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Abstract: The optimization of cognitive radio (CR) system using an enhanced
firefly algorithm (EFA) is presented in this work. The Firefly algorithm (FA)
is a nature-inspired algorithm based on the unique light-flashing behavior of
fireflies. It has already proved its competence in various optimization prob-
lems, but it suffers from slow convergence issues. To improve the convergence
performance of FA, a new variant named EFA is proposed. The effectiveness
of EFA as a good optimizer is demonstrated by optimizing benchmark
functions, and simulation results show its superior performance compared to
biogeography-based optimization (BBO), bat algorithm, artificial bee colony,
and FA. As an application of this algorithm to real-world problems, EFA is
also applied to optimize the CR system. CR is a revolutionary technique that
uses a dynamic spectrum allocation strategy to solve the spectrum scarcity
problem. However, it requires optimization to meet specific performance
objectives. The results obtained by EFA in CR system optimization are
compared with results in the literature of BBO, simulated annealing, and
genetic algorithm. Statistical results further prove that the proposed algorithm
is highly efficient and provides superior results.

Keywords: Firefly algorithm; cognitive radio; bit error rate; genetic algorithm;
simulated annealing; biogeography-based optimization

1 Introduction

All the radio transmissions use a part of electromagnetic spectrum. The management and
regulation of the spectrum is done by Federal Communications Commission (FCC) which has
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categorized the spectrum into licensed and unlicensed spectrum [1,2]. Due to the fast growth of wireless
applications, the unlicensed spectrum is becoming overcrowded, which in turn leads to spectrum
scarcity. It is also observed that the spectrum utilization is not effectively carried out by the licensed
users, resulting in a situation where a few channels remain unoccupied in the wireless spectrum.
Cognitive radio (CR) has been proposed as an efficient way to tackle with this problem and to permit
the secondary users for the usage of licensed spectrum bands when primary users are not using it
[3]. A CR system is generally characterized by two important parameters: cognitive capability and re-
configurability. In the earlier one, the information about frequency, bandwidth, power and modulation
type of signal is collected from the surrounding environment. Re-configurability is the ability of a radio
system to rapidly configure its operational parameters in accordance with the sensed information for
achieving the optimal performance [4]. By utilizing the spectrum in an opportunistic manner, CR
system permits secondary users to sense and select the best unoccupied channel, share spectrum access
information with others and vacate the occupied channel when primary users demand it back [5]. CR
is widely used in many fields, e.g., software radios, mobile broadband, public security, and in medical
applications [6–8].

CR is essential for providing time-varying Quality of Service (QoS) due to the dynamic nature
of spectrum availability and the characteristics of radio channels. In addition to efficient spectrum
utilization, CR aims to achieve objectives such as maximizing data throughput, minimizing bit-error-
rate (BER), reducing power consumption, and minimizing interference [9]. To address these goals
and meet the QoS requirements of users, CR needs to regularly sense the environment and adjust
transmission parameters accordingly [10]. This adaptive behavior requires a cognitive engine that is
aware of the environment, user demands, transmission links, and regulatory constraints, and is capable
of balancing multiple objectives. The cognitive engine makes CR intelligent by dynamically adjusting
itself to changing conditions [9–11].

Optimization algorithms, particularly evolutionary algorithms, have been successfully applied to
various engineering and real-world applications [12–16]. These algorithms are well-suited for solving
multi-objective CR optimization problems. Optimizing the CR system using evolutionary algorithms
enables decision-making, learning, and awareness processing in the cognitive functionality [17]. As a
result, researchers have focused on optimizing CR systems using various optimization algorithms in
the past. These studies have employed various approaches to enhance the performance and efficiency
of CR systems [9–11,17–26].

The first CR engine was developed by Virgina Tech institute using genetic algorithm (GA) [9].
The result outcomes showed that the implementation of GA altered the transmission parameters in
accordance with a set of objectives. GA has been also used to find the optimal transmission parameters
for single-carrier as well as multi-carrier fitness functions [18]. Zhang et al. have employed the Shuffled
Frog Leap Algorithm to optimize power in the CR system [23]. Biogeography based optimization
(BBO) has been utilized to obtain the optimum set of CR parameters [24]. Zhao et al. have optimized
the CR system for three objectives with the ant colony optimization (ACO) technique [26]. However,
all these methods either converge prematurely or take too much time to attain the optimal solution.
For example, SA and GA exhibit slow convergence speed and require a significant amount of time to
converge to the final solution.

The Firefly Algorithm (FA) is a swarm intelligence-based metaheuristic inspired by the behavior of
fireflies. It has been successfully applied to a wide range of optimization problems in various domains.
However, FA may face challenges in complex problems where it tends to oscillate around the global
optimum due to random walks. To address these challenges and improve performance, it is necessary
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to explore alternative solutions. The No Free Lunch Theorem [27] highlights the need for developing
new algorithms specifically tailored to different problem dimensions. This approach allows researchers
to propose algorithm variants that are more suitable for specific areas, leading to advancements in
solving complex optimization problems. In this paper, an enhanced variant of FA called enhanced FA
(EFA) is introduced. EFA incorporates Mantegna’s algorithm to enhance the convergence speed of FA.
The proposed algorithm is applied to benchmark functions as well as the optimization of a cognitive
radio (CR) system to demonstrate its capabilities and effectiveness. By continuously developing and
applying new algorithm variants like EFA, researchers can make progress in addressing the challenges
of complex optimization problems and further improve the performance of metaheuristic algorithms.

The main contributions of this work are as follows:

• The proposed work addresses the challenges of local optima stagnation, poor exploration,
and unbalanced exploitation and exploration operations in FA. The research introduces an
enhanced version of FA called EFA, which incorporates improvements to enhance its perfor-
mance and overcome the identified issues.

• EFA incorporates ideas from Mantegna’s algorithm and utilizes Lévy stable distribution to
improve the exploration and exploitation operations. This enhances the algorithm’s ability to
explore extensively and exploit effectively.

• EFA is evaluated on different benchmark problems and CR system optimization as a real-world
application.

After this brief introduction, this paper is arranged as follows: Section 2 discusses FA, Section 3
introduces the concept of EFA, and Section 4 explains the fitness functions required for CR system
optimization. Results of benchmark functions and CR system optimization using EFA are presented
in Section 5. Finally, conclusions are given in Section 6.

2 Firefly Algorithm

The attractiveness of a firefly in the Firefly Algorithm (FA) is determined by its brightness, which
is related to the fitness function being optimized [28–31]. FA is inspired by the flashing behavior
of fireflies, where their flashing light helps them find potential mating partners and defend against
predators [32]. In FA, the following idealized rules are applied [33]: (i) All fireflies in FA are unisexual,
meaning they are attracted to each other regardless of their sex. (ii) Fireflies are differentiated based
on their light intensity. Less bright fireflies are attracted to brighter ones, simulating the attraction
behavior observed in fireflies. (iii) The brightness of a firefly in FA is related to the fitness function
that needs to be optimized. Fireflies with higher fitness (better solutions) are represented as brighter,
while those with lower fitness are dimmer.

By applying these rules, FA mimics the behavior of fireflies to guide the optimization process.
It utilizes the attractiveness between fireflies to search for optimal solutions in the search space. The
algorithm has shown effectiveness in various optimization applications across different fields. For the
optimization problem, the brightness I of any firefly i at a particular position x = (x1, x2, x3, . . . , xd) is
associated to the fitness value of the objective function. For a simple case, the brightness I for a certain
location x is equivalent to I (x) ∝ f (x). On the other hand, the attractiveness coefficient β is relative
and it varies with distance rij between fireflies i and j. The light intensity I(r) at assumed distance r
from any of the light source follows the inverse square law as given in (1). Light is also absorbed by the
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media when the distance between the source and light intensity reduces, so the attractiveness varies
with the degree of absorption γ . The light intensity I(r) in its simplest form is given by [33].

I(r) = Is

r2
(1)

where Is is the light intensity at source. For a given medium having fixed light absorption coefficient,
the light intensity I varies with the distance rij [33] in the following form:

I(rij) = I0exp(−γ r2
ij) (2)

where I0 is the original light intensity.

As the attractiveness of a firefly is proportional to the light intensity seen by neighbouring fireflies,
so attractiveness β of a firefly [33] is

β(rij) = β0 exp(−γ r2
ij) (3)

where β0 is the attractiveness at rij = 0 and rij is the distance between two fireflies i and j [33] which is
defined as

rij = ∣∣∣∣xi − xj

∣∣∣∣ =
√∑d

k=1
(xi,k − xj,k)2 (4)

The equation used for the attractiveness of ith firefly toward jth [33] is given by

xi+1 = xi + β0e
−γ r2

i,j
(
xj − xi

) + αεi (5)

where the second term is due to attraction, the third term is due to randomization, εi and α are the
random number vectors generated using a uniform or Gaussian distribution, and the randomization
parameter is in the range of 0 and 1. We can define different set of values for β0 and α. If β0 = 0, it
represents a simple random walk. For practical implementations, β0 can be set to 1, 2, or a Lévy flight
can be used. The value of γ in the algorithm determines the speed of convergence with the variation
of attractiveness. Typically, γ is taken to be 1 for the system to be optimized. This explanation covers
the entirety of the firefly algorithm.

FA is an efficient algorithm and has served as a global problem solver but with the increase
in problem complexity, the algorithm takes longer time to give the appropriate results. When given
enough computational time, FA is able to provide good results. However, due to the random walk
mechanism in FA, the search process can be time-consuming, which can reduce the effectiveness of
the algorithm.

In FA, it is assumed that the fireflies are randomly distributed in the search space at the beginning
of the optimization process. During the initial iterations, fireflies are indeed separated by large
distances which leads to smaller value of β(rij). As the value of the attractiveness parameter is
very small, the fireflies move towards each other slowly. This effect leads to the poor convergence
performance of FA during the initial iterations. As the algorithm proceeds towards its final stage, the
fireflies come closer to the optimal insect resulting in a higher value of β(rij). Because of the random
walk operation, the solution undergoes large unwanted variation. This results in the oscillatory
behaviour around the global optimum and causes the slow convergence in the final generations of
FA [34]. Therefore, it is evident that there is room for improvement in FA to further enhance its
performance. The Pseudocode of FA is shown in Algorithm 1.
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Algorithm 1: Pseudo-code of FA
Begin

1. Initialize: α, β0, γ , maximum iterations
2. Define Population, objective function f(x)
3. Determine I at (x): f(xi)
4. While (t < maximum iterations)

For i = 1 to n
For j = 1 to n

if (Ij > Ii)
update solution using Eq. (5)
End if

Evaluate new solutions and update I
End for j

End for i
5. Rank fireflies and update current best.
6. End while
7. Find final best

End

3 Enhanced Firefly Algorithm

To overcome the shortcomings of FA, a modified version of FA is proposed and is termed as
EFA. The quality of solutions is improved by reducing the randomness in EFA. In general, there are
three ways to carry out randomization: uniform randomization, random walk and heavy-tailed walks.
Uniform randomization keeps the new solution between upper and lower bounds. For global and local
randomization, random walks provide the solution depending upon the step size used. Heavy-tailed
are the most suitable forms of randomization on global scale and a Lévy flight is one of its type [35].

Generating a random number via Lévy flights consist of two steps: (i) choice of a random direction
drawn from a uniform distribution and (ii) generation of steps obeying a Lévy distribution which is
a tricky affair [35]. In the present work, steps for a symmetric Lévy stable distribution are generated
using the Mantegna algorithm [36]. The major advantage of using the Mantegna algorithm is its better
efficiency and simplicity. The step length d in Mantegna’s algorithm [36] is calculated by

d = u

|v| 1
α

(6)

where u and v are two normally distributed stochastic random variables used to generate distribution
for d that exhibits similar behavior to a Lévy distribution.

u∼N
(
0, σ 2

u

)
, v∼N(0, σ 2

v ) (7)

where σu =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γ(1 + α) sin(
πα

2
)

Γ

[
(1 + α)

2

]
α2

(α − 1)

2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1
α

, and σv = 1.
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For |d| ≥ |d0|, where d0 is the smallest step, this distribution obeys a Lévy distribution. In the
Mantegna algorithm, the transition from the current location to the next location is achieved through
two main steps: (a) Entry-wise multiplication of random integers, (b) Distance-based transition
probability. By combining these two steps, the Mantegna algorithm creates a Markov chain-like
process, where the current solution is modified by the random multiplication and the transition
probability determines the likelihood of moving to the next location. This approach promotes the
exploration by allowing its movement towards potentially better solutions while also considering the
distance to the best solution. The required random variable is defined as follows:

k = C
1
α kcn (8)

where kcn = 1
n1/α

∑n

1 wg converges to a Lévy stable distribution and its convergence is assured by central

limit theorem and d is same as in the Mantegna’s algorithm. The value of w is calculated using equation
given in [37]. The FA algorithm gets enhanced by the addition of random variable from the Mantegna
algorithm and generates a solution based on the attractiveness of fireflies and replace with a newly
generated vector using

S = 0.01 × d × (xi–g∗) (9)

xi+1 = xi + S × k (10)

where xi is the old solution, g∗ is the current optimal solution, xi+1 is the new solution. The Pseudocode
of EFA is given in Algorithm 2.

Algorithm 2: Pseudo-code of EFA
Begin

1. Initialize: α, β0, γ , maximum iterations
2. Define Population, objective function f(x)
3. Determine I at (x): f(xi)
4. While (t < maximum iterations)

For i = 1 to n
For j = 1 to n

if (Ij > Ii)
update solution using Eqs. (5) and (10)
End if

Evaluate new solutions and update I
End for j

End for i
5. Rank fireflies and update current best.
6. End while
7. Find final best

End

4 CR System Optimization

In a CR system, two types of operating parameters are present: transmission parameters and
environmental parameters. The transmission parameters of a CR system behave like decision variables
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[38–44]. These are tunable parameters of the system and the radio adjusts its transmission knobs to
matching values from the optimal set of parameters and are shown in Table 1.

Table 1: Transmission parameters [38]

Name of parameter Description

Transmitted power Raw transmission power
Modulation type Type of modulation (QAM)
Modulation index (M) Symbols count in given modulation scheme
Symbol rate (Rs) Symbols count per second
Time division duplexing (TDD) Percentage of transmit time
Bandwidth (B) Bandwidth of the transmission signal

The environmental parameters are necessary to get the information about the surrounding
environmental characteristics and provide this information to the CR system, which helps the CR
control system to make the accurate decisions. The environmental variables used are given in Table 2.

Table 2: Environmental parameters

Parameter name Description

BER Bit error rate of particular modulation type
SNR Ratio representing the signal to the noise power
Noise power Provide information to the system about the approximate noise power

A CR system may have to meet a number of objectives in the wireless communication environment.
Here five objectives or scenarios have been taken which are same as formulated in [23,24,39]. These
objectives are given in Table 3 with their fitness functions and description about different variables.

Table 3: Objectives for CR system [44]

Parameter name Fitness function Description

Minimize power
consumption

fmin _power = P
Pmax

Reduce the amount of power
consumed by the system. Pmax

is maximum accessible
transmit power and P is
average transmit power

Minimize BER fmin _BER = log10 (0.5)

log10 (Pbe)
To decrease the BER. Pbe is
the bit error rate of the
modulation type being used

(Continued)
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Table 3 (continued)

Parameter name Fitness function Description

Maximize throughput fmin _throughput = log2 (M)

log2 (Mmax)
Increase the data throughput
transferred by the CR system.
M is modulation index of a
single carrier and Mmax is
maximum modulation index

Minimize interference fmin _interference={(P + B + TDD) − (Pmin + Bmin + 1)}
(Pmax + Bmax + 100)

Reduce the interference in CR
system. P is average
transmitted power, B is
bandwidth demanded for a
single carrier, Bmin and Bmax is
minimum and maximum
available bandwidths,
respectively. TDD is the time
used for transmission

Maximize spectral
efficiency

fmax _spectral_eff = 1 − (M × Bmin × Rs)

(B × Mmax × Rsmax)
To use frequency spectrum
efficiently. Rs is symbol rate
and Rsmax is maximum symbol
rate.

It is not possible to achieve the best values of all the objectives simultaneously because of the fact
that these are conflicting e.g., minimizing BER increases the power consumption. Hence, rather than
targeting these objectives independently, a multi-objective function [39] is taken by linearly combining
these factors as follows:

ffive_objective = w1(fmin _power) + w2(fmin _BER) + w3(fmin _throughput) + w4(fmin _interference) + w5(fmax _spectraleff ) (11)

The weighting factors w1, w2, w3, w4 and w5 decide direction of search for the optimizing algorithm
and shows the primacy of this objective in the CR decision making. Table 4 shows every weight vector
for five objectives which are used in the algorithm. By incorporating weights with fitness functions,
specific objectives can be evolved and optimized during the optimization process.

Table 4: Weighting factors used in different scenarios [44]

Outlines Weight vectors for five modes

w1, w2, w3, w4, w5

Lowest power mode [0.45 0.10 0.20 0.15 0.10]
Lowest BER mode [0.10 0.50 0.10 0.10 0.20]
Highest throughput mode [0.10 0.15 0.50 0.15 0.10]
Lowest interference mode [0.10 0.10 0.20 0.50 0.10]
Highest spectral efficiency mode [0.10 0.15 0.15 0.10 0.50]
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5 Results and Discussion
5.1 Benchmark Results

The performance of the EFA algorithm is evaluated in this section by using benchmark functions.
Eight unconstrained real objective benchmark functions [38,39] are employed for the optimization
using EFA. The set of functions along with variable range for determining optimality is shown in
Table 5. Artificial bee colony (ABC), BBO, bat algorithm (BA), and FA are used for the purpose of
comparison. The associated set of initial conditions for the competitive algorithms is illustrated in
Table 6. In order to ensure that the algorithm finds optimal solution consistently, each algorithm runs
over 20 times. In each scenario, the maximum number of function evaluations (NFEs) has been set at
500 × 20 = 10,000.

Table 5: Benchmark functions used in simulation

Test problems Objective function Search range Optimum value D

Hartmann function 3 f1 (x) = − ∑4
i=1 αi exp

[
−∑3

j=1 Aij
(
xj − Pij

)2
]

[0, 1] −3.86278 3, M

Hartmann function 6 f2 (x) = − ∑4
i=1 αi exp

[
−∑6

j=1 Aij
(
xj − Pij

)2
]

[0, 1] −3.32237 6, M

Shekel function 5 f3 (x) = − ∑5
j=1

[∑4
i=1

((
xi − Cij

)2 + βj

)−1
]

[0, 10] −10.1532 4, M

Shekel function 7 f4 (x) = − ∑7
j=1

[∑4
i=1

((
xi − Cij

)2 + βj

)−1
]

[0, 10] −10.4029 4, M

Shekel function 10 f5 (x) = − ∑10
j=1

[∑4
i=1

((
xi − Cij

)2 + βj

)−1
]

[0, 10] −10.5364 4, M

Rastrigin function f6 (x) = 10D + ∑D
i=1

[
x2

i − 10 cos (2πxi)
]

[−5.12, 5.12] 0 30, M, NC

Six Hump Camel
function

f7 (x) =(
4 − 2.1x2

1 + x4
1

3

)
x2

1 + x1x2 +
(
−4 + 4x2

2

)
x2

2

[−5, 5] −1.0316 2, M

Goldstein & price
function

f8 (x) =
(

1 + (x1 + x2 + 1)2
(

19 − 14x1 + 3x1
2

−14x2 + 6x1x2 + 3x2
2
))(

30

+ (2x1 − 3x2)2 (18 − 32x1
+12x1

2 + 48x2 − 36x1x2

+27x2
2
))

[−2, 2] 3 2, M

Table 6: EFA and FA parameter settings

Algorithm Parameters Values

Number of fireflies 20
Alpha (α) 0.25

FA Beta (β) 0.20
Gamma (γ ) 1
Maximum number of iterations 500
Stopping Criteria Max Iteration.

(Continued)
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Table 6 (continued)

Algorithm Parameters Values

Population size 20
Loudness 0.5

BA Pulse rate 0.5
[Qmin, Qmax] [0, 1]
Maximum number iterations 1000
Stopping Criteria Max Iteration.
Colony size (SN) 20
Number of food sources SN/2

ABC Limit 100
Maximum number iterations 500
Stopping Criteria Max Iteration.
Population Size 20
Mutation probability 0.25

BBO Habitat modification
probability

1

Maximum number of iterations 500
Stopping Criteria Max Iteration.
Number of fireflies 20
Alpha (α) 0.25

EFA Beta (β) 0.20
Gamma (γ ) 1
Maximum number of iterations 500
Stopping Criteria Max Iteration.

In Table 7, best values are shown in the bold text. For functions, f 2, f 5, f 6, f 7 and f 8, the standard
deviation of EFA is much better except for f 1 in which FA is better, f 3 where ABC is better and f 4

where BA is better. The mean value attained by proposed algorithm is better for seven function except
for only f 2 and f 3 where FA is better. As far as, the best value is concerned, EFA gives best for most
of the test function except for f 6 where BA is better. The results of the experiments demonstrate that
the proposed EFA outperforms other algorithms such as ABC, BBO, BA, and FA across most of the
test functions. EFA exhibits better mean and standard deviation values compared to the competing
algorithms, indicating its superior performance.

Table 7: Simulation results for benchmark functions

Objective function Algorithm Best Worst Mean Standard deviation

f 1 (x)

ABC −3.7754 −2.4110 −3.2397 4.15E−01
BBO −3.2234 −0.0024 −0.9673 9.55E−01
BA −3.8628 −3.0898 −3.7855 0.2379

(Continued)
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Table 7 (continued)

Objective function Algorithm Best Worst Mean Standard deviation

FA −3.8628 −3.8628 −3.8628 3.3120e−007
EFA −3.8628 −3.7951 −3.8548 1.68E−02

f 2 (x)

ABC −2.1963 −0.7290 −1.3816 4.64E−01
BBO −3.1452 −1.9059 −2.7501 3.02E−01
BA −3.3224 −3.2031 −3.2627 0.0612
FA −3.3224 −3.1915 −3.2672 0.0626
EFA −3.3224 −3.0941 −3.2514 8.67E−03

f 3 (x)

ABC −10.1073 −2.5928 −6.6114 3.0956
BBO −10.1532 −2.6304 −6.1444 3.4791
BA −10.1525 −2.6305 −5.0186 3.1879
FA −10.1528 −2.6304 −6.7884 3.8155
EFA −10.1532 −2.6305 −7.9095 3.5164

f 4 (x)

ABC −10.5054 −1.6680 −5.9055 3.2257
BBO −10.4028 −2.7659 −7.6097 3.5463
BA −10.4029 −1.8376 −4.0264 2.4908
FA −10.4028 −2.7519 −9.2542 2.8025
EFA −10.4029 −2.7519 −9.2567 2.7995

f 5 (x)

ABC −10.4642 −1.8508 −5.3552 3.4295
BBO −10.5363 −2.8066 −7.3243 3.6585
BA −10.5364 −1.6766 −4.1937 3.3005
FA −10.5362 −10.5347 −10.5355 4.8553e−004
EFA −10.5364 −10.5364 −10.5364 7.29E−06

f 6 (x)

ABC 4.21E+01 9.27E+01 6.66E+01 1.37E+01
BBO 9.6741 2.03E+01 1.65E+01 3.1049
BA 8.1068e-009 12.9344 4.0793 3.1940
FA 3.6393e-006 1.1007e-004 4.0660e-005 3.2287e-005
EFA 1.3160e-008 2.4979e-007 1.0142e-007 8.5511e-008

f 7 (x)

ABC −1.0316 −1.0261 −1.0305 1.50E−03
BBO −1.0234 −0.0479 −0.7314 3.45E−01
BA −1.0316 −0.2155 −0.7868 0.3837
FA −1.0316 −1.0316 −1.0316 1.2261e−006
EFA −1.0316 −1.0316 −1.0316 4.58E−09

f 8 (x)

ABC 3.0003 3.0904 3.0190 2.52E−02
BBO 3.0000 3.0000 3.0000 0
BA 3.0000 84.0000 16.5000 25.5394
FA 3.0000 3.0000 3.0000 1.4827e−005
EFA 3.0000 3.0000 3.0000 2.44E−08

To validate the significant improvement offered by EFA, two statistical tests Wilcoxon’s rank-
sum test and Friedman rank (f-rank) test were conducted. The f-rank test assigns rank to each
algorithm based on their performance. From the first row of Table 8, it is evident that EFA significantly
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outperforms the other algorithms and secures the first rank in the benchmark suite. The rank-sum
test is performed for each individual function to determine whether EFA is significantly better or
not. The performance of EFA is expressed as win(w)/loss(l)/tie(t) in the second row of Table 8. The
situation win(w) arises when the algorithm being tested performs better than EFA and is denoted by a
‘+’ sign. Conversely, the situation loss(l) occurs when the performance of the test algorithm is worse
than EFA and is denoted by a ‘−’ sign. The last situation, tie(t), indicates that there is no statistical
difference between the algorithms under test and is denoted by an ‘=’ sign. From the w/l/t row in
Table 8, it can be observed that EFA is significantly better than the other algorithms in most of the
cases. This further reinforces the superior performance of the proposed EFA algorithm compared to
the competing algorithms. In addition to the benchmark functions, EFA is further applied to real-life
application of CR system.

Table 8: Statistical results for benchmark functions

Objective function Algorithm

ABC BBO BA FA EFA

f1 (x)
p-rank – – – + N/A
f-rank 4 5 3 1 2

f2 (x)
p-rank – – – – N/A
f-rank 5 4 3 2 1

f3 (x)
p-rank – – – – N/A
f-rank 5 2 4 3 1

f4 (x)
p-rank – – + – N/A
f-rank 5 4 1 3 2

f5 (x)
p-rank – – – – N/A
f-rank 4 5 3 2 1

f6 (x)
p-rank – – – – N/A
f-rank 5 4 3 2 1

f7 (x)
p-rank – – – – N/A
f-rank 3 4 5 2 1

f8 (x)
p-rank – + – – N/A
f-rank 4 1 5 3 2

w/l/t 0/8/0 1/7/0 1/7/0 1/7/0

Overall f-rank 35 29 27 18 10

Average f-rank 5 4 3 2 1
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5.2 Simulation Results for CR Optimization
The optimization of CR systems is considered a complex problem due to the conflicting nature of

the parameters that need to be optimized. As mentioned in previous literature [23–24], five scenarios
have been selected for optimization in this study. These scenarios are determined by five transmission
variables, namely transmitted power (P), bandwidth (B), modulation index (M), time-division duplex
(TDD), and symbol rate (Rs). The min. and max. values for each of these variables are provided in
Table 9. Each firefly in the EFA algorithm is represented by a set of values for these transmission
variables [P, B, M, TDD, Rs].

Table 9: Range for transmission variables

Transmission variable Range

Power transmitted (P) in mW [0.158–251]
Bandwidth (B) in MHz [2–32]
Number of symbols (M) [2–256]
TDD in % [25–100]
Symbol rate (Rs) in ksps [125–1000]

Values of different parameters taken in EFA as well as in FA are given as follows:

• Population size = 20
• Generations = 200
• Randomization parameter, α = 0.25
• Attractiveness coefficient βo = 0.2
• Absorption coefficient, γ = 1

The fitness values found by EFA are compared with that of SA [23], GA [23], and BBO [24]. The
FA is also applied to the CR system in order to contrast the performance of EFA with FA. The best
values of fitness attained in each case are highlighted in the last column of Table 10.

Table 10: Comparison of fitness values obtained by EFA with SA [23], GA [23] and BBO [24], and FA
for different scenarios

Scenario Algorithm Optimized parameters

Transmitted
power (mw)

Modulation
index (M)

Bandwidth
(MHz)

TDD (%) Symbol rate
(ksps)

Fitness
value

Lowest
power mode

EFA 4.500 256 2.000 61.134 950.0639 0.0229
FA 4.400 256 2.000 63.8 1000 0.0229
BBO [24] 3.960 256 2.153 25 1000 0.0308
SA [23] 3.64 256 21.860 56.24 915.72 0.03661
GA [23] 4.39 256 2.000 31.40 698.01 0.05478

Lowest BER
mode

EFA 36.2 256 2.000 37.2 1000 0.0313
FA 36.2 256 2.000 37.2 1000 0.0313
BBO [24] 36.25 256 2.114 25 998.90 0.0425
SA [23] 25.83 256 2.00 85.60 901.68 0.07004
GA [23] 16.83 256 2.01 65.60 839.98 0.08674

(Continued)
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Table 10 (continued)
Scenario Algorithm Optimized parameters

Transmitted
power (mw)

Modulation
index (M)

Bandwidth
(MHz)

TDD (%) Symbol rate
(ksps)

Fitness
value

Highest
throughput
mode

EFA 17.5 256 2.00 42.1 1000 0.0161
FA 17.5 256 2.00 42.1 1000 0.0161
BBO [24] 17.739 256 2.114 25 998.98 0.0425
SA [23] 15.27 256 2.00 33.80 923.852 0.02380
GA [23] 12.684 256 2.031 63.2 540.970 0.0635

Minimum
interference
mode

EFA 13.5 256 2.00 65.7 1000 0.0128
FA 12.4913 256 2.00 57.48 980.49 0.0148
BBO [24] 13.369 256 2.032 25 998.79 0.015
SA [23] 15.23 256 2.00 1000 047.30 0.04924
GA [23] 7.659 256 2.00 65.8 353.484 0.0786

Highest
efficiency
mode

EFA 24.6 256 2.000 78.6 1000 0.0161
FA 24.55 256 2.000 78.6 1000 0.0168
BBO [24] 16.539 256 2.036 25 1000 0.0251
SA [23] 34.57 256 2.00 59.60 099.18 0.0194
GA [23] 12.366 256 2.010 29.4 962.498 0.0380

From Table 10, it can be seen that in each of the five scenarios, EFA was consistently able to secure
better value of fitness as compared to SA [23], GA [23], and BBO [24]. In comparison to FA, EFA
performed significantly better in the minimum interference and maximum efficiency scenarios, while
still achieving comparable results in the other three scenarios. Both FA and EFA were able to score the
same fitness values except in the maximum efficiency mode where EFA performed better than FA. This
demonstrates the capability of EFA to effectively identify the global optimum in various scenarios.

The convergence performance of an optimization algorithm is indeed a crucial factor in determin-
ing its practicality. If an algorithm takes excessively long to reach a near-optimal solution, it may not be
suitable for real-world applications. The convergence curves for all the five objectives of optimization
are shown in Fig. 1. The convergence performance of EFA is compared with basic FA. Fig. 1a shows
the convergence curve obtained by EFA and FA for the minimum power consumption mode. FA took
nearly 80 generations or iterations to converge whereas EFA converged in 40 iterations. EFA also
outperformed BBO which required 90 iterations to attain its final value for the same scenario [24].
In the maximum throughput mode, EFA needed 40 iterations to converge to minimum value whereas
FA found its minimum value in about 150 generations. In this case, EFA managed to show a big
improvement over FA. Figs. 1d and 1e give the convergence properties of EFA and FA for the minimum
interference mode and maximum efficiency mode respectively. Here, EFA not only achieved faster
convergence but also delivered better value of the fitness as compared to FA. This may be attributed
to changes made in the basic firefly algorithm to prevent oscillation of the algorithm around the final
solution which results in finding the optimum more efficiently.



IASC, 2023, vol.37, no.3 3173

Figure 1: The convergence curves for all the five objectives of optimization

6 Discussion

The EFA has demonstrated its efficiency in solving the benchmark functions and the CR system
optimization problem. It has shown significant advancements compared to other state-of-the-art
algorithms. The simplicity of its structure and ease of implementation make it suitable for inclusion
in the expert and hybrid intelligent systems. The convergence properties of EFA further confirm its
suitability as an optimization algorithm.
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However, like other stochastic algorithms, EFA is susceptible to getting stuck at local minima and
may not always achieve the global optima for all benchmark functions. The benchmark set used in
the evaluation consists of various types of problems, including unimodal, multimodal, and composite
functions. An algorithm that can solve the entire benchmark set and consistently reach the global
solution can be considered as a state-of-the-art algorithm. While EFA may encounter local optima in
some cases, it still possesses the potential to become a standard algorithm.

Further research and improvements are needed to address the limitations of EFA and enhance its
ability to achieve global solutions. By addressing these challenges, EFA can progress towards becoming
a widely accepted and recognized state-of-the-art algorithm.

7 Conclusion

This paper introduced a novel variant of FA named EFA. In the proposed technique, the unique
and fascinating features of FA are retained and performance is improved by reducing the randomness
in the search mechanism using Mantegna’s algorithm. The proposed technique was employed to
optimize benchmark functions and the CR system. EFA yielded superior results in the optimization
of benchmark functions in contrast to ABC, FA, BA, and BBO. CR transmission parameters, such as
transmitted power, modulation index, bandwidth, TDD and symbol rate, have been optimized by EFA
in different environments to meet various objectives. The EFA scored better fitness values than BBO,
SA, GA. In addition, EFA converged in almost half or fewer generations than basic FA and BBO.
Both these factors make EFA an attractive choice as an optimization tool. Finally, it can be concluded
that EFA is a robust optimization technique, and it is anticipated that it can be used to optimize other
real-world problems like animal tracking, cancer classification, logistics, coal mine workers’ tracking,
gene expression modeling, feature selection, clustering problems, underwater wireless sensor networks,
and various industrial applications.

In addition to these applications, exploring the implementation of another hybrid meta-heuristic
algorithm can offer improved accuracy and reduced convergence time for EFA. Future work can focus
on incorporating a balanced exploration and exploitation strategy to further enhance the algorithm’s
performance. Introducing different mutation operators and chaotic maps can also be considered to
analyze their impact on the performance of the EFA algorithm. To enhance the global and local
search capabilities of EFA, new exploratory and exploitative search equations can be introduced. These
additions can help improve the algorithm’s ability to effectively explore the solution space and exploit
promising regions. By incorporating these enhancements, the algorithm’s overall performance can be
further improved, making it more efficient and effective in solving optimization problems.
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