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ABSTRACT

Convolutional neural networks continually evolve to enhance accuracy in addressing various problems, leading
to an increase in computational cost and model size. This paper introduces a novel approach for pruning
face recognition models based on convolutional neural networks. The proposed method identifies and removes
inefficient filters based on the information volume in feature maps. In each layer, some feature maps lack useful
information, and there exists a correlation between certain feature maps. Filters associated with these two types of
feature maps impose additional computational costs on the model. By eliminating filters related to these categories
of feature maps, the reduction of both computational cost and model size can be achieved. The approach employs
a combination of correlation analysis and the summation of matrix elements within each feature map to detect
and eliminate inefficient filters. The method was applied to two face recognition models utilizing the VGG16 and
ResNet50V2 backbone architectures. In the proposed approach, the number of filters removed in each layer varies,
and the removal process is independent of the adjacent layers. The convolutional layers of both backbone models
were initialized with pre-trained weights from ImageNet. For training, the CASIA-WebFace dataset was utilized,
and the Labeled Faces in the Wild (LFW) dataset was employed for benchmarking purposes. In the VGG16-based
face recognition model, a 0.74% accuracy improvement was achieved while reducing the number of convolution
parameters by 26.85% and decreasing Floating-point operations per second (FLOPs) by 47.96%. For the face
recognition model based on the ResNet50V2 architecture, the ArcFace method was implemented. The removal
of inactive filters in this model led to a slight decrease in accuracy by 0.11%. However, it resulted in enhanced
training speed, a reduction of 59.38% in convolution parameters, and a 57.29% decrease in FLOPs.
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1 Introduction

One of the most widely used and popular biometric authentication methods is face recognition.
Face recognition has many challenges, such as different facial poses, race, expression, and other factors.
In recent years all of these challenges have been addressed by introducing various deep learning
architectures.
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For this purpose, many models with high generalization power and an accuracy roughly equal to
the humans’ were introduced [1,2]. The main objective of presenting various architectures designed
ranging from VGGNet [3] to ResNet-RS [4] has always been to increase the architecture’s depth and
width because this allows for solving more complex problems with greater accuracy.

Increasing the number of convolutional layers and filters in each layer poses a redundancy
challenge. Redundancy is a significant challenge in deep face recognition models. This challenge means
the presence of ineffective parameters in the model which imposes a computational cost. As a result,
the convergence speed of the model decreases in the training phase, and the size of the final model
increases.

In the field of face recognition, the size and convergence speed of the face recognition model is very
important. Researchers typically design face recognition models for implementation on multitasking
embedded systems like mobile phones, which face hardware limitations such as memory, Random-
access memory (RAM) and processing power. As a result, in face recognition models, the size of the
model and the computational cost should be low. The size of a face recognition model that uses the
VGGNet basic architecture is about 500 MB, which makes this model ineffective for implementation
on systems such as mobile phones, even though it is highly accurate.

This paper presents a solution to maintaining face recognition accuracy while increasing speed in
the training and testing stages and reducing model size. For this purpose, a method for identifying and
removing deactivated filters from the model is proposed. Our proposed method successfully identified
these filters and distinguished the filters deactivated due to applying the activation function from
filters that have been deactivated due to initial (pre-trained) weights. This allowed us to maintain
critical filters that were deactivated due to the use of ReLU. Finally, using the CASIA-WebFace
dataset [5], our proposed method reduced convolution parameters by 1.36× and 2.46× for models with
backbone architectures of VGG16 [3] and ResNet50V2 [6], respectively. It also achieved the FLOPs
reduction rates of 47.96% and 57.29% on the models mentioned above, respectively. For the model with
the VGG16 backbone, this paper used the Cross-Entropy loss function, and for the model with the
ResNet50V2 backbone, the loss function used ArcFace. The LFW [7] is used to evaluate both models.

The rest of this paper is structured as follows: Section 2 introduces related work. In Section 3, the
proposed method is described. In Section 4, the experimental results are presented Finally, Section 5
presents the results of the proposed method.

2 Related Work

Deep architectures were introduced to solve complex problems with high accuracy. Throughout
the evolution process of deep networks, it has always attempted to increase the network’s depth and
width because this allows for extracting more abstract features. Increasing the depth and width will give
rise to redundancy and make the resulting model infeasible for devices such as mobile phones. So far,
various methods for pruning deep networks have been introduced. Most methods randomly remove
weights, such as dropout, or put aside a fixed percentage of the less effective parameters. With the
introduction of new architectures, compression and redundancy reduction of models become essential
and have been considered by researchers. In general, redundancy removal is performed at two levels:
weight level and filter level. Weight-level pruning methods remove weights in a filter.

Han et al. [8] introduced an iterative redundancy removal technique in deep models. They set
a threshold for weights, followed by removing weight connections below the threshold using the L1
and L2 regularization terms. Then, the network is set up, and the previous step is repeated. The main
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drawback of this method is that it eventually leads to a sparse model with limited flexibility, making
it unsuitable for commercial use. Fig. 1 shows that the Han’s method made a robust network into a
sparse one. All weights lower than the defined threshold were removed.

Figure 1: Network pruning by Han’s method [8]

In another paper, Han et al. [9] adopted the method presented by [8] to remove unimportant
weights. They then compressed the weights using Huffman coding to maximize the network compres-
sion ratio. Some other methods that have yielded promising results in weight-level network pruning
are [10–12]. In all of the above methods, redundancy removal in the network is performed at the
weight level, leading to non-structured sparsity in the model. Therefore, it is challenging to use parallel
processing techniques in the software implementation of such models.

Filter-level (structured) pruning methods, on the other hand, remove convolutional filters directly
from the network. Using statistical information from adjacent layers, Luo et al. [13] introduced
the ThiNet framework for identifying and removing unimportant filters in the previous layer. They
introduced the ThiNet-Conv model based on VGG16 architecture, this model on ImageNet was able
to reduce 4.98% of VGG16 architecture parameters, and on the other hand, the accuracy of the
introduced model increased by 1.09%. The method evaluates the parameters of the first two layers
in each block to detect inactive filters. As shown in Fig. 2, the filter elimination rate was the same for
all layers of a specific block.

Figure 2: Illustration of the ThiNet pruning strategy for ResNet block [13]

In the ThiNet-GAP model, Fully connected (FC) layers are replaced with a GAP (global average
pooling) layer and fine-tuned in 12 epochs with the same hyper-parameters. ThiNet-GAP achieves
3.31× FLOPs reduction and 16.63× compression on the VGG16 model, While the ThiNet-Conv
model achieves 3.23× FLOPs reduction [13]. This means that removing FC parameters has minimal
effect on the speed of the model.
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Li et al. [14] proposed a method for removing filters and a feature map associated with each filter,
in which the importance of each filter is obtained by the sum of its absolute weights.

Molchanov et al. [15] applied the Taylor expansion criterion to identify low-impact filters on the
loss function. Akyol [16] designed several deep neural network (DNN) and elaboration likelihood
(ELM) models based on the growth-pruning method and examined the performance of these models
to find the ideal model. Le et al. [17] introduced the “OWGraMi” method to decrease the number of
unweighted candidates to reduce the running time of the mining process for the “WeGraMi” method.
Liu et al. [18] proposed a simple yet effective method called discrimination-aware channel pruning
(DCP) to choose the channels that contribute to the discriminative power. They could reduce the size
of the model by removing these filters. Papers [19–21] are a few other studies in this field that have
generated positive results. Filter-level pruning is used as a solution to a general compression solution
because it preserves the structure of the model while lowering model redundancy and computational
cost. In Table 1, we review the methods presented for pruning deep neural networks.

Table 1: Review of the recent state-of-the-art literature

Methodology Method Description

Weight-level pruning
methods

Han et al. (2015) [8] Introduced an iterative redundancy removal
technique in deep models

Han et al. (2015) [9] Compressed the weights using Huffman
coding to maximize the network compression
ratio

Guo et al. (2016) [22] Proposes a novel network compression
method called dynamic network surgery,
which can remarkably reduce network
complexity by making on-the-fly connection
pruning.

Dong et al. (2017) [10] Propose a new layer-wise pruning method for
deep neural networks

CLIP-Q (2018) [12] Combines network pruning and weight
quantization in a single learning framework
that performs pruning and quantization
jointly, and in parallel with fine-tuning

Filter-level (structured)
pruning methods

Li et al. (2016) [14] Proposes a method for removing filters and a
feature map associated with each filter, in
which the importance of each filter is
obtained by the sum of its absolute weights

Molchanov et al. (2016)
[15]

Applies the Taylor expansion criterion to
identify low-impact filters on the loss
function

Thinet (2017) [13] Introduces ThiNet-Conv, ThiNet-GAP, and
ThiNet-Tiny

(Continued)
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Table 1 (continued)

Methodology Method Description

NISP (2018) [20] Proposes the neuron importance score
propagation (NISP) algorithm to propagate
the importance scores of final responses to
every neuron in the network

He et al. (2019) [19] Proposes a novel filter pruning method,
namely filter pruning via geometric median
(FPGM), to compress the model.

Discrimination-aware
network pruning (2021)
[18]

Proposes a simple yet effective method called
discrimination-aware channel pruning (DCP)
to choose the channels that contribute to the
discriminative power

ManiDP (2021) [21] Proposes a new paradigm that dynamically
removes redundant filters by embedding the
manifold information of all instances into the
space of pruned networks.

OWGraMi (2022) [17] Uses a strategy to prune all frequent edges
that cannot reach the weighting threshold,
and with this method can decrease the
number of unweighted candidates

To keep the model as accurate as possible, most filter removal methods set a small numerical
threshold to determine how many filters should be removed. Hence, there are several stages to the filter
identification and removal process. Each step involves the removal of a certain number of filters. This
iterative process will be time-consuming. The primary goal of most of these methods is to compress
the model so that it can be utilized in devices with limited memory resources, such as cell phones. In
the training stage, these methods do not place a high priority on accelerating model training. This
iterative process is inefficient; accordingly, the model may be subjected to additional computational
costs during the filter removal step. Because in each iteration, the model should be trained again,
inactive filters should be detected, and finally, some filters might be eliminated based on the defined
threshold. The strategy would increase the network training time.

It should be noted that all the methods presented in this section are designed for Pruning deep
models in general. None of these methods are specific to face recognition, and their performance has
yet to be tested with face datasets.

3 Proposed Method

Our objective is to enhance the training and inference speed of face recognition models while
preserving model accuracy. To achieve this, we have developed a filter-level model redundancy
reduction method. This method is distinct from the model’s training and testing phases, as it is designed
to identify and eliminate inactive filters. Notably, the structure of the model remains unchanged when
employing this method, rendering it applicable to any model architecture. The method leverages the
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information within the feature maps generated by the filters to identify and remove inactive filters in
each convolutional layer.

As shown in Fig. 3, in the proposed method, a model is first trained for 100 epochs, then
deactivated filters for the initial model are identified and removed from the model. The remaining
model is then retrained for 10 epochs to ensure convergence of the model. If the new model converges
successfully, it could be used as a new structure with fewer parameters. This new structure can be
trained on the original dataset. On the other hand, if the remained model does not converge, the
removed filters had a good impact on the whole network and should not be deleted. Therefore, we
need to reconsider the amount of filter removal. It is worth mentioning that this situation did not
occur in our experiments. In the following, we will discuss the details of the proposed method.

Figure 3: Flowchart of the proposed method

As depicted in Fig. 3, to identify inactive filters, the model must undergo a training phase.
Specifically, the pre-trained model from the ImageNet dataset is trained on approximately 82,494
samples drawn from the 1,000 classes of the CASIA-WebFace dataset over 100 epochs to establish
a face detection model.

In the subsequent step, identify deactivated filters. To achieve this, randomly select 100 samples
from various classes, specifically those with the largest populations. This method involves two
approaches to identifying inactive filters:

1. When the feature map generated by a filter fails to extract meaningful information, it results in
a sum of elements in the feature map matrix that approaches zero. Fig. 4 provides an example
of such a filter with a feature map that does not capture any features.

In Fig. 4, parameters (L) and (i) represent the index of the layer and the index of the filter,
respectively. (m) and (n) represent the length and width of the feature map, which is usually (m) equal
to (n). FLi

mn represents the feature map associated with the i-th filter in the L-th layer of the model.

Sum(FLi
mn) = �i=1

M�j=1
NFLi

mn (1)
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deactivated filter : Sum(FLi
mn) = δ (0 ≤ δ ≤ 0.02) (2)

2. When there is a correlation between 2 or more feature maps, and it fails to extract facial features.
The correlation between the two feature maps indicates that the filters related to these feature
maps extract similar information. As a result, removing these filters reduces the computational
cost of the model without introducing any change in the model’s accuracy.

Figure 4: The feature map generated by a filter for the VGG 16 model, this feature map indicates that
the corresponding filter is disabled and does not extract features

Fig. 5 illustrates the types of correlations that exist between two feature maps. As seen in this
figure, in the proposed method, only feature maps that exhibit robust correlations with each other are
eliminated, and only one of them is saved.

Figure 5: Types of correlation between two feature maps

FLi
g set as the matrix of output feature map associated with the i-th filter in the L-th layer of the

model, and FLk
g is k-th matrix of output feature map of the same layer L, both the matrix converted

into a vector of feature maps given below:
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F̂Li
g = (FLi

1 , FLi
2 , FLi

3 , ...., FLi
gi
) (3)

F̂Lk
g = (FLk

1 , FLk
2 , FLk

3 , ...., FLk
gi

) (4)

where g = Hi × Wi, Now we normalize F̂Li
g and F̂Lk

g as below:

NLi
g = FLi

g − ming

{
FLi

g

}

Maxg

{
FLi

g

} − ming

{
FLi

g

} (5)

NLi = (NLi
1 , NLi

2 , . . . , NLi
gi
) (6)

For F̂Lk
g :

NLk
g = FLk

g − ming

{
FLk

g

}

Maxg

{
FLk

g

} − ming

{
FLk

g

} (7)

NLk =
(

NLk
1 , NLk

2 , . . . , NLk
gi

)
(8)

After, for the L-th convolutional layer, the Pearson correlation of both i-th and k-th vectors of
feature maps are given as:

ρ
(
(NLi), (NLk)

) =
∑gi

g=1

(
NLi − NLi

) (
NLk − NLk

)
√∑ (

NLi − NLi
)2 (

NLk − NLk
)2

(9)

Let NLi represent the mean of NLi, and NLk represent the mean of NLk. The range of values for
ρ

(
(NLi), (NLk)

)
is from −1 to 1. If ρ

(
(NLi), (NLk)

)
is 0, it indicates that NLi and NLk are independent;

otherwise, the value is 1. The closer the value of ρ
(
(NLi), (NLk)

)
is to 1, the higher the correlation

between the two feature maps. In this method of identifying inactive filters, we empirically consider
filters associated with feature maps whose correlation level is greater than 0.95 as possible filters that
have been deactivated.

deactivated filter : ρ
(
(NLi), (NLk)

) ≥ ϕ (ϕ = 0.95) (10)

Now, for 100 selected samples, we identify and save the possible inactive filters by Eqs. (2) and
(10). A filter is identified as deactivated if it is inactive for at least 80% of these samples.

Accordingly, deactivated filters were identified and removed from the model to construct a new
structure with fewer parameters.

The pseudo-code of the proposed algorithm is presented in Fig. 6. The initial weighting of the
model was carried out by the weights obtained by the ImageNet data set training. (D) is a subset of
the CASIA-WebFace dataset containing Nd (= 82,494) samples of Cd (= 1,000) classes. β is the number
of epochs where the model is fine-tuned on D. The value of β is empirically chosen to be 100. K is the
dataset used for detecting inactive filters. Parameter (F) is a list of all filters in all convolution layers
of the basic network. All filters detected as inactive are saved in (Z), in which (Zf) is the number of
samples for which the specific filter (f) was passive. Parameter (α) is a threshold for the detection of
inactive filters. The value of (α) was chosen to be 0.8 based on experiments. This means those elements
of (Z) with 80% repetition for input (Nk) are recognized as inactive filters and saved in the dictionary
(P). The elements of (P) are removed from (F). The remaining model is referred to as (M). The (M)
is fine-tuned for (0.1∗ β) to assess its convergence, and if it converges, it will be saved as the final
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model and retrained for (2∗ β) epochs. If the remained model does not converge, the removed filters
had a good impact on the whole network and should not be deleted. Therefore, a reconsideration of
the amount of filter removal is necessary. It should be noted that this situation did not occur in our
experiments.

Figure 6: Pseudo-code of the proposed algorithm for network pruning

Fig. 7 shows the strategy of the proposed model to remove the filters from each block of the
ResNet50V2 model. As authenticated here, each layer’s deleted filter ratio is independent of other
layers. In similar methods such as ThiNet [13] (Fig. 2), the filter elimination rate was constant for each
block or defined by a threshold value. Furthermore, the inactive filters were detected only for the first
two layers in ThiNet. However, when the ResNet50V became more profound, the number of blocks
and layers of each block increased, and our method could detect and remove inactive filters in all
layers, except for the Addition layers. Detecting and eliminating inactive filters is significantly easier
for the VGG16 network with sequential architecture and no concatenation layer.

It is worth mentioning that negative data deactivates filters. A filter removed by negative data may
contribute to the extraction of good features for positive data. To overcome this challenge, filters are
not simply removed according to the result of a single training sample. For this purpose, deactivated
filters are identified experimentally for 100 randomly selected samples, and then the filters identified
as inactive for 80% of the data are removed. These 100 samples are chosen from 100 classes with the
highest population.
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Figure 7: The proposed method strategy for removing filters in each block of the ResNet50V2 network

4 Experimental Results

Deactivated filters are not only because of the ReLU activation function but also due to initial
(pre-trained) weights. Weights obtained from pre-trained models by ImageNet are used to initialize
weights in convolutional layers.

The ImageNet dataset consists of 1000 object classes, some of which bear no resemblance to
human facial features. Thus, a certain number of filters fail to extract the appropriate features when
feeding facial data to a model for training, making their feature maps black (all zero). This is most
noticeable in higher layers, where more abstract features are extracted. For example, Fig. 8 shows that
the first feature map generated by the corresponding filter (index 0) is entirely black. Accordingly, the
proposed method identified this filter as deactivated and removed it.

Figure 8: (Continued)
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Figure 8: An example of network pruning. Top: First 5 feature maps of a layer from the initial model.
Bottom: New feature maps after removing the inactive filter and training again

As shown in this figure, our proposed method removes the filter with an index (0) in the next step
because it failed to extract the appropriate features. Filters 1–4 were found to be valid, so they were
not released. After removing a filter, the next filter will be replaced, and this process continues until
the completion of the identification process for inactive filters in a layer. Fig. 9 illustrates the process
of filter removal and replacement in a layer.

Figure 9: The process of removing and replacing filters in a layer. In this figure, the filters highlighted
with a red box have been removed after the network pruning process. For example, the filter with index
0 has been removed, and the filter with index 1 has been replaced in its position

Fig. 10 illustrates the filters and their corresponding feature maps before and after the network
pruning process. This figure showcases the filters and feature maps for a face recognition model with
the VGG16 base architecture in the second convolutional layer.
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Figure 10: Filters and their corresponding feature maps before and after the network pruning process
for the Face recognition model with the VGG16 base architecture VGG16

Figs. 11 and 12 depict the filters and feature maps generated by the initial and final models for
models with VGG16 and ResNet50V2 backbones, respectively. A number of the developed feature
maps generate no features, imposing computational costs on the model (Fig. 8b). This problem can be
solved by identifying and removing deactivated filters.

As shown in Fig. 12, for the model with the ResNet50V2 backbone network, the filters that
produce similar feature maps are removed, and only one of them is retained, displayed in green boxes
(e.g., filters 3 and 4). The filter with index 3 is removed, while the filter with index 4 is kept. The reason
for removing the filter with index 3 was its high correlation with the filter with index 4. The filters that
their feature maps had minor features have also been removed.
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Figure 11: (a) Filters in the third convolutional layer of the VGG16 model, (b) Corresponding
feature maps of a, (c) Filters in the third convolutional layer after deactivated filters are removed,
(d) Corresponding feature maps of c
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Figure 12: (a) Filters in the 34th convolutional layer of the ResNet50V2 model. Red boxes show inactive
or useless filters. Some of them are selected based on their small gradients, and some of them (e.g., 3)
produced the same feature maps, (b) Corresponding feature maps of a, (c) Filters in the 34th layer after
deactivated filters are removed, (d) Corresponding feature maps of c

In Table 2, the performance of the proposed method on the VGG16 model is shown. In this model,
the base network is VGG16, used to train the network on the CASIA-WebFace dataset. The LFW
benchmark evaluates the performance of the model. The loss function in this model is Cross-Entropy.
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As shown in Table 2, the accuracy model has increased by 0.74% compared to the model in which
the deactivated filters are not removed. In addition, our method reduced this model’s convolution
parameters and FLOPs by 26.85% and 47.96%, respectively.

Table 2: Pruning results of VGG16 model. Here, M/B means million/billion, respectively

Architecture Training set Loss Accuracy #Param #FLOPs

VGG16 CASIA-WebFace Cross-Entropy 96.52% [23] 138.34 M 30.94 B
Proposed method
(Modify-VGG16)

CASIA-WebFace Cross-Entropy 97.26% 101.19 M 16.1 B

Table 3 shows the performance of the proposed method on pruning the ResNet50V2 model.
This table compares the results obtained by our method with other methods. In the ResNet50V2
model, the Top-1 and Top-5 accuracies are 1.1% and 0.9% higher than the ResNet50 model on the
ImageNet benchmark, respectively, while the number of parameters of the two models is the same [24].
The ArcFace model [25] was employed for face recognition using the base architecture ResNet50V2.
According to the proposed method, deactivated filters were identified for this model. All models were
trained with the CASIA-WebFace dataset. The LFW benchmark has evaluated the performance of the
models. The accuracy of our proposed model has decreased by only 0.11% compared to the ArcFace
model that used the basic architecture of ResNet50V2, which shows that our model has been able to
maintain the accuracy of the original model. The proposed method achieves 2.34× FLOPs reduction
and 2.46× compression on the ResNet50V2 model.

Table 3: Comparison of face recognition models based on ResNet50V2 architecture by LFW
benchmark

Method Loss Architecture Training set Accuracy #Param #FLOPs

Sphereface [26] A-Softmax ResNet50 CASIA-
WebFace

99.1% [27] 25.56 M 7.72 B

AMS loss [28] AMS-Softmax ResNet50 CASIA-
WebFace

99.34% [27] 25.56 M 7.72 B

Marginal loss [29] Marginal loss ResNet50 CASIA-
WebFace

98.91% [27] 25.56 M 7.72 B

ArcFace [25] ArcFace ResNet50 CASIA-
WebFace

99.35% [27] 25.56 M 7.72 B

ArcFace ArcFace ResNet50V2 CASIA-
WebFace

99.38% 25.56 M 7.0 B

Proposed method ArcFace Modify-
ResNet50V2

CASIA-
WebFace

99.27% 10.38 M 2.99 B

As previously mentioned, the weight initialization of models was carried out using pre-trained
weights of the ImageNet dataset. The ImageNet has 1000 object classes, including caddy, Tower of
Pisa, ice cream, etc. More deactivated filters are expected in the higher layers of the network for the
face recognition model initialized via ImageNet and trained by face data. This is because, in a deep
model, more abstract features are extracted in higher layers than in lower layers. So, the expectation
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is that these pre-trained models extract features in higher layers, and many of these features bear no
resemblance to human facial features. Therefore, increasing the rate of deactivated filters identified by
increasing the layer depth can be regarded as a criterion for measuring the accuracy of deactivated
filter identification. Tables 4 and 5 list the percentage of deactivated filters identified in each layer for
models with VGG16 and ResNet50V2 backbones, respectively.

Table 4: Increase in the percentage of deactivated filters identified in the model with VGG16 backbone

1st layer 2nd layer 3rd layer 4th layer 5th layer 6th layer 7th layer

11.71% 5.85% 10.54% 1.56% 11.71% 16.4% 15.42%

8th layer 9th layer 10th layer 11th layer 12th layer 13th layer

15.62% 18.35% 15.62% 29.68% 29.68% 76.56%

Table 5: Increase in the percentage of deactivated filters identified in the model with ResNet50V2
backbone

11th layer 23rd layer 34th layer 46th layer 58th layer 69th layer 80th layer 92nd layer

15.62% 18.75% 26.56% 21.09% 16.4% 25% 25.78% 26.95%

104th layer 115th layer 126th layer 137th layer 148th layer 160th layer 172nd layer 183rd layer

27.73% 31.64% 33.2% 32.81% 32.2% 27.5% 29.68% 34.5%

5 Conclusions

In this paper, we assumed that if in the convolutional layers of the face recognition model, we
identify and remove the filters that have been disabled due to the use of the ReLU activation function,
we can reduce the redundancy in the model by maintaining the accuracy of the face recognition
model. As a result, the final model will be compressed, and the training speed of the model will also
increase. To investigate this hypothesis, we chose two face recognition models, one with VGG16 basic
architecture and the other with ResNet50V2 basic architecture.

The reason for choosing these two models was to check the performance of the proposed method
in sequential models (VGG16) and functional models (Resnet50N2). The proposed hypothesis was
proved according to the obtained results. According to the results obtained in the face recognition
model with VGG16 basic architecture, we improved the model’s accuracy by 0.74%; in addition, we
reduced convolution parameters by 26.85%, and FLOPs decreased by 47.96%. For the face recognition
model with ResNet50V2 basic architecture, we used the ArcFace method for face recognition; after
removing the inactive filters in this model, the accuracy decreased by 0.11%, while the training speed
of the model increased, and the convolution parameters of the model reduced by 59.38%. Moreover,
the FLOPs of the model were also reduced by 57.29%. By utilizing our proposed method, the size of
the face recognition model with the VGG16 base architecture was reduced from 500 to 150 MB, which
is a significant achievement in this article. By integrating our proposed models with the SqNxt block,
we anticipate a reduction in the parameters of the resulting model. This concept is suggested for future
research.
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