather, date
attributes and other influencing factors by recursive least square parameters, and used EKF to predict
the average speed. All above methods failed to consider spatial dependency, thereby limiting their
ability to capture the traffic state governed by the road network structures.

The prediction model [35] based on deep learning will reflect the adaptability of data state through
sample training, so as to capture the nonlinear features between different variables. Combining the
acceleration of the target segments and the speed of the adjacent segments, Ye et al. [36] utilized the
optimized neural network to improve the predictive performance, but the phase transition theory was
needed for further improvement. Tang et al. [37] used K-means algorithm to divide the speed samples
into different clusters, measured the membership degree of the samples, and established the fuzzy
neural network rules to predict the traveling speed. Zhang et al. [38] constructed a multi-task learning
model based on deep learning, selected the information of each link through the nonlinear causality
detection method, adjusted the model parameters and optimized the traffic predictive performance.
Traffic prediction is not only closely related to traffic conditions based on temporal dimension,
but also affected by traffic conditions of other spatial locations, such as upstream and downstream
locations, and adjacent lanes. Zhang et al. [39] constructed a residual neural network framework in
traffic networks, adopted a deep learning method to dynamically aggregate spatiotemporal values and
predicted the traffic flow in each region. Wu et al. [40] proposed a cross-city spatiotemporal migration
learning model, obtained prior knowledge by training the traffic data of source cities, and designed
a learning strategy based on generative adversarial network to improve the predictive performance.
The structures of traffic networks present non-Euclidean rules [41], so these methods were limited to
European structural data such as convolutional neural networks [42,43], which had difficulties in the
spatial modeling of traffic networks.
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Graph learning methods extract the feature information of adjacent segments, and transform
the non-European road network structures [44]. Based on these characteristics, it is appropriate to
formulate road networks as graphs [21]. Some scholars began to explore the spatiotemporal prediction
combining deep learning [45] and graph theory. Yu et al. [22] constructed a deep learning framework
based on graph convolutional network (GCN) to capture the spatiotemporal correlation of multi-
scale traffic networks, and satisfied the requirements of mid-and-long term prediction tasks. Due to
the prominent effect of the attention mechanism in selecting key information, Guo et al. [23] proposed
an attention-based GCN model, weighted fusion of three date attribute components, including recent,
daily period and weekly period, and captured the dynamic spatiotemporal correlation to generate
prediction results. Yu et al. [46] adopted the spatiotemporal transformer mechanism to capture
the spatial interaction of crowds and complex temporal dependence, and proposed a transformer-
based GCN model to predict the flow of social crowds in road networks. Combining self-attention
mechanism, Ye et al. [24] established transformer model based on meta-graph learning, extracted
spatiotemporal heterogeneity in traffic networks, and predicted traffic states by auto-regression. In
order to find the constraints of traffic network topology and the rule of dynamic change over time,
references [47,48] improved the spatiotemporal dependencies under graph learning framework, which
dynamically captured the temporal dependence from the gated recurrent unit and adaptively derived
the node attributes of the optimal graph structures, and proved the validity and interpretability of
these traffic prediction methods.

To sum up, the existing models are lack of consideration of road network spatial features, and
cannot comprehensively analyze the influences of cross-node isomorphism in urban road networks.
Graph learning based models depend on the accuracy of the graph structural representation of traffic
data with spatial correlations, but ignore the higher-order spatial feature extraction and nonlinear
movement of spatiotemporal prediction. Therefore, considering nonlinear spatiotemporal movement
and higher-order spatial relationship is a hot topic in the field of traffic prediction.

3 HGCN Model

In a simple graph, the node adjacency matrix identifies the adjacency relations between nodes
[49], but cannot represent the implicit spatial characteristics of key nodes to non-adjacent nodes.
Hypergraph models complex, high-order and multimodal relationship through its flexible hyperedge
(i.e., the edge connects more than two nodes), realizes the recessive feature aggregation of multiple
nodes, and has a good adaptability in the construction of generalized graph structures [50,51].
Fig. 1 represents the comparison of graph and hypergraph structures, in which the graph structure
is represented by adjacency matrix A, while the hypergraph structure is represented by incidence
matrix H.

References [52,53] gave a specific definition of hypergraph. A hypergraph can be represented
as GH = (VH, EH, WH, H) by the sets of nodes VH and hyperedges EH, where WH and H denote
the hyperedge weight matrix and incidence matrix, respectively. Each hyperedge e ∈ EH is given a
nonnegative weight w (e). The structure of the hypergraph can be described by a |VH|×|EH| dimensional
incidence matrix H, in which h (v, e) denotes its specific element. In addition, a node v is located in a
hyperedge e, h (v, e) = 1, else h (v, e) = 0. For each node v ∈ VH and hyperedge e ∈ EH, the degrees for
the node d (v) and the degrees for the hyperedge d (e) are expressed as follows:



IASC, 2023, vol.37, no.3 3087

d (v) =
∑
e∈EH

w (e) h (v, e) (1)

d (e) =
∑
v∈VH

h (v, e) (2)

Figure 1: Comparison of graph and hypergraph structures

In addition, Dv is the diagonal matrix including the node degree d (v), and De is the diagonal matrix
including the hyperedge degree d (e).

Hypergraph learning methods show a strong ability of higher-order spatial representation by
means of information transfer between hypergraph structures [54]. GCN has a good learning ability
in capturing non-Euclidian spatial features, but they over-rely on the adjacency matrix, thus ignoring
the higher-order relations between nodes in graphs [55].

As the most prominent hypergraph learning model, HGCN is an important improvement of GCN
in spatial modeling. The existing methods mainly adopt two modes: (1) It transforms hypergraph
into simple graph, and then learns the spatial dependence through the GCN model. However, the
transformation process is complicated, and the higher-order feature information is lost easily. (2) The
node features of hypergraph are aggregated to form hypergraph features, and the new embeddings
of each node are obtained from the hyperedge associated attributes. The feature transformation of
graph structures is completed by the hyperedge convolution operation, so as to discover the potential
hypergraph structural features [56]. Because the second mode learns the importance of nodes and
hyperedges through the hyperedge feature transformation, it is suitable for the modeling of higher-
order spatial features.



3088 IASC, 2023, vol.37, no.3

Take the second mode as an example. In the hypergraph neural network mentioned in reference
[50], HGCN is expressed as:

X(l) = σ
(
D−1/2

v HWHD−1
e HTD−1/2

v X(l−1)�(l−1)
)

(3)

where X(l) denotes the output values of the l-th layer, HT denotes the transpose of the incidence matrix
H, σ is RELU activation function, and � is training parameters of the convolution layer.

4 Proposed Method

The change of traffic flow in a time window is dynamic and random, but also is of complex
correlation, which brings some difficulties to the traffic spatiotemporal prediction. RLS will realize
online estimation of system parameters, and have a great impact on model identification accuracy in
the case of noises [57]. Meanwhile, EKF can be applied to nonlinear system prediction, but it is easy
to be influenced by the accuracy of state estimation. In order to predict the traffic states of the road
networks, as shown in Fig. 2, the method of HGC-NOM is proposed, which contains three factors:
(1) the traffic flow of the forward timeslot; (2) the traffic flow of the historical simultaneous timeslot;
and (3) the higher-order spatial aggregation value of the forward timeslot. Considering the effective
integration of traffic data from multiple factors such as historical periods and higher-order spatial
structures based on HGCN, the dynamic weights of different factors were identified by RLS, and
traffic state vector values were updated online by the EKF algorithm, so as to improve the prediction
accuracy in target segments.

Figure 2: Overview of proposed HGC-NOM
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4.1 HGCN Application
Due to the irregular structure of the traffic networks, traffic forecasting problem presents

challenges that the spatial modeling of road network structures do not possess. At the same time, each
node of road network structures has a different influencing degree on its adjacent areas. For example,
the intersections near the business districts usually carry a larger traffic flow, which are bound to
influence the predictive performance. HGCN will extract higher-order spatial features of road network
structures according to the hyperedge correlation attributes, so as to accurately and comprehensively
model complex spatial relationships.

According to the hypergraph GH = (VH, EH, WH, H) defined in Section 3, the hypergraph
Laplacian matrix LH is constructed as follows:

LH = IN − D−1/2
v HWHD−1

e HTD−1/2
v (4)

where the diagonal matrix of the node degree Dv and the diagonal matrix of the hyperedge degree De

are applied to the normalized incidence matrix H, respectively.

To reduce the computational complexity of feature space of incidence matrix H, Chebyshev
polynomial is adopted to fit the convolution kernel gθ :

gθ (LH) ∗ x ≈
K∑

k=0

θkTk

(∼
LH

)
x (5)

where Tk and θk denote Chebyshev polynomials and coefficients, respectively.
∼
LH = 2

λmax

LH − IN, λmax

denotes eigenvalue of maximum. In addition, Tk

(∼
LH

)
= 2

∼
LHTk−1

(∼
LH

)
− Tk−2

(∼
LH

)
, initial values

T0

(∼
LH

)
= IN and T1

(∼
LH

)
= ∼

LH.

For the sake of simplicity, the eigenvalues of LH are scaled by setting K = 1 and λmax = 2,
formula (5) is modified as follows:

gθ (LH) ∗ x ≈ θ0x + θ1 (LH − IN) x ≈ θ0x − θ1D−1/2
v HWHD−1

e HTD−1/2
v (6)

To avoid overfitting, parameters θ0 and θ1 are fused into a unified parameter θ , which is defined
as follows:⎧⎪⎪⎨
⎪⎪⎩

θ0 = 1
2
θD−1/2

v HD−1
e HTD−1/2

v

θ1 = −1
2
θ

(7)

According to formulas (6), (7), the hypergraph convolution operation is derived as follows:

gθ (LH) ∗ x ≈ 1
2
θD−1/2

v H (WH + IN) D−1
e HTD−1/2

v ≈ θD−1/2
v HWHD−1

e HTD−1/2
v (8)

Given the input matrix X ∈ Rn×c, where n and c represent the number of nodes and features,
respectively. The output matrix Y can be expressed as:

Y = D−1/2
v HWHD−1

e HTD−1/2
v X� (9)

where � ∈ Rc×c denotes the training parameters of the convolution layer.

The convolution operation of the entire hypergraph convolution process is carried out according to
the formulas (4)–(9), and the recursive calculation is combined with the nonlinear activation function
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σ . Finally, the convolution result of the l-th layer, that is the higher-order spatial aggregation value, is
output, which is expressed as follows:

Y(l) = σ
(
D−1/2

v HWHD−1
e HTD−1/2

v Y(l−1)�(l−1)
)

(10)

4.2 System Identification of RLS
The traffic flow in the historical simultaneous timeslots of the previous nt days, the traffic flow

of the previous np timeslots during a day, and the target segment spatial value of the previous one
timeslot xk,s (t − 1) are selected. The spatial value xk,s (t − 1) is calculated by the formulas (4)–(10).
The following multiple regression equation for prediction is established:

x (t) = [
a1 a2 · · · anp

]
⎡
⎢⎢⎢⎣

x (t − 1)

x (t − 2)
...
x

(
t − np

)

⎤
⎥⎥⎥⎦ + [

b1 b2 · · · bnt

]
⎡
⎢⎢⎣

x (t − �)

x (t − 2�)
...
x (t − nt�)

⎤
⎥⎥⎦ + cxk,s (t − 1) (11)

where x (t) is the predictive value of the road segment, x (t − 1) , · · · , x
(
t − np

)
are the traffic flow of

the previous np timeslots during a day, � is the number of timeslots in a day (assuming the length of the
timeslot and the number of timeslots remain constant), and x (t − �) , · · · , x (t − nt�) are the traffic
flow in the historical simultaneous timeslots of the previous nt days. a1 . . . anp , b1 . . . bnt and c are the
influence weights of each system variable on the predictive value.

RLS is used to dynamically modify the existing results according to the new observed values, and
the weighted estimator is adopted to estimate the parameters of different traffic states in real time.
The state parameters are identified and updated according to formula (11). The transformed recursive
equation is as follows:

x (t) = ϕk
T (t) θ + ek (t) (12)

where ϕk
T is the traffic flow of the road segment, θ is the identified parameter vector, and ek (t) is the

error caused by observation noise. ϕk
T and θ are recorded as vectors as follows:

ϕk
T (t) = [

x (t − 1) , . . . , x
(
t − np

)
, x (t − �) , . . . ,x (t − nt�) , xk,s (t − 1)

]
(13)

θ = [
a1, . . . ,anp , b1, . . . bnt , c

]T
(14)

Combining formulas (12)–(14), the system parameter identification gain and the error covariance
matrix are updated. The least-squares equation is expressed as follows:

Kk (t) = Pk (t − 1) ϕk (t)
[
ϕk

T (t) Pk (t − 1) θ̂k (t − 1) ϕk (t) + 1
]−1

(15)

Pk (t) = [
I − Kk (t) ϕk (t)T

]
Pk (t − 1) (16)

where Kk (t) is the parameter identification gain for timeslot t, Pk is the error covariance matrix, and I
is the identity matrix of the identification parameter.

According to formulas (12)–(16), the recursive formula for system parameter identification during
timeslot t is expressed as follows:

θ̂k (t) = θ̂k (t − 1) + Kk (t)
[
x (t − 1) − ϕT

k (t − 1) θ̂k (t − 1)
]

(17)

where θ̂k is the least-squares estimate of the system parameters, and x (t − 1) − ϕT
k (t − 1) θ̂k (t − 1) is

the correction term of the identified parameter estimation for timeslot t−1.
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4.3 Implementation of EKF
Kalman filter (KF) is a recursive method for optimal estimation of filter state variables. It is not

only used for signal filtering estimation, but also for model parameter estimation, with static linearity
and stability. KF mainly solves the filtering recursion problems of discrete linear data, and has been
applied in the field of traffic prediction [58]. Since KF is a linear model, the performance of the model
will be limited when predicting the nonlinear and random traffic states. EKF approximate linearizes
the nonlinear state-space model, and adopts KF for traffic state estimation.

According to formula (11), the standard form of the state equation and the observation equation
are expressed as follows:{

X (t) = f (X (t − 1)) + w (t − 1)

Y (t) = g (X (t)) + m (t)
(18)

where X (t) and Y (t) are state and observation vector values, respectively; w (t − 1) is the system
process noise; m (t) is the observation noise; and f (X (t − 1)) and g (X (t)) are nonlinear mapping
functions of the state equations and observation equations, respectively. X (t − 1), f (X (t − 1)), and
g (X (t)) are expressed as follows:

X (t − 1) = [
x (t − 1) · · · x

(
t − np

)
x (t − �) · · · x (t − nt�) xk,s (t − 1)

]T
(19)

f (X (t − 1)) ≈ f
(�X (t − 1)

)
+ A (t − 1)

(
X (t − 1) − �X (t − 1)

)
(20)

g (X (t)) ≈ g
(�X (t)

)
+ B (t)

(
X (t) − �X (t)

)
(21)

where �X is the estimated value of X, and A and B are the system state matrix and the observation
matrix, respectively.

According to formulas (18)–(21), A and B are derived as follows:

A (t − 1) =
∂f

(
X̂ (t − 1)

)
∂X (t − 1)

(22)

B (t) =
∂g

(
X̂ (t)

)
∂X (t)

(23)

The two components of state vector X (t − 1) in formula (19) are x (t − n) and xk,s (t − 1). They
are partial derivatives. A and B are converted to a Jacobian matrix:{

A (t − 1) = [
A1 A2

]
B (t) = [

1 0
] (24)

The corresponding parameters A1 and A2 in formula (24) are calculated as follows:{
A1 = [

a1, . . . ,anp , b1, . . . bnt

]T

A2 = c
(25)

Since the specific values of parameters A1 and A2 corresponding to formula (25) are calculated by
formula (17), then A (t − 1) and B (t) are known values. Combining with the KF, the time update of
formula (11) is expressed as follows:

X (t)− = f (X (t − 1)) (26)

P (t)− = A (t − 1) P (t − 1)
+ A (t − 1)

T + Q (27)
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where X (t)− is the prior estimate of the state vector at timeslot t, P is the covariance of the state vector
estimation error, and Q is the covariance matrix of the process noise.

According to formulas (18), (23), and (26), (27), the observation update of formula (11) is
expressed as follows:

G (t) = P (t)− B (t)T
(
B (t) P (t)− B (t)T + R

)−1
(28)

P (t)+ = (I − G (t) B (t)) P (t)− (29)

X (t)+ = X (t)− + G (t)
(
Y (t) − g

(
X (t)−))

(30)

where G (t) is the Kalman gain at timeslot t, X (t)+ is the posterior estimate of the state vector at
timeslot t, and R is the covariance matrix of the observation noise.

5 Experiments
5.1 Data Preparation

The dataset from the Chengdu branch of Didi Chuxing was adopted, the timespan is from October
to November 2016. The geographic area is located at 30.66° N∼30.73° N, 104.02° E∼104.10° E, which
is shown in Fig. 3. Three periods of traffic prediction in different road segments are adopted: the
first and last weekdays, other weekdays, and weekends. All the dataset was downloaded from https://
outreach.didichuxing.com. Each record includes: 1) driver ID; 2) order ID; 3) timestamp; 4) latitude;
5) longitude; and 6) vehicle status. The raw data format is shown in Table 1.

Figure 3: Geographical areas in Chengdu, China

https://outreach.didichuxing.com
https://outreach.didichuxing.com
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Table 1: The raw data format

Item Description

Driver ID Desensitization
Order ID Desensitization
Timestamp Unix epoch
Latitude dd.ddddd
Longitude ddd.ddddd
Status 0: empty; 1: passenger; 2: parking

The average speed was taken as the experimental data, and it was processed according to two-time
steps (15 and 30 min). The travel speed is calculated as follows:

dtra = t int

(
v0

2
+

k−1∑
i=1

vi + vk

2

)
(31)

vtra = dtra

tk − t0

(32)

where dtra is the travel distance, tint is the fixed time interval, v (·) is the instantaneous speed, vtra is the
travel speed, and t (·) is the GPS positioning time.

The instantaneous speed v is calculated as follows:

v = r ∗ arccos {sin (x1) ∗ sin (x2) + cos (x1) ∗ cos (x2) ∗ cos (y1 − y2)}
|T1 − T2| (33)

where r is the earth radius, x1 and x2 are the latitudes of the adjacent positions, y1 and y2 are the
longitudes of the adjacent positions, and T1 and T2 are the time stamps of the adjacent positions.

Thus, the formula for calculating the average speed is as follows:

v (t) =
n∑

i=1

vtrai(t)/n (34)

where v (t) is the average speed during timeslot t, n is the number of travel speed samples, and vtrai (t)
is the i-th travel speed at timeslot t.

To evaluate the performance of the proposed method, RMSE, MAE and MAPE were used as
experimental evaluation metrics:

RMSE =
√√√√1

n

n∑
i

(
v̂ (ti) − v (ti)

)2
(35)

MAE = 1
n

n∑
i

∣∣v̂ (ti) − v (ti)
∣∣ (36)

MAPE = 1
n

n∑
i

∣∣v̂ (ti) − v (ti)
∣∣

v (ti)
(37)
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where v̂ (ti), v (ti) are the predicted value and estimated value at timeslot ti, respectively, and n is the
timeslot number.

5.2 Comparative Results
The proposed method was compared with state-of-the-art methods for traffic prediction.

(1) RNN [59]: Recurrent neural network, a typical deep learning framework that uses neurons with
self-feedback to recursively process various time-series data, including traffic prediction tasks.

(2) LSTM [60]: Long short-term memory network, a deep learning framework based on time
loops, is suitable for predicting traffic information based on time series with long intervals.

(3) TGC-LSTM [61]: Based on the deep learning framework of GCN and LSTM, the correlation
norm of graph convolution features is added to the loss function to learn the interaction between road
segments, and predict the traffic states in traffic networks.

(4) DKFN [25]: The KF model based on deep neural network predicts the traffic states of the road
network through the combination modeling of self-dependence and adjacent node dependence, and
KF is used to optimize the predictive values.

(5) ST-GDN [62]: Spatial-temporal graph diffusion network, which learns not only a resolution-
aware self-attention network to encode the multi-level temporal signals, but also the comprehensive
high-order dependencies across different regions.

(6) HGC-NOM: The proposed method finds the high-order spatial characteristics of different
segments through HGCN, uses RLS to dynamically weigh the spatiotemporal influencing factors of
traffic flow, and adopts EKF to predict the traffic states of the road network.

(7) GC-NOM: This is a comparison for HGC-NOM, which combines the spatiotemporal factors
and used EKF to predict the traffic states of the road network, but only find the spatial characteristics
of different segments through GCN.

Table 2 shows the performance of the compared methods under different time steps. The conclu-
sions are as follows:

Table 2: Comparative analysis of predictive performance

Method 15-min 30-min

RMSE MAE MAPE RMSE MAE MAPE

RNN 0.0883 0.0689 19.17% 0.0883 0.0707 19.24%
LSTM 0.0862 0.0665 18.88% 0.0877 0.0690 19.02%
TGC-LSTM 0.0834 0.0609 16.49% 0.0845 0.0647 16.67%
DKFN 0.0822 0.0605 16.21% 0.1294 0.0956 24.69%
ST-GDN 0.0820 0.0593 16.28% 0.0840 0.0618 16.88%
HGC-NOM 0.0796 0.0531 14.93% 0.0829 0.0605 16.65%
GC-NOM 0.0860 0.0606 16.32% 0.0858 0.0621 17.33%

(1) From the perspective of the time scales, the three evaluation metrics of the compared methods
all increase with the increase of the time step. A possible explanation for this may be that more traffic
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states belong to the same predictive unit with the expansion of the time step range, while the complexity
and randomness of traffic environment bring some errors to the predictive evaluation.

(2) The proposed HGC-NOM method is superior to other compared methods in evaluation
metrics. Especially at the 15-min time step, HGC-NOM has a more significant performance advantage.
Compared with the second-best method, that is, ST-GDN, HGC-NOM achieves 3.0%, 11.7%, and
9.0% improvements in RMSE, MAE, and MAPE, respectively.

RNN and LSTM achieved good performance in traffic prediction based on temporal features.
Since LSTM memorizes information through cell states, it has more advantages in predictive perfor-
mance than RNN. By integrating GCN and LSTM, more accurate prediction results can be obtained.
Compared with the single model LSTM, TGC-LSTM is more suitable for learning the spatiotemporal
dependencies of the road network, and its performance is improved accordingly. DKFN utilizes the
historical and spatial observation of adjacent nodes to dynamically adjust the weight coefficient of
predictive model. In short-term (e.g., 15 min) traffic prediction, its performance is better than the
previous three methods. Since KF is applied to linear systems, the randomness of traffic states increases
with the increase of the time step, and the predictive performance significantly weakens under the
30-min time step. Compared to RNN, LSTM, TGC-LSTM, and DKFN, ST-GDN incorporates the
global context enhanced region-wise explicit relevance into a graph diffusion paradigm to capture
comprehensive high-order region dependencies. HGC-NOM achieved better performance than the
above five methods. Meanwhile, the performance of HGC-NOM is also better than that of GC-NOM,
which proves the efficiency of higher-order spatial features.

5.3 Feasibility
Combined with experimental data, the multiple regression equation in Section 4.2 contains three

factors: (1) the average speed of the forward timeslot (AS-ft); (2) the average speed of the historical
simultaneous timeslot (AS-hst); and (3) the higher-order spatial aggregation value of the forward
timeslot (HSAV-ft). In order to demonstrate the influence of three factors on traffic prediction,
according to the multiple regression equation, four influencing cases are selected. They respectively
leave out the average speed of the forward timeslot (Miss-AS-ft), the average speed of the historical
simultaneous timeslot (Miss-AS-hst), the higher-order spatial aggregation value of the forward
timeslot (Miss-HSAV-ft), and without any missing factor (Normal-case).

In order to evaluate the predictive performance of different segments in road networks, we take
the 15-min span as an example. The average speed during the rush hours (7 am–9 am and 5 pm–7 pm)
in November, 2016 was selected. On this basis, three representative segments in a road network are
taken (as shown in Table 3).

Table 3: Road segment description

ID Name Category

1877 North third section of first ring road Urban express road
1918 First section of renmin road Main urban road
2271 Jiulidi south road Secondary main road

The RMSE of four influencing cases based on HGC-NOM are showed in Figs. 4–6, the
acronyms “f_weekdays” and “o_weekdays” represent the first and last weekdays, and other weekdays,
respectively.
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From the perspective of road segment, the performance of segment 1877 is better than that of the
other two roads at various periods. We take the Normal-case of evening rush hours as example, com-
pared with segment 1918, segment 1877 achieves 82.4%, 15.9%, and 0.8% improvements in f_weekdays,
o_weekdays, and weekends, respectively. In contrast to segment 2271, segment 1877 achieves 67.9%,
22.7%, and 25.7% improvements in f_weekdays, o_weekdays, and weekends, respectively. The possible
reason is that segment 1877 is an urban express road. Compared with the main urban road and
secondary main road, traffic interference of traffic signal and non-motor vehicle is relatively less, which
may improve the prediction accuracy.

Figure 4: Performance of segment 1877 in morning rush hours (a) and evening rush hours (b)

Figure 5: Performance of segment 1918 in morning rush hours (a) and evening rush hours (b)

From the temporal perspective, the predictive performance of the three segments in morning rush
hours is better than the performance in evening rush hours, especially there are more errors during
the evening rush hour in the first and last weekdays. A possible reason is the heavy traffic flow of
commuters on weekdays, whereas people traveled relatively less on weekends and traffic congestion
weakened. At the same time, people traveled less on weekends or during normal hours, so its predictive
performance is significantly better than the same time on weekdays.
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From the perspective of the feature contribution of the four influencing cases, the larger the RMSE
of the previous three cases, the greater the feature contribution to the proposed method. It can be seen
that RMSE in the previous three cases are greater than those in the normal case, which verifies that
the three influencing factors have different feature contributions to HGC-NOM. HSAV-ft contributes
more to HGC-NOM in general, followed by AS-ft and AS-hst. At the same time, it is found that the
influence of HSAV-ft weakens in the secondary main road, which may be that the correlated degree
between the secondary main road and other types of road segments is relatively low.

Figure 6: Performance of segment 2271 in morning rush hours (a) and evening rush hours (b)

6 Conclusions

In this paper, we propose an optimized method of traffic prediction (named HGC-NOM). It
incorporates the higher-order spatial aggregation model HGCN and EKF algorithm to address two
issues: 1) the limitation of capturing the spatiotemporal evolution characteristics of traffic states and
2) the lower-order connectivity of spatial structures. Combined with the high-order spatial features
captured by HGCN, HGC-NOM dynamically adjusts the weight coefficients of the multiple regression
equation in spatiotemporal dimensions through RLS, and utilizes EKF to reduce the nonlinear impact
of the traffic environment. Based on the traffic data in Chengdu, China, an experiment validating
the proposed method is carried out, and the result indicates that HGC-NOM achieves high accuracy.
However, there still exist limitations while applying the proposed method to large-scale road networks,
in future we will work toward improving the adaptation of the proposed method on higher-order
spatial correlations.
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