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Abstract: In order to improve the accuracy and efficiency of Lentinula edodes
logs contamination identification, an improved YOLOv5s contamination
identification model for Lentinula edodes logs (YOLOv5s-CGGS) is proposed
in this paper. Firstly, a CA (coordinate attention) mechanism is introduced
in the feature extraction network of YOLOv5s to improve the identifiability
of Lentinula edodes logs contamination and the accuracy of target localiza-
tion. Then, the CIoU (Complete-IOU) loss function is replaced by an SIoU
(SCYLLA-IoU) loss function to improve the model’s convergence speed and
inference accuracy. Finally, the GSConv and GhostConv modules are used
to improve and optimize the feature fusion network to improve identification
efficiency. The method in this paper achieves values of 97.83%, 97.20%, and
98.20% in precision, recall, and mAP@0.5, which are 2.33%, 3.0%, and 1.5%
better than YOLOv5s, respectively. mAP@0.5 is better than YOLOv4, Ghost-
YOLOv4, and Mobilenetv3-YOLOv4 (improved by 4.61%, 5.16%, and 6.04%,
respectively), and the FPS increased by two to three times.

Keywords: Lentinula edodes logs; contamination identification; deep learning;
attention mechanism; loss function

1 Introduction

China exports about 70 million Lentinula edodes logs annually, with an annual growth rate of
over 30%. In recent years, the production of Lentinula edodes logs has been gradually industrialized.
Lentinula edodes logs are often contaminated by sundry bacteria in the process of germination due
to incomplete hygienic cleaning of the production environment, inadequate disinfection, and irregular
operation [1–4]. At present, the detection of the bacterial contamination of Lentinula edodes logs
mainly relies on manual inspection and judgment experience. Problems such as production personnel
not observing carefully, misjudging, and delaying the selection of contaminated logs lead to the spread
of sundry bacteria. Based on the demand for factory production of Lentinula edodes, it is of great
significance to study automatic identification technology to accurately identify contamination status
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to improve the quality and yield of Lentinula edodes logs, promote the development of the industry,
and improve economic benefits.

With the continuous progress of artificial intelligence technology, deep learning has been widely
used in industry and other fields [5–7], and brings convenient application services to people’s life [8,9].
Meanwhile, scholars have increasingly applied deep learning to crop disease detection and have a
perfect, visible, image database [10–14]. Compared with traditional image identification methods, deep
learning mainly combines low-level features into high-level abstract visual features by automatically
extracting the input image features. This allows for a fast, non-destructive, and accurate identification
of crop diseases in the visible range without the use of hyperspectral imaging techniques [15].
Zu et al. [16] first used a deep learning method to identify the contamination Lentinula edodes logs, and
proposed an improved ResNeXt-50 (32 × 4d)-based method that utilizes six fully connected layer fine-
tuning strategies to improve the model’s identification accuracy. Zu et al. [17] also proposed Ghost-
YOLOv4, which ensures that the contamination of Lentinula edodes logs is accurately recognized,
while optimizing the identification speed and real-time performance. However, Zu’s proposed method
still has a high number of parameters and high network complexity, which leads to low contamination
identification efficiency. Therefore, it is not conducive to the real-time detection and identification
of contamination in Lentinula edodes log. In addition, the method has a poor identification effect in
some Lentinula edodes logs contaminated by Aspergillus flavus, and it has low identification accuracy.
YOLOv5 is a new generation of target detection networks in the YOLO series, which is the product of
continuous integration and innovation based on YOLOv3 [18] and YOLOv4 [19]. The model obtained
better results on PASCAL VOC and COCO (Common Objects in Context) target detection tasks and
is able to significantly improve detection speed while maintaining the detection accuracy of existing
models, making it one of the best choices for target detection.

To address the problem of low accuracy and efficiency of the contamination identification of
Lentinula edodes logs, this paper improves and optimizes YOLOv5s and proposes a YOLOv5s-CGGS
contamination identification model for Lentinula edodes logs. The model introduces a coordinate
attention (CA) mechanism in the feature extraction network to highlight the identification of object
features, as well as the SIoU loss function to solve the problems of slow convergence and low inference
accuracy in the model. This model also combines GSConv and GhostConv modules to optimize the
feature fusion network to improve the accuracy of contamination identification and identification
efficiency. The method proposed in this paper is applicable to the identification of contamination
during the mycelial growth of Lentinula edodes.

2 Materials and Methods
2.1 Data Collection for Lentinula Edodes Logs

The dataset used in this paper is the self-built database of the Smart Village Laboratory of
Shandong Agricultural University, and the images were collected from a smart factory of a company in
Shandong Province. The images showing the contamination of Lentinula edodes logs were manually
collected by installing an LED strip light panel every 2 m to provide good lighting conditions in a
culture shed of Lentinula edodes logs located in a factory. The image acquisition equipment was a
Canon EOS 600D with an image resolution of 3648 × 2736. The camera was fixed at a distance of
50 cm from the Lentinula edodes logs to take pictures. Each Lentinula edodes log was photographed
with a 90° rotation, so that four images could be acquired for each log. The Lentinula edodes logs were
classified as Aspergillus flavus-contaminated, Trichoderma viride-contaminated, or normal according
to the type of sundry bacteria (see Fig. 1). Finally, 3006 images were collected, including 1679 images
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of normal Lentinula edodes logs (see Figs. 1a, 1b), 689 images of Aspergillus flavus-contaminated
Lentinula edodes logs (see Figs. 1c, 1d), and 638 images of Trichoderma viride-contaminated Lentinula
edodes logs (see Figs. 1e, 1f).

Figure 1: Example images of Lentinula edodes logs. (a, b) Normal, (c, d) Aspergillus flavus-
contaminated, and (e, f) Trichoderma viride-contaminated

2.2 Data Pre-Processing and Dataset Construction
In order to improve the generalization performance of the network and prevent the network from

overfitting during the training process, the dataset in this study was augmented by rotation, clipping,
symmetric transformation, and random adjustment. The expanded dataset consisted of 2109 images of
normal Lentinula edodes logs, 1721 images of Aspergillus flavus-contaminated Lentinula edodes logs,
and 1574 images of Trichoderma viride-contaminated Lentinula edodes logs, a total of 5404 images.
The images were saved in .jpg format in image folders, respectively.

Before the experiment, the Lentinula edodes logs were labeled according to their contamination
type using the online MAKE SENSE dataset labeling method. A unified annotation standard was
used to improve data quality and prevent some annotations from malfunctioning. The annotated data
were directly exported to a txt file in YOLO format, in which the contamination type, length and width,
location information, etc. were recorded. Finally, the annotated dataset was divided into training set,
validation set, and test set according to a ratio of 7:2:1. Among them, the training set has a total of
3783 images, the validation set has a total of 1081 images, and the test set has a total of 540 images.
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2.3 Model Construction
In order to design a lightweight contamination identification algorithm for Lentinula edodes

logs with a high efficiency and accuracy, the YOLOv5s-CGGS algorithm proposed in this paper is
improved in three parts: loss function, feature extraction network, and feature fusion network. The
specific structure of this network model is shown in Fig. 2.
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Figure 2: YOLOv5s-CGGS model structure

2.3.1 Loss Function Improvement

Since the loss function is a measure of the expected outcome of the model prediction, the
effectiveness of target detection is very dependent on it. The CIoU loss function in the YOLOv5s
model pays comprehensive attention to the distance between the prediction box and the real box, the
overlap region, and the aspect ratio compared to the general target detection loss function [20–22].
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The SIoU [23] loss function further solves the problem of direction mismatch between the desired
real box and the predicted box, and solving this problem helps to improve convergence speed and
efficiency.

The SIoU loss function consists of four cost functions: Angle cost, Distance cost, Shape cost, and
IoU cost. Among them, Angle cost is defined as follows:
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Shape cost is defined as follows:
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, (w, h) and (wgt, hgt) are the width and height of the

predicted box and the real box, respectively, and θ controls the degree of attention to shape loss.

Finally, the SIoU loss function is defined as follows:

Lbox = 1 − IOU + � + 	

2
(4)

where � is the distance loss, Ω is the shape loss, IoU =
∣∣B∪BGT

∣∣
|B∩BGT | , B and BGT are the predicted box

and the real box, respectively.

Thus, in this paper, the original CIoU loss function in YOLOv5s is replaced by the SIoU loss
function to improve the convergence speed and inference accuracy of the contamination identification
model of Lentinula edodes logs.

2.3.2 Feature Extraction Network Improvement

The feature extraction backbone has the problem of ignoring some key features due to random
contamination areas, different shapes and sizes, and intermingling of normal mycelia and sundry
bacteria. Introduction of the attention mechanism focuses the network on key content and location
information to improve the identifiability of contamination and the accuracy of target localization.
However, the application of an attention mechanism in lightweight networks is somewhat limited,
mainly because most attention mechanisms generate computational overhead that is unaffordable for
lightweight network models [24]. Therefore, in this paper, we introduce a lightweight and convenient
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CA [25] that generates almost no additional computational overhead to improve the accuracy of the
network. Unlike channel attention, which converts the feature tensor into individual feature vectors
through two-dimensional global pooling, the CA module decomposes channel attention into two
one-dimensional feature encoding processes that aggregate features along two spatial directions. The
structure of the CA module is shown in Fig. 3.
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Figure 3: CA module structure

The input is the output feature map of the previous layer of convolution with dimensions
C × H × W: the number of channels is C, the height is H, and the width is W. Each channel is encoded
along the horizontal and vertical coordinate directions using an average pooling of size (H, 1) and (1,
W), respectively. Thus, the output of the c-th channel at height h and the c-th channel at width w are
expressed as:

zh
c (h) = 1

W

∑
0≤i<W

xc (h, i) (5)

zw
c (w) = 1

H

∑
0≤j<H

xc (j, w) (6)

where two transformation aggregate features along two spaces, cascade to generate two feature maps
zh, zw and then use the 1 × 1 convolutional transform function F1 to generate intermediate feature maps
f for spatial information in the horizontal and vertical directions using the following equation:

f = δ
(
F1

([
zh, zw

]))
(7)

where (,) is the concatenate operation along the spatial bits, δ is the nonlinear activation function, and
f is the intermediate feature map that encodes the spatial information in the horizontal and vertical
directions. Then, f is divided into two single tensors f h and f w along the spatial dimension, and then
the feature maps f h and f w are transformed into the same number of channels as the input using two
convolution operations Fh and Fw with convolution kernels of size 1. The equation is as follows:

gh = σ
(
Fh

(
f h

))
(8)

gw = σ (Fw (f w)) (9)

where σ is the sigmoid activation function. Then, the outputs gh and gw are expanded as attention
weights, and finally, the output of the CA module is as follows:

yc (i, j) = xc (i, j) × gh
c (i) × gw

c (j) (10)

The network can effectively focus on the relevant channel and spatial location coordinate
information. As shown in Fig. 4, this paper embeds the CA module before the SPPF after the last
layer of the C3 module in the backbone to help the model to extract feature information for key
targets, thus improving the accuracy of model training identification.
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Figure 4: CA module embedded in the backbone structure

2.3.3 Feature Fusion Network Improvement

In the process of network computation, in order to improve the speed of prediction computation,
the input images in convolutional neural networks (CNNs) often need to go through a similar
transformation process such as the gradual transfer of spatial information to channels in the backbone.
Each spatial compression and channel expansion of the feature map results in the partial loss of
semantic information; however, GSConv preserves the hidden connections between channels as much
as possible with a low time complexity [26], as shown in Fig. 5. If the GSConv were embedded in all
stages of the model, the network layer of the model would be deeper, resulting in significantly higher
resistance to data flow and significantly higher inference time. Therefore, in this paper, the GSConv
module is introduced to optimize the partial convolution in the feature fusion network. The specific
method is to replace the first convolution operation of the feature fusion network with GSConv, which
helps to improve the accuracy and reduce the complexity of identifying contamination in Lentinula
edodes logs.
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Figure 5: GSConv module structure

After the introduction of the SIoU loss function and CA mechanism, the number of parameters in
the network is relatively improved. In addition, since the GSConv module introduced in the neck layer
is not embedded in all phases of the layer, this paper uses the GhostConv [27] module to further reduce
the number of parameters, with the expectation of improving real-time performance and efficiency. The
specific method is to set GhostConv as the convolution module of the 14th, 18th and 21st layers in the
feature fusion network. The main role of the GhostConv module is to reduce the computational cost
and storage resources of the current deep neural network to achieve the best performance of the model
quickly and efficiently. As shown in Fig. 6, the Ghost module generates m-layer intrinsic feature maps
via a small amount of ordinary convolution, and then performs linear operations i on the feature
maps one by one on this basis to generate ghost feature maps. Finally, it outputs the intrinsic feature
maps and ghost feature maps together by concatenation, which helps to reduce the complexity of
the network model and enhances the real-time efficiency of contamination identification in Lentinula
edodes logs.
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Figure 6: Ghost module structure

2.4 Model Training and Evaluation
2.4.1 Model Training

In this paper, considering the small number of samples in the Lentinula edodes logs dataset,
YOLOv5s-CGGS uses the default hyperparameters derived from YOLOv5s training on the COCO
dataset. The learning rate is set to 0.01 to accelerate the model convergence. Next, SGD is selected for
hyperparameter optimization, and the learning rate momentum is set to 0.937. A pre-trained model is
also used for training assistance, which gives the model better initial performance. The configuration
of the experimental environment in this paper is shown in Table 1.

Table 1: Experimental environment configuration

Experimental environment Details

Programming language Python 3.8.10
Operating system Linux
Deep learning framework Pytorch 1.11.0
CUDA Version 11.3
GPU RTX 3090
CPU Intel(R) Xeon(R) Platinum 8358P @ 2.60 GHz

2.4.2 Model Evaluation

In order to verify the performance identifying contamination in Lentinula edodes logs, precision,
recall, mAP, network structure parameter quantity and FPS are used for evaluation in this paper. The
calculation equation is as follows:

Precision = TP
TP + FP

(11)
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Recall = TP
TP + FN

(12)

AP =
∫ 1

0

P(r)dr (13)

mAP =
∑C

i=1APi

C
(14)

where TP indicates that the target is a certain type of Lentinula edodes log, and the network model
detection is also a certain type of Lentinula edodes log. FP indicates that the target is a non-type of
Lentinula edodes log, and the network model detects a type of Lentinula edodes log. FN indicates
that the target is a certain type of Lentinula edodes log, and the network model detection is a non-type
of Lentinula edodes log. AP is the area enclosed by the precision and recall on the curve. mAP is the
average of all values in the category AP. The average of the values when IoU is set to 0.5 is mAP@0.5.
FPS indicates frames per second.

3 Results and Analysis
3.1 Model Training Results

To reduce the computational stress and overfitting problem of the contamination identification
model for Lentinula edodes logs, pre-trained weights are introduced into the YOLOv5s-CGGS model
by migration learning [28]. The YOLOv5s-CGGS model is trained using the training set. The changes
in different types of loss function values during the training process are shown in Fig. 7, where (a) is
the localization loss; (b) is the confidence loss; and (c) is the classification loss.

In the training of the contamination identification model, the smaller the loss function loss value
in the model structure, the better the effect, and the expected value is 0. In order to achieve the best
performance of the model, the number of iterations is set to 200 and the maximum training batch is set
to 32 during the training process. The value of the loss function sharply decreases from 0 to 40 times;
the value of the loss function slowly decreases from 40 to 140 times; after 140 iterations, the loss value
stabilizes, and the model reaches the maximum excellent state.

After each round of training, model validation is performed on the validation set, and the model
training results are measured using three evaluation indicators: precision, recall, and mAP@0.5. The
changes in the evaluation indicator values during the training process are shown in Fig. 8. The values
of the three indicators sharply increase from 0 to about 40 iterations. Then, they oscillate in a certain
range, rise slowly, and finally stabilize. The three indicators are stable in the range of 0.95∼1, which
proves that the contamination identification model for Lentinula edodes logs has a high accuracy and
good convergence.

3.2 Performance Comparison of Different Models
In order to prove that the method in this paper has better identification effect, the proposed

YOLOv5s-CGGS is compared with YOLOv5s, YOLOv7, YOLOX, YOLOv4, Ghost-YOLOv4, and
MobilenetV3-YOLOv4 in experiments using the validation set of Lentinula edodes logs. The evalua-
tion indicators include precision, recall, mAP@0.5, network structure parameter quantity, and FPS.
Table 2 shows the comparison results of each evaluation indicator for the different identification
models mentioned above.
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Figure 7: Convergence of the loss function values during training

Figure 8: Changes in the values of evaluation indicators during the training process



IASC, 2023, vol.37, no.3 3153

Table 2: Comparison of model evaluation indicators

Number Model Precision Recall mAP@0.5 Network structure
parameter quantity

FPS

1 YOLOv4 94.74% 91.82% 93.59% 69,040,001 23.67
2 MobilenetV3-YOLOv4 94.14% 89.11% 92.16% 11,729,069 29.96
3 Ghost-YOLOv4 94.21% 91.15% 93.04% 11,482,545 35.89
4 YOLOX 95.33% 94.47% 97.07% 25,284,075 61.44
5 YOLOv7 95.81% 95.03% 97.21% 37,475,600 53.85
6 YOLOv5s 95.50% 94.20% 96.70% 7,018,216 69.93
7 YOLOv5s-

CGGS(Ours)
97.83% 97.20% 98.20% 6,602,094 72.46

From the comparative experimental results in Table 2, the identification effect of the YOLOv5s-
CGGS model proposed in this paper is significantly improved. Experiments 2 and 3 are the research
methods of Zu et al. [17], which are dedicated to improving the network lightweight while ensuring the
accuracy rate is stable. However, it can clearly be seen that the network structure parameter quantity
is reduced by about 16.63% relative to YOLOv4, while the accuracy is slightly reduced. Therefore,
there is still much room for improvement on this basis. The network structure parameter quantities of
YOLOv5s-CGGS proposed in this paper are approximately 9.6%, 56.3%, and 57.5% of the network
structure parameter quantity of YOLOv4, MobilenetV3-YOLOv4, and Ghost-YOLOv4, respectively.
However, there are significant improvements in precision, recall, and mAP@0.5 evaluation indicators,
and FPS is improved by two to three times. From Experiments 4 and 5, it can be seen that the
performance of the three evaluation indicators of YOLOv7 and YOLOX is relatively close to that
of YoLoV5s, but YoLoV5s has fewer model parameters and a faster identification rate. Compared
with YOLOv5s, the network structure parameter quantity of YOLOv5s-CGGS model proposed in
this paper is reduced by 6%. The accuracy improved by 2.33%, the recall rate increased by 3.0%,
mAP@0.5 increased by 1.5%, and FPS increased by 2.53. In summary, the method proposed in this
paper is significantly better than other methods.

3.3 Study of Model Ablation Experiments
In order to verify the effectiveness of the CA mechanism, GSConv module, GhostConv module,

and SIoU loss function on the performance improvement of Lentinula edodes logs contamination
identification model, this study conducted ablation experiments on the Lentinula edodes logs dataset.
Firstly, pre-training weights were loaded using migration learning and training in the Lentinula edodes
logs training set to obtain the contamination identification model of the Lentinula edodes logs. Then,
the model performance was evaluated using the test set to obtain precision, recall, mAP@0.5, and FPS
results. The ablation experimental results data are shown in Table 3.

Table 3: Results of ablation experiments

Number Model Precision Recall mAP@0.5 FPS

1 YOLOv5s 95.50% 94.20% 96.70% 69.93
2 YOLOv5s + CA 96.79% 95.26% 97.68% 66.23
3 YOLOv5s + GSConv 97.12% 96.03% 97.87% 73.53
4 YOLOv5s + GhostConv 95.57% 95.25% 96.49% 75.76
5 YOLOv5s + SIoU 97.23% 96.43% 97.45% 68.23
6 YOLOv5s + SIoU + GSConv 97.47% 96.50% 97.88% 69.78

(Continued)
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Table 3 (continued)
Number Model Precision Recall mAP@0.5 FPS

7 YOLOv5s + SIoU + GSConv + CA 97.71% 96.81% 98.01% 63.29
8 YOLOv5s + GSConv + SIoU + CA + GhostConv 97.83% 97.20% 98.20% 72.46

After the ablation experiment, it can be seen that although YOLOv5s has a good ability to
identify the contamination of Lentinula edodes logs, the identification accuracy and efficiency of
the model need to be improved. In Experiment 2, the precision, recall, and mAP@0.5 improved by
1.29%, 1.06%, and 0.98%, respectively. This indicates that embedding the CA module in YOLOv5s
can highlight the key features of the identified objects and improve the identifiability and accuracy
of target localization for the contamination of Lentinula edodes logs. In Experiment 3, precision,
recall, and mAP@0.5 increased by 1.62%, 1.83%, and 1.17%, respectively, and the FPS increased by
3.60. This indicates that the introduction of GSConv in YOLOv5s can improve identification accuracy
while reducing model complexity. In Experiment 4, compared with YOLOv5s, precision, recall, and
mAP@0.5 essentially remained the same, the FPS improved by 5.83, and the identification efficiency
performed relatively well. In Experiment 5, precision, recall, and mAP@0.5 improved by 1.73%, 2.23%,
and 0.75%, respectively. This indicates that replacing the original loss function with the SIoU loss
function can effectively improve the model convergence speed and the accuracy of inference. It can be
concluded from the data comparison that the four different improvements to the YOLOv5s model
all improve the performance of the contamination identification model for Lentinula edodes logs
to different degrees. More importantly, Experiments 6–8 combined the above four improvements. In
Experiment 6, by combining the more effective SIoU loss function and GSConv, the precision, recall,
and mAP@0.5 are better than in Experiments 1, 3, and 5. This indicates that introducing both the SIoU
loss function and GSConv can improve the performance of this contamination identification model for
Lentinula edodes logs. Precision, recall, and mAP@0.5 results were higher for Experiment 7 than for
Experiments 1, 2, 3, and 6, which indicates that fusing SIoU loss function, GSConv, and GhostConv
modules together can improve the performance of this model for contamination identification in
Lentinula edodes logs; however, the FPS is relatively low. Experiment 8 is the YOLOv5s-CGGS model
proposed in this paper, and the four evaluation indicators of precision, recall, mAP@0.5, and FPS
show the best overall performance.

In order to further analyze the effect of different improvement methods on contamination
identification in Lentinula edodes logs, this paper visualizes the feature extraction results of the last
convolutional layer in the feature extraction backbone using class activation mapping (CAM) [29]. The
visualization results are shown in Fig. 9. The darker the red part, the more the model pays attention
to this part of the image, followed by the yellow part. The bluer the heat map, the more the model
considers this part of redundant information and has less influence on contamination identification
in Lentinula edodes logs.

Analysis of model feature extraction results under different contamination types shows that dif-
ferent improvement methods improve the model’s identification effect to different degrees. According
to the comprehensive experimental results, the YOLOv5s-CGGS contamination identification model
for the Lentinula edodes logs proposed in this paper has the best performance and good application
prospects; it can accurately and efficiently identify the Lentinula edodes logs contaminated by sundry
bacteria in the process of germination. In addition, the method proposed in this paper can provide a
reference solution for contamination identification in other edible Lentinula edodes logs.
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Figure 9: Visual analysis of feature maps

4 Conclusion

In order to improve the accuracy and efficiency of contamination identification for Lentinula
edodes logs, an improved YOLOv5s contamination identification model (YOLOv5s-CGGS) for
Lentinula edodes logs is proposed in this paper. By introducing the CA mechanism to help the
feature extraction network focus on key semantic and location information of Lentinula edodes logs,
the identification object features are highlighted and the accuracy of contamination identification
is improved. The SIoU loss function is used to solve the problem of direction mismatch between
the real box and the predicted box to improve the convergence speed and identification accuracy
of model. Meanwhile, this paper used a GSConv module and GhostConv module to improve and
optimize the feature fusion network of YOLOv5s, which has faster identification efficiency, while
ensuring identification accuracy. The method proposed in this paper provides an effective solution
for the identification of contamination in factory-produced Lentinula edodes logs, which can reduce
the workload of Lentinula edodes log inspectors and is of great significance for improving the quality
of Lentinula edodes log products and reducing the economic loss of enterprises.

However, the contamination identification model for Lentinula edodes logs in this paper still
has shortcomings when applied to the following scenarios. One scenario is when the contaminated
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area is small; the other is when a single Lentinula edodes log has multiple contamination types. In
subsequent research, we will continue to optimize the contamination identification technology for
Lentinula edodes logs. One future research direction could focus on an annotation technology for the
Lentinula edodes logs dataset that will help the model extract the features of the target more accurately.
A second research direction could include methods to improve the model’s performance and reduce
the influence of mycelia on the model’s identification results.
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