Intelligent Automation

& Soft Computing (Téch Science Press

DOI: 10.32604/iasc.2023.036079

Check for
updates

ARTICLE

Hash Table Assisted Efficient File Level De-Duplication Scheme in SD-IoV
Assisted Sensing Devices

Ghawar Said', Ata Ullah’, Anwar Ghani'', Muhammad Azeem', Khalid Yahya', Muhammad Bilal’ and
Sayed Chhattan Shah™

'Department of Computer Science, International Islamic University, Islamabad, 44000, Pakistan

*Department of Computer Science, National University of Modern Languages, Islamabad, 44000, Pakistan
*Department of Electrical and Electronics Engineering, Nisantasi University, Istanbul, 34467, Turkey

*Department of Computer Engineering, Hankuk University of Foreign Studies,

Yongin-si, Gyeonggi-do, 17035, Korea

*Department of Information and Communication Engineering, Hankuk University of Foreign Studies,

Yongin-si, Gyeonggi-do, 17035, Korea

*Corresponding Authors: Anwar Ghani. Email: anwar.ghanir@iiu.edu.pk; Sayed Chhattan Shah. Email: shah@hufs.ac.kr
Received: 16 September 2022 Accepted: 02 March 2023 Published: 26 January 2024

ABSTRACT

The Internet of Things (IoT) and cloud technologies have encouraged massive data storage at central repositories.
Software-defined networks (SDN) support the processing of data and restrict the transmission of duplicate values.
It is necessary to use a data de-duplication mechanism to reduce communication costs and storage overhead.
Existing State of the art schemes suffer from computational overhead due to deterministic or random tree-based tags
generation which further increases as the file size grows. This paper presents an efficient file-level de-duplication
scheme (EFDS) where the cost of creating tags is reduced by employing a hash table with key-value pair for each
block of the file. Further, an algorithm for hash table-based duplicate block identification and storage (HDBIS) is
presented based on fingerprints that maintain a linked list of similar duplicate blocks on the same index. Hash tables
normally have a consistent time complexity for lookup, generating, and deleting stored data regardless of the input
size. The experiential results show that the proposed EFDS scheme performs better compared to its counterparts.

KEYWORDS

Hash table; de-duplication; linked list; IoT; sensing devices

1 Introduction

The Internet of Things (IoT) is a conceptual network of things, machines, or objects and
devices. Sensors and connectivity of the network enable these things to gather and exchange data
[1]. Tt is a speedy rising network to transform human life by significantly increasing its applicability
in Healthcare, Agriculture, Smart Traffic Management, Smart Home/City, Security Surveillance,

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.036079
https://www.techscience.com/doi/10.32604/iasc.2023.036079
mailto:anwar.ghanir@iiu.edu.pk
mailto:shah@hufs.ac.kr

84 TASC, 2023, vol.38, no.1

Industrial Internet, and Wearable [2-5]. IoT is a new paradigm/model, which agrees with a large
number of smart things that can be associated with the Internet. These object devices like actuators and
sensors are capable of managing and exchanging that data for further processing without any human
interference. The transition from traditional Vehicle Ad-hoc Networks to the Internet of Vehicles is
being driven by the new Internet of Things age (IoV). IOV promises enormous commercial interest
and research value, drawing a significant number of businesses and academics as a result of the quick
growth of computation and communication technologies. In the IoT and IoV, the role of smart sensing
devices is significant, as in many places the deployment of wired configuration is not possible easily [6].

A vast number of sensor nodes work together to send data to the sink or collector node like
the roadside units. Sensor nodes are responsible for sensing and collecting information from their
surroundings. A small battery that, in most situations, cannot be replaced powers these nodes [7].
The task of sensing devices in IoT is to sense data from those areas where it is deployed and then
communicate that data to the central controller for further processing [8]. An emerging idea to
realize the promise of intelligent transportation systems (ITSs) is the Internet of Vehicles (IoV).
High throughput satellite communication, the IoT, and cyber-physical systems are the researcher’s
current research areas as a result of the rapid advancements in automotive technology [9]. Software-
Defined Networking (SDN) based IoV enhances the capability to filter out the unnecessary data
being transmitted on the network in the existing setup. The SD-IoV is an advantageous combination
for designing mobile edge computing-based 1oV techniques. In this context, the performance and
quality of services of the oV system can be enhanced by interacting with SDN and Network Function
Virtualization (NFV). Moreover, SD-IoV-based applications still face performance and scalability
issues. Thus, the transmission and computational perspectives in the SD-IoV are still challenging issues
for future research studies. Data redundancy is a serious problem that wastes a lot of storage capacity
in setups with integrated cloud and fog storage.

The de-duplication process helps to reduce or remove the duplicate data. It preserves the unique
ones in such a way that the scheme may fully retrieve the data at any moment [10]. The SD-IoV
involves massive amount of data being processed at the SDN controller which enhances the use of
de-duplication to reduce the communication cost by eliminating the redundant data. The SD-IoV can
restrict the transmission of certain redundant values like temperature, blood pressure, heart rate of the
driver etc. and the break oil, gear oil and Mobil oil levels from the collector nodes. There may be a
condition of sending the values when there is a change or just send a small Boolean indicator to ensure
that there is no change in the previously saved values. The SDN based IoV enhances the capability to
filter out the unnecessary data being transmitted on the network in the existing setup. The SD-IoV
is an advantageous combination for designing mobile edge computing-based IoV techniques. In this
context, the performance and quality of services of the IoV system can be enhanced by interacting
with SDN and Network Function Virtualization (NFV). SDN enables the creation of network-aware
applications, intelligent network state monitoring, and automatic network configuration adaptation.

Various data compression strategies have been explored in the article [1 1], including application-
based, data type-based, and data coding-based. Smart compression or de-duplication, in contrast to
other compression algorithms, removes duplicate data from numerous files to minimize storage space.
The data de-duplication technique is useful when a big volume of data is available [12]. Despite the
rapid rise of cloud computing and large data, de-duplication has become a popular topic in recent
years. The de-duplication procedure, which avoids storing the same data several times in real-time,
lowers the cost of cloud storage significantly [13]. By data de-duplication, the number of average
transmitted messages throughout the network which includes transmissions between peers at various
hierarchies of the network, and transmissions from the sensor field to the sink node will be reduced
which in turn decreases the power consumption. Bandwidth is also resource-constrained in sensor

TIASC, 2023, vol.38, no.1 85

networks, De-duplication helps in the effective utilization of bandwidth by eliminating the duplicates
predominantly. With the help of de-duplication, the network traffic predominantly decreases, and
consequently, data loss due to collisions is also decreased [14,15]. Smart sensor-based Networks
involve a large number of smart sensors that aim to collect data movement, process, analyze, and
transfer information [16]. For the enhancement of existing issues, the proposed scheme EFDS uses
the novel HDBIS algorithm, for the reduction of encryption, decryption time, block generation, data
de-duplication time, block data rate, and block storage time.

The motivation of the article is to enhance different parameters like encryption, decryption,
block generation, and data de-duplication time. Several existing schemes provide data de-duplication
methods but still have different open challenging issues that should be overcome in future research
concerns. A quick searching mechanism is needed to manage data packets and the network’s quality.
A hash table, which keeps data in an array and uses it to determine where elements should be added or
located, uses a hash function to build an index. The cost of running a hash function needs to be lower
for employing the hashing strategy to be preferable to other traditional methods. Therefore, the article
presents Link-list and Hash Table methods to enhance the above parameters. The main contribution
of this work is tabulated as follows:

1. To propose a scheme for managing the duplicate blocks and storing them as a linked list within
a hash table to reduce the computational overhead of tree-based tag creation.

2. To design an algorithm (HDBIS) that can reduce the block generation time, data de-
duplication time, and operation time.

3. To comparatively analyze the proposed EFDS scheme with counterparts in terms of perfor-
mance and investigate enhancement in the data de-duplication, and the block storage time.

The rest of the article is structured as follows. Section 2 discusses the literature review. The system
model and identification of the problem are presented in Section 3. Section 4 outlines the proposed
Scheme. The results have been discussed and analyzed in Section 5 and Section 6 concludes the work.

2 Literature Review

This section explores the data de-duplications schemes for IoT-enabled sensing devices along with
support for SD-IoV scenarios. This paper analyzes the data de-duplication scheme for file-level data
de-duplication schemes with different methods. Several schemes involve sensing devices to send data
to central repositories. In [17], the majority of distributed applications and cloud services including Bit
Torrent, Google Cloud, and AWS rely on hashing techniques that concur with a healthy and effective
hash table’s dynamic scaling. For instance, as the hash database grows, reliable and engagement-
hashing techniques reduce key remapping. The key feature that disturbs the search process to search
and recover information efficiently is the way the data is arranged [18]. Due to the wide variety of
storage devices and the enormous growth in the amount of data coming from many sources today,
such as commercial transactions, social networks, and many other areas, searching is one of the key
subjects in computer science. For finding an element in a set of items in a hash table T, hashing is one
of the effective data retrieval strategies [19].

In [20], two secure data de-duplication schemes based on Rabin fingerprinting (SDRF) using
deterministic and random tags are presented. The de-duplication is enabled before the data is
outsourced to the cloud storage server. In particular, the scheme used the variable-size block-level de-
duplication using Rabin fingerprinting. However, the weak points of the de-duplication time depend
on the sliding step size of the window and the block generation time is more than the fixed-size block

86 IASC, 2023, vol.38, no.1

scheme. In [21], the authors proposed the P-Dedupe: Exploiting Parallelism in data de-duplication
system, which in turn uses content-defined chunking (CDC) during de-duplication. P-Dedupe first
pipelines the four stages of the de-duplication tasks with the processing units of chunk files and then
further processed in parallel for CDC. The main issue of P-Dedupe is to decrease the deduplication
ratio.

In [22] a Smart De-duplication scheme for Mobiles (SDM) is proposed which is a better de-
duplication method without specific configurations for any file type of data. The SDM scheme is
suitable for mobile devices only. In [23], a secure Healthcare data (SHD) sharing scheme in a Joint-
Cloud storage arrangement delivers global services via association with several clouds. SHD also
supports dynamic data information and sharing without the help of the trusted KS. The SHD method
is only efficient for mobile devices. In [24], the Asymmetric Extremum (AE) algorithm was proposed
that uses variable-sized and fixed-sized windows on the left and right-hand sides. The extremely valued
byte is fitted in the middle of the two windows where AE scans each byte to find the cut-point. The main
issue in this scheme is that the size of the variable sized-window will be zero bytes when the leading
bytes are true for the condition. As it compares each byte to the fixed-sized window so an account
of this computation cost increase. In [25], a novel three-tier secure data de-duplication architecture is
condensed as SEEDDUP for data storage and recovery in the cloud. SEEDDUP delivers duplicates
with appropriate indexing and the privacy of the user. Using the “Cuckoo Search Algorithm”, the
verification of chunk size in the cloud is verified by the hash value generated by the SHA3-512. The
weak point of it is to consume more time for the preprocessor.

The authors in [26] investigated the de-duplication threshold in cloud storage and suggested a
secure de-duplication strategy for IoT sensor networks using a dynamic threshold adjustment. In
[27], a CDC scheme with a new chunking algorithm called Rapid Asymmetric-Maximum (RAM)
is proposed. The scheme works by searching a byte with a large value in the fixed sized-window. The
main issue arises in some cases where the index value is greater than the fixed window size, the size of
a variable-sized window can be very small. In [28], the “Secure and efficient big data de-duplication
in fog computing (SED)” shows a new decentralized de-duplication structure before demonstrating
how to use it to build a secure and efficient massive data de-duplication strategy in fog computing.
The computation cost of SED is speedily increased when the size of the data is large. A bucket based-
technique that uses buckets to store data with a Fixed Size Chunking algorithm for chunk generation
based on the MADS Algorithm to generate the hash values is presented in [29]. A Frequency-based
scheme with high de-duplication capability is presented in [30] where FSC and CDC chunking is used.
The simplest and fastest approach is FSC which breaks the input stream into fixed-size chunks. Since
the scheme uses only fixed-size chunks, therefore, the frequency estimation phase takes a long time for
data, thereby consuming more energy during computations.

An efficient de-duplication approach for cluster de-duplication system ARD-edup to achieve
high data de-duplication rate, low communication overhead, and manage load balancing is presented
in [31]. As data is growing rapidly in data centers, the inline cluster de-duplication technique has
been widely used to improve storage efficiency and data reliability. The weak point of it is long time
consumption when load imbalance occurs for extreme binding. In [32], a Dynamic de-duplication
approach is proposed for big-data storage that explores a dynamic de-duplication approach with
greater efficiency using CDC, static-chunking, delta encoding, and whole file chunking algorithms.
The weak point of it is consuming more time for the preprocessor. In [33], two advanced energy-
efficient architecture systems are presented to enhance the lifetime of sensing devices used in mobile
healthcare applications applicable for IoV as well. In [34], the authors proposed a new way for
constructing safe de-duplication systems in the cloud and fog using Convergent and Modified Elliptic

TIASC, 2023, vol.38, no.1 87

Curve Cryptography (MECC) algorithms. For MECC algorithms, the time it takes to generate a hash
tree and tags is extremely long, and as the number of uploaded files grows higher, the rate of increase
rises faster and faster, with a steep upward trend. The procedure for generating tags is exceedingly
difficult. Data redundancy needs to be minimized on the one hand, and a strong encryption strategy
needs to be devised on the other to assure the security of the data. This method works well for tasks
like a user uploading new files to cloud storage or the fog.

In [35], authors used a combination of two new approaches for chunking and hashing algorithms.
The first method is Bytes Frequency-Based Chunking (BFBC), which uses the frequency of the data-
set byte occurrence information to improve data de-duplication gain. While the method used is the
triple hash technique, which employs a mathematical function to generate short fingerprints and has
a direct impact on index table size and hashing throughput. The FBC scheme is to apply only fixed
chunks and the frequency estimation phase takes a long time to calculate the data and more energy
consumption during computations.

In [36], a secure and distributed outsourcing algorithm proposed for modular exponentiation
(fixed base and variable exponent) under the multiple non-colluding edge node model. In addition,
this work proposed another secure and distributed outsourcing algorithm of modular exponentiation
(variable base and variable exponent). In [37], an “Edge facilitated de-duplication technique, EF-
dedup” partitions sub-edge nodes into self-governing de-duplication clusters (referred to as rings). It
carefully balances the de-duplication ratio and throughput. In [38], it presented “an effective radix
trie (RT) with Bloom Filter (BF) based secure data de-duplication model”, condensed as SDD-
RT-BD. The presented SDD-RT-BF model involves three main steps namely, proof of ownership,
authorized de-duplication, and role key update. For Memcached applications, Yang et al. [39] proposed
a pipelined hash table architecture that can support up to 10 Gbps throughput. A hash table designed
for networking applications by Tong et al. [40] can handle up to 85 Gbps of throughput. In [41], the
SDN approach enables the sharing of a medium between Electronic-Control-Modules (ECUs) and in-
vehicle data sources. SDN greatly improves the performance of the [oV-based application by separately
dealing with application controls and application data so the centralized control approach provides a
broad picture of the network for efficient network optimization. Therefore, the SDN provides efficient
data computation, communication, and less storage utilization. In [42], flexible architecture for car
Ethernet networks is presented that could coexist with both time-sensitive low-bandwidth data and
multimedia streams with high bandwidth. The in-vehicle network can be reconfigured to accommodate
new hardware and applications based on the SDN paradigm. There is a challenging issue to design a
novel SDN system that provides support in several fields with different scales of an SDN controller.

An inline deduplication approach for persistent memory PM, known as LO-Dedup, is presented
in [43] and can be used for IoT devices like sensors. The time it takes to calculate a two-level fingerprint,
with the first fingerprint using a partial hash and the second using MurmrHash3, is a drawback of
the current technique. Second, it takes a very long time to generate hash tree tags using a PM-friendly
index structure and tree structure, and when big-size files get bigger, the rate of increase climbs steeply
upward.

3 Problem Identification and System Model

Sensor nodes send large amounts of data continuously to the SDN controllers in the SD-IoV
scenario. The SDN controller transfers the redundant data to the cloud repositories. Large storage
space wasted by saving the same data on the cloud servers in SD-IoV repeatedly. In the existing
scheme, the tag generation for the data de-duplication scheme SDRF [20] uses deterministic tags

88 IASC, 2023, vol.38, no.1

and random tags. The tag generation of both types is time expensive, which increases gradually with
the size of the files to be uploaded. The process for the generation of tags is very complex and not
efficient and increases the computational cost with the complicated method of tags generation. In
the existing scheme of MECC [34], the hash tree and its tags generation time are extremely long.
Moreover, as the number of uploaded files grows higher, the rate of increase rises faster and faster,
with a steep upward trend. The procedure for generating tags is exceedingly extensive which increases
computing and communication costs. Centralized SDN controllers are introduced to greatly improve
communication. Fig. | illustrates the system model, which consists of three entities: SDN Controller,
Sensor nodes, and cloud storage server (CSS) in SD-IoV. According to the system model, the sensor
nodes outsource their data to SDN Controller for data de-duplication, which creates a hash table for
all the received sub-blocks to assign tags and identify the duplicate blocks. SDN controller finally
generates the de-duplicated list to share with the cloud.

|
I Software-Defined Networking Controller -
|
|

Outsources Data to SDN

& a
e

® B
Sensors Nodes

[P — e — = —

Identify Duplicate Blocks

¥

De-duplicated List

De-duplicated List

I
I
I
I
I
I
!
Hash Table Creation for Block Tags I
I
I
|
I
I
I

i
i P

Figure 1: System model

Hash Table is a data structure that stores data in an associative way. A hash function creates an
index in a hash table, which stores data in an array and uses it to identify where elements should be
added or located. To make using the hashing approach superior to another conventional way, the cost
of running a hash function must be lower. Hash tables, which have a linear time complexity, and binary
search trees, which have a logarithmic time complexity, are often more effective at seeking up values
than search trees. Hash tables normally have a consistent time complexity for looking up, generating,
and deleting stored data regardless of the input size. In the SDN Controller, identify duplicated blocks
through the hash table techniques. After that, maintain the link list of duplicated blocks for further
processing. A linked list is a linear data arrangement that dynamically stores data elements. The size
of the linked list can be increased or decreased at run time so there is no memory wastage.

4 Proposed Efficient File Level De-Duplication Scheme (EFDS)

To address the identified existing problems, this paper presents the proposed solution for the file-
level de-duplication mechanism. It uses a hash-table-based mechanism to identify the duplicate blocks
from the file shared by the sensing devices toward the SDN controllers. The set of multiple sensing
devices involves a collector or head node to send an aggregated data file. The sensor devices send large
amounts of data continues to edge Servers in redundant data. In each scenario, the sensor devices

TIASC, 2023, vol.38, no.1 &9

on the vehicles upload a data file to a cloud storage server through the SDN Controller. This paper
presents a novel algorithm executed at the SDN Controller, which divides the sensing data file into
sub-blocks. SDN controller creates a hash table for all the received sub-blocks and maintains a linked
list for the duplicate blocks on the same index generated through hash based fingerprinting. A list of
notations is shown in Table 1.

Table 1: List of notations

Symbol Description

LLD Linked list of duplicate blocks
HTBL Hash table for blocks of a file
CSS Cloud storage server

T_Size Total size of data

M Index number

C Generate cipher text

B[] An array of blocks as strings
K Convergent key

H(Bi) Hash of block Bi

Fim] A fingerprint of block Bi

In Fig. 2 this paper presents the visual model for maintaining the hash table for the identified block
extracted from the sensing data file. It shows the Rabin fingerprint as f(B;) for each B;. It also takes
the hash for each B; as H(B;) for arranging values in the hash table. This paper has identified that the
same index can generate in the hash table, which can either be resolved through adjusting the duplicate
value in any next available slot but it causes primary clustering by gathering most of the values in a
specific region where other regions of the table are left blank. Adopting the mechanism of quadratic-
based index calculation can avoid the massive clustering at one place but it results in clustering at
the distributed position as similar indices may be generated. Finally, separate chaining is adopted for
duplicate blocks by maintaining the linked lists where the same index is generated by the hash function.
A linked list is a linear data arrangement that stores a collection of data elements dynamically. The size
of the linked list can be increased or decreased at run time so there is no memory wastage. It consumes
very less computation time to search and arrange the blocks instead of maintaining the tree of tags in
base schemes.

Divide File into Blocks

H(Bi) . —|

H(B i+1) . i fey] [i [fsi)]

awes

~qun |7

Y y

All Duplicated same| |Unduplicated Index
H(Bn) : Index Data List Data List

Figure 2: Hash table and fingerprint-based duplicate block segregation

90 IASC, 2023, vol.38, no.1

The novel Hash-Table-based Duplicate Block Identification and Storage (HDBIS) Algorithm is
presented based on fingerprints that establish a link list for identical duplicate blocks at the same index
generated by the hash function. The detailed steps of the algorithm are as follow. Initially, a file is
received from the collector node as input. The collector node may be the individual sensing device like
a vehicle or the head/collector node to share the aggregated data file for member nodes. In aggregated
data files, the chances of duplications are high like sharing the same location, speed, temperature, and
other sensing conditions. At the beginning of the algorithmic steps, declare or initialize the values of
T_size as —1, m as 0, B[] as an array of strings, and set LLD[] as a linked list for duplicate blocks
to maintain a linked list for duplicate blocks. Next, the HTBL[] is declared for a hash table for the
creation of blocks within a table size T_size. Moreover, a get file method is utilized to access the file
and set the file_size of the received file. A hash method is utilized to establish an index of the hash table
that stores data in an array. A hash table is helpful to identify where a new element is placed and also
provides fast access to located specific elements. Thus, the hash table technique is utilized to determine
the duplicated blocks. After that, a link list is maintained for duplicated blocks that generate the same
hash and reach the same index inside the hash table. It must be stored dynamically by maintaining a
chain in the form of a linked list. It will help to collect the duplicates in a sequence and either access or
remove them. In steps 1-11, the time T_Size+1, means that 1 — 1 = 0 as the T_zise is initialized with
—1. In step 7, the while loop is applied with a condition of T_BIK_Size < File Size to execute it unless
the entire file is not processed. The substring of the file is created by adding the T_Size and BIK _size
of the given file and saved in the array of index position m. The Rabin fingerprint is used to obtain
F[m]. It looks up in the HTBL/[] to access the index of the F/m].

In this context, if the index value is null then there is no duplicate found for given F[m], and add
the given block in the HTBL/[] at another index. Otherwise, add the given block in the LLD/[] at
HTBL/] index and increment the table value with the block size. For example, suppose that block
size BLK _size is 50 MB. From T_size 0 to 50 MB take over to array index position m = 0, as B[m] is
saved as an index of zeroth address. Similarly, in the second iteration, the increment of the T_size by
BLK _size means that the first time, have zero then add 0 + 50 = 50 in BLK _size. Next loop iteration
substituted as 50 + 1 = 51. Like 50 4+ 50 = 100, assign to B[m] means that Index m = 1 position data.
From step 12 to step 14 consisting the SDN Controller generates a randomized convergent Key K*
with the user and CSS. After this, the SDN Controller generates a cipher text like C* = Enc [k*, M] =
[IDS, T S, HT B [], Hash [MI]. Lastly, the SDN Controller Transmits the (IDSDN, C*) toward CSS.
Our presented algorithm provides optimized resource consumption by reducing the redundant data
storage at cloud repositories.

Algorithm 1: Hash-table-based duplicate block identification and storage (HDBIS) algorithm
Input: Take a data file from the collector node

Output: Hash Table with identified duplicates in the linked list
1: Set T_Size to —1

2:Setmto 0

3: Set B[] as an Array of Strings

4: Set LLDJ] as a linked list of duplicate blocks

5: Set HTBL]] as a Hash table for Blocks of a file

6

7

8

: Set File_Size = File -> getSize()
- while T_Blk_Size < File_Size do
B[m] = File— > Substring(T_Size+1,T_Size+Blk_Size)

(Continued)

TIASC, 2023, vol.38, no.1 91

Algorithm 1 (continued)

9: F[m] = generate Rabin-fingerprint(B[m])
10: Lookup HTBL for F[m]

11: Set index to get Index of (HTBL][]) for F[m]
12: if index != NULL then

13: Add F[m] in LLD at HTBL[index]

14: else
15: Add F[m] in Hash table HTBL]]
16: end if

17: T _Size =T Size+Blk_Size

18: end while

19: SDN Controller: Generate a randomized Convergent Key K* with user and CSS

20: SDN Controller: Generate Cipher C* = Enc{K*, M1=[IDS, TS, HTBL[]], Hash (M1)}
21: SDN Controller: Transmits the (IDSDN, C*) toward CSS

5 Results and Analysis

This section explores the results for the proposed EFDS scheme in comparison to base schemes.
A test bed is established by developing a server-side application using C# and ASP.net based web-
application. Moreover, the Windows Communication Foundation (WCF) services are developed to
implement the back-end logic for de-duplication and deployed on the Windows Azure cloud. The
functions of the WCF service are remotely called from the web application. Moreover, the EFDS
algorithm performance is compared with SDRF and MECC schemes. In this context, SDRF and
MECC algorithms are also implemented to evaluate the performance of these algorithms as compared
to EFDS on the same data file size. The repository for de-duplication data is maintained at SQL server
2019. A linked list is a linear data arrangement that stores a collection of data elements dynamically.
The size of the linked list can be increased or decreased at run time so there is no memory wastage. It
consumes very less computation time to search and arrange the blocks instead of maintaining the tree
of tags in base schemes.

Furthermore, the de-duplication rate is evaluated with various file and block sizes. Moreover,
block storage and generation time are also considered against different file sizes. Different performance
evaluation parameters include encryption time, decryption time, de-duplication rate, block storage
time, and block generation time. A list of simulation parameters is shown in Table 2.

Table 2: Simulation parameters

Parameters Values
Number of files 50 files
Maximum file size 40 MB
Minimum file size 5 MB

Minimum block size 10 KB

Maximum block size 1 MB

92 TASC, 2023, vol.38, no.1

5.1 Encryption Time

Fig. 3a, the EFDS encryption time is evaluated compared with counterparts. In the case of a
file size of 15 MB, the EFDS, SDRF, and MECC schemes take 11.51, 13.38, and 17.46 s time for
encryption of all blocks in for the entire file. The results show that the EFDS provides better for
encryption time than SDRF and MECC. Table 3 shows a comparative analysis of the proposed EFDS
scheme with the other counterparts for different sizes of data in MB. SDRF and MECC. For a case
of 20 MB data size, the proposed EFDS, and the existing schemes; SDRF, and MECC require 13.29,
15.34, and 19.44 s encryption time, respectively.

30 30

—+—EFDS —a—SORF —a— MECC i —t— EFDS —8—SORF —a—MECC
25 25
20 20

[
w

15

Time in (Sec)

10

Timein (Sec)
w o

(=]
o

0 10 20 30 &0 0 10 20 30 <0
FileSizeinMB FileSizeinMB
(a) (b)

Figure 3: Encryption time is presented in (a) and decryption time in (b)

Table 3: Comparative analysis of EFDS with the existing schemes in terms of encryption time

File size in MB EFDS SDRF MECC
5 4.37 6.04 9.62
10 8.72 9.48 10.59
15 11.51 13.38 16.44
20 13.29 15.34 17.46
25 15.81 17.29 21.9

30 17.51 19.22 23.35
35 19.14 20.16 27.29
40 21.63 22.63 28.49

5.2 Decryption Time

Fig. 3b elucidates the decryption time. In the case of a file size of 15 MB, the EFDS, SDRF, and
MECC schemes take 10.56, 15.84, and 20.57 s for the decryption of all blocks in the file. The results
show that the EFDS provides better file size encryption time than SDRF and MECC schemes. The
comparison of the decryption time is presented in Table 4. It presents a comparative analysis of the

IASC, 2023, vol.38, no.1 93

scheme EFDS with other existing schemes for different sizes of data in MB. It can be observed from
the table that for any data size, the scheme EFDS performs better than the existing scheme of SDRF
and MECC. In the case of the data size of 30 MB, the decryption time is 16.81, 19.32, and 22.78 s for
the schemes EFDS, SDRF, and MECC, respectively.

Table 4: Comparative analysis of EFDS in terms of decryption time

File size in MB EFDS SDRF MECC
5 3.97 5.25 8.29
10 6.31 7.60 9.43

15 9.85 10.08 11.95
20 12.73 13.21 14.33
25 15.67 16.48 19.84
30 16.81 19.32 22.78
35 18.39 20.53 25.43
40 20.22 21.58 27.72

5.3 Block Generation Time

The proposed scheme is compared with existing schemes in terms of block generation time and
data de-duplication time based on the size of the file. In Fig. 4a, the performance of EFDS is evaluated
in terms of block generation time with different file sizes. In case the file size of 10 MB, the EFDS,
SDRF, and MECC generate all blocks from the entire file in 3.58, 4.35, and 4.84 s, respectively. The
comparison of the block generation time is presented in Table 5. The results prove that the EFDS
utilizes less time for block generation in contrast to SDRF and MECC.

14 20
—+— EFDS —m— SORF —a— MECC —o—EFDS —@—SDRF —a— MECC
12
‘«a 1S
€ 10
S s =
B S
U - -
g " S s
= 3
3 2 o
£ =
@® 3 0
0 10 20 30 0 10 20 30
FileSizein MB FileSizeinMB
(@) (b)

Figure 4: Block generation time is illustrated in (a) whereas (b) shows the data de-duplication time

94 TASC, 2023, vol.38, no.1

Table 5: Comparative analysis of EFDS with the existing schemes for block generation time

File size in MB EFDS SDRF MECC
5 3.21 3.23 3.76
10 3.58 4.35 4.84

15 4.58 5.49 6.20

20 6.73 7.24 8.25
25 8.97 9.28 1073
30 10.82 11.30 12.45

5.4 Data De-Duplication Time

In Fig. 4b, the performance of EFDS is evaluated in terms of data de-duplication time with
different file sizes. In case the file size is 20 MB, the EFDS, SDRF, and MECC generate blocks for
the entire file in 10.62, 11.05, and 12.85 s, respectively. The proposed scheme provides better data de-
duplication time when compared with SDRF and MECC. The comparison of the data de-duplication
time is presented in Table 6. In both of the figures, it has been observed that the de-duplication time
and block generation time are increased when the size of the files increases.

Table 6: Comparative analysis of EFDS with the existing schemes for data de-duplication time

File size in MB EFDS SDRF MECC
5 5.56 6.28 6.23
10 8.40 7.72 8.01

15 9.94 9.34 10.29
20 10.62 11.05 12.85
25 11.49 13.85 14.25
30 13.15 15.45 17.97

5.5 Block Operation Time

The proposed scheme is evaluated in terms of operation time and data de-duplication rate with
different block sizes. In Fig. 5a, the operational time of the EFDS is evaluated against different block
sizes and compares the performance with the SDRF and MECC schemes. In case the block size is
250 KB, the operational times are 135.6, 218.2, and 242.4 ms of EFDS, SDRF, and MECC schemes,
respectively. The comparison of the block operation time is presented in Table 7. In the case of the data
block size of 750 KB, the schemes EFDS, SDRF, and MECC take block operation times of 140.56,
203.49, and 239.28 ms, respectively. The results clearly show the better performance of the EFDS in
contrast to its counterparts.

IASC, 2023, vol.38, no.1 95

300
—t— EFDS —8— MECC —a— SDRF OEFDS MSDRF B MECC

g ¥
?
[
7..
4

Operation Time (ms)
S
Data Deduplication Rate (%)

100

50

8

-.'hf-t.:.:t.f.tr.c.-.-.:.:.:..'f::."F?;

EFB@iFC(

S

o

0 250 500 750 1000
Block Size KB Block Size (KB)
(a) (b)

Figure 5: Block operation time in (a) and data de-duplication rate in (b)

Table 7: Comparison of EFDS with the existing schemes for block operation time

Data block size in KB EFDS SDRF MECC
100 120.34 200.67 250.90
250 135.60 218.20 242.40
500 129.58 210.58 247.11
750 140.56 203.49 239.28

5.6 Data De-Duplication Rate

Fig. 5b elucidates the performance of EFDS is evaluated in terms of data de-duplication rate
with various block sizes. In case the block size of 500 KB, the EFDS, SDRF, and MECC provide
data de-duplication rates of 65.84%, 71.02%, and 79.97%, respectively. The results show that with the
increase in the block sizes, the data rate decreases. However, the EFDS provides a better data rate
when compared with SDRF and MECC schemes. The comparison of the data de-duplication rate is
presented in Table 8. It can be observed from the table that of any data size in KB, the scheme EFDS
performs is better than the existing scheme of SDRF and MECC. In the case where the data size is
500 KB, the data de-duplication rate is 62.63%, 67.34%, and 74.82% for EFDS, SDRF, and MECC,
respectively. The EFDS scheme performance is better than the other existing scheme of the SDRF
and MECC for the data de-duplication rate. The table explores that for all data sizes in KB, the EFDS
scheme is Superior to the other existing scheme of SDRF and MECC.

5.7 Block Storage Time

In Fig. 6 the performance of the proposed scheme is evaluated in terms of block storage time
based on the file size. In the case of a 15 MB file size, the data de-duplication time of EFDS, SDREF,
and MECCis 23.43,34.76, and 35.88 s, respectively. It can be observed that with an increase in file sizes,

96 IASC, 2023, vol.38, no.1

the required storage time also increases. Moreover, the EFDS provides better storage time compared
with SDRF and MECC schemes.

Table 8: Comparative analysis in terms of data de-duplication rate

Data block size in KB EFDS SDRF MECC
100 69.51 75.63 87.23
250 67.33 74.02 82.63
500 65.84 71.20 79.97
750 62.63 67.34 74.82
1000 58.49 63.99 72.20
60
—+—EFDS —®—SDRF —a— MECC
50
ﬁ‘ -
o 40
£
—
@ 30
&
S
& 20
o
= 10
0
0 10 20 30

FileSizeInMB

Figure 6: Block storage time

6 Conclusion

In this article, a strategy for duplicated data has been described. The duplicated data for SD-
IoV is stored in a redundant form, which increases the communication cost and uses additional
memory capacity. Data stored at the central repository should not be redundant and needs to eliminate
unnecessary duplicates. In the existing schemes, tag generation is used for the data de-duplication
file scheme based on Rabin fingerprinting for deterministic tags and random tags. By using MECC
algorithms, the time it takes to generate a hash tree and tags for each file is extremely long which
grows with file size. For the enhancement of the existing issues, the proposed scheme EFDS uses the
novel HDBIS algorithm to reduce encryption, decryption time, block generation, data de-duplication
time, block data rate, and block storage time. The experimental values show that the scheme EFDS
performs better in contrast to its counterparts. Results show that EFDS achieves a de-duplication rate
of 65.84% in contrast to 71.20% and 79.97% for SDRF and MECC for a data block size of 500 KB.
In the case of encryption time, the EFDS achieves 11.51 s whereas the counterparts consume 13.38
and 17.46 s for a file size of 15 MB. The limitation of this work is that it focuses on a single file to
identify duplicate blocks. In the future, researchers shall identify the duplicates in the already stored
file in conjunction with the recent file.

TIASC, 2023, vol.38, no.1 97

Funding Statement: This work was supported in part by Hankuk University of Foreign Studies’
Research Fund for 2023 and in part by the National Research Foundation of Korea (NRF) grant
funded by the Ministry of Science and ICT Korea No. 2021R1F1A1045933.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

(1]
(2]
(3]

(4]

(5]

(6]

[7]

(8]

]

(10]

(1]

(12]

[13]

(14]
[15]

[16]

T. A. Ahanger and A. Aljumah, “Internet of things: A comprehensive study of security issues and defense
mechanisms,” IEEE Access, vol. 7, pp. 11020-11028, 2019.

M. Kumar, N. Nayar, G. Mehta and A. Sharma, “Application of 0T in current pandemic of COVID-19,”
I0OP Conference Series: Materials Science and Engineering, vol. 1022, no. 1, pp. 1-7, 2021.

T. Hewa, G. Gur, A. Kalla, M. Ylianttila, A. Bracken et al.,, “The role of blockchain in 6G: Challenges,
opportunities and research directions,” in Proc. of 2nd 6G Wireless Summit 2020 Gain Edge 6G Era, 6G
SUMMIT 2020, Levi, Finland, pp. 1-5, 2020.

G. Latif, J. M. Alghazo, R. Maheswar, P. Jayarajan and A. Sampathkumar, “Impact of IoT-based smart
cities on human daily life,” in EAI/Springer Innovations in Communication and Computing, Springer, pp.
103-114, 2020.

M. Yousefpoor, E. Yousefpoor, H. Barati, A. Barati, A. Movaghar et al., “Secure data aggregation methods
and countermeasures against various attacks in wireless sensor networks: A comprehensive review,” Journal
of Network and Computer Applications, vol. 190, no. 2020, pp. 1-42, 2021.

S. Loughney, J. Wang, D. Matellini and T. Nguyen, “Ultilizing the evidential reasoning approach to
determine a suitable wireless sensor network orientation for asset integrity monitoring of an offshore gas
turbine driven generator,” Expert Systems with Applications, vol. 185, pp. 1-15, 2021.

E. GarciaCeja, C. Galvan-Tejada and R. Brena, “Multi-view stacking for activity recognition with sound
and accelerometer data,” in Proc. of the 9th ACM on Multimedia Systems Conf., MMSys’'18, ACM, New
York, NY, USA, vol. 40, pp. 472-477, 2018.

N. Luong, D. Hoang, P. Wang, D. Niyato, D. Kim et al., “Data collection and wireless communication in
Internet of Things (IoT) using economic analysis and pricing models: A survey,” IEEE Communications
Survey and Tutorials, vol. 18, no. 4, pp. 2546-2590, 2016.

M. Mollah, J. Zhao, D. Niyato, Y. Guan, C. Uen et al, “Blockchain for the internet of vehicles towards
intelligent transportation systems: A survey,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 41574185,
2021.

S. M. A. Mohamed and Y. Wang, “A survey on novel classification of deduplication storage systems,”
Distributed and Parallel Databases, vol. 39, no. 1, pp. 201-230, 2021.

U. Jayasankar, V. Thirumal and D. Ponnurangam, “A survey on data compression techniques: From the
perspective of data quality, coding schemes, data type and applications,” Journal of King Saud University—
Computer and Information Sciencs, vol. 33, no. 2, pp. 119-140, 2021.

A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, M. Masdari and H. Shakarami, “Data replication
schemes in cloud computing: A survey,” Cluster Computing, vol. 24, pp. 2545-2579, 2021.

K. M. Vinoth, K. Venkatachalam, P. Prabu, A. Almutairi and M. Abouhawwash, “Secure biometric
authentication with de-duplication on distributed cloud storage,” PeerJ Computer Science, vol. 7, pp. 1—
20, 2021.

B. Latré, B. Braem, I. Moerman, C. Blondia and P. Demeester, “A survey on wireless body area networks,”
Wireless Networks, vol. 17, no. 1, pp. 1-18, 2011.

M. H. ur Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah et al., “Big data reduction methods:
A survey,” Data Science and Engineering, vol. 1, pp. 265-284, 2016.

M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi ez al., “Edge and fog computing for IoT: A survey
on current research activities & future directions,” Computer Communications, vol. 180, pp. 210-231, 2021.

(24]

[25]

[26]

TASC, 2023, vol.38, no.1

M. Heddes, 1. Nunes, T. Givargis, A. Nicolau and A. Veidenbaum, “Hyperdimensional hashing: A robust
and efficient dynamic hash table,” Association for Computing Machinery, vol. 1, pp. 1-6, 2022.

Z. Xia, X. Wang, X. Sun and Q. Wang, “A secure and dynamic multi-keyword ranked search scheme over
encrypted cloud data,” IEEE Transaction on Parallel and Distributed Systems, vol. 27, no. 2, pp. 340-352,
2016.

A. D. Yusuf, S. Abdullahi, M. M. Boukar and S. I. Yusuf, “Collision resolution techniques in hash table: A
review,” International Journal of Advanced Computer Science and Application, vol. 12, no. 9, pp. 757-762,
2021.

Y. Zhang, H. Su, M. Yang, D. Zheng, F. Ren et al., “Secure deduplication based on rabin fingerprinting
over wireless sensing data in cloud computing,” Security and Communication Networks, vol. 2018, pp. 1-13,
2018.

W. Xia, D. Feng, H. Jiang, Y. Zhang, V. Chang et al., “Accelerating content-defined-chunking based data
deduplication by exploiting parallelism,” Future Generation Computer Systems, vol. 98, pp. 406-418, 2019.
R. N. S. Widodo, H. Lim and M. Atiquzzaman, “SDM: Smart deduplication for mobile cloud storage,”
Future Generation Computer Systems, vol. 70, pp. 64—73, 2017.

Y. Zhang and C. L. P. Chen, “Secure heterogeneous data deduplication via fog-assisted mobile crowdsensing
in 5G-enabled [1oT,” IEEE Transactions on Industrial Informatics, vol. 18, no. 4, pp. 2849-2857, 2022.

Y. Zhang, H. Jiang, D. Feng, W. Xia, M. Fu et al, “AE: An asymmetric extremum content defined chunking
algorithm for fast and bandwidth-efficient data deduplication,” in Proc. of IEEE Conf. on Computer
Communications (INFOCOM), Hong Kong, China, vol. 26, pp. 1337-1345, 2015.

B. Rasina Begum and P. Chitra, “SEEDDUP: A three-tier secure data deduplication architecture-based
storage and retrieval for cross-domains over cloud,” IETE Journal of Research, vol. 26, pp. 1-18, 2021.

Y. Gao, H. Xian and A. Yu, “Secure data deduplication for internet-of-things sensor networks based on
threshold dynamic adjustment,” International Journal Distributed Sensor Networks, vol. 16, no. 3, pp. 1-13,
2020.

R. N. S. Widodo, H. Lim and M. Atiquzzaman, “A new content-defined chunking algorithm for data
deduplication in cloud storage,” Future Generation Computer Systems, vol. 71, pp. 145-156, 2017.

J. Yan, X. Wang, Q. Gan, S. Li and D. Huang, “Secure and efficient big data deduplication in fog
computing,” Soft Computing, vol. 24, no. 8§, pp. 5671-5682, 2020.

L. Stephygraph and N. Arunkumar, “Brain-actuated wireless mobile robot control through an adaptive
human-machine interface,” in Proc. of the Int. Conf. on Soft Computing System, New Delhi, Springer, vol.
397, pp. 537-549, 2015.

G. Lu, Y. Jin and D. H. C. Du, “Frequency based chunking for data de-duplication,” in Proc. of Int. Symp.
on Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), Miami
Beach, FL, USA, pp. 287-296, 2010.

Y. Xuan Xing, N. Xiao, F. Liu, Z. Sun and W. Hui He, “AR-dedupe: An efficient deduplication approach
for cluster deduplication system,” Journal of Shanghai Jiaotong University, vol. 20, no. 1, pp. 76-81, 2015.
V. Khanaa, A. Kumaravel and A. Rama, “Data deduplication on encrypted big data in cloud,” International
Journal Engineering Advance Technology, vol. 8, no. 4, pp. 644-648, 2019.

N. Saleh, A. Kassem and A. M. Haidar, “Energy-efficient architecture for wireless sensor networks in
healthcare applications,” IEEE Access, vol. 6, pp. 6478-6496, 2018.

P. G. Shynu, R. K. Nadesh, V. G. Menon, P. Venu, M. Abbasi et al., “A secure data deduplication system
for integrated cloud-edge networks,” Journal of Cloud Computing, vol. 9, no. 61, pp. 1-12, 2020.

A. S. M. Saeed and L. E. George, “Data deduplication system based on content-defined chunking using
bytes pair frequency occurrence,” Symmetry, vol. 12, no. 11, pp. 1-21, 2020.

H. L1 J. Yu, H. Zhang, M. Yang and H. Wang, “Privacy-preserving and distributed algorithms for modular
exponentiation in IoT with edge computing assistance,” IEEE Internet of Things Journal, vol. 7, no. 9, pp.
8769-8779, 2020.

TIASC, 2023, vol.38, no.1 99

(371

[38]

[39]

(40]

[41]

[42]

[43]

S. Li, T. Lan, B. Balasubramanian, H. W. Li, M. R. Ra et al, “Pushing collaborative data deduplication to
the network edge: An optimization framework and system design,” IEEE Transactions on Network Science
and Engineering, vol. 9, no. 4, pp. 1-11, 2022.

S. E. Ebinazer, N. Savarimuthu and S. Mary Saira Bhanu, “An efficient secure data deduplication method
using radix trie with bloom filter (SDD-RT-BF) in cloud environment,” Peer-to-Peer Networking and
Applications, vol. 14, no. 4, pp. 2443-2451, 2020.

Y. Yang, S. R. Kuppannagari and V. K. Prasanna, “A high throughput parallel hash table accelerator on
HBM-enabled FPGAs,” in Proc. of Int. Conf. on Field-Programmable Technol. ICFPT, Maui, HI, USA,
pp. 148-153, 2020.

D. Tong, S. Zhou and V. K. Prasanna, “High-throughput online hash table on FPGA,” in Proc. of 2015
IEEE Int. Parallel and Distributed Processing Symp. Workshops, Hyderabad, India, pp. 105-112, 2015.

K. Halba and C. Mahmoudi, “In-vehicle software defined networking: An enabler for data interoperabil-
ity,” in Proc. of the 2nd Int. Conf. on Information System and Data Mining, Lakeland, FL, USA, pp. 93-97,
2018.

M. Haeberle, F. Heimgaertner, H. Lockr, N. Nayak, D. Grewe et al., “Softwarization of automotive e/e
architectures: A software-defined networking approach,” in Proc. of the 2020 IEEE Vehicular Networking
Conf. (VNC), New York, NY, USA, vol. 2020, pp. 1-8, 2020.

W. Chen, Z. Chen, D. Li, H. Liu and Y. Tang, “Low-overhead inline deduplication for persistent memory,”
Transactions on Emerging Telecommunications Technologies, vol. 32, no. §, pp. 1-13, 2021.

	Hash Table Assisted Efficient File Level De-Duplication Scheme in SD-IoV Assisted Sensing Devices
	1 Introduction
	2 Literature Review
	3 Problem Identification and System Model
	4 Proposed Efficient File Level De-Duplication Scheme EFDS
	5 Results and Analysis
	6 Conclusion
	References

