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ABSTRACT

This research concentrates to model an efficient thyroid prediction approach, which is considered a baseline for
significant problems faced by the women community. The major research problem is the lack of automated model
to attain earlier prediction. Some existing model fails to give better prediction accuracy. Here, a novel clinical
decision support system is framed to make the proper decision during a time of complexity. Multiple stages are
followed in the proposed framework, which plays a substantial role in thyroid prediction. These steps include i)
data acquisition, ii) outlier prediction, and iii) multi-stage weight-based ensemble learning process (MS-WEL).
The weighted analysis of the base classifier and other classifier models helps bridge the gap encountered in one
single classifier model. Various classifiers are merged to handle the issues identified in others and intend to enhance
the prediction rate. The proposed model provides superior outcomes and gives good quality prediction rate. The
simulation is done in the MATLAB 2020a environment and establishes a better trade-off than various existing
approaches. The model gives a prediction accuracy of 97.28% accuracy compared to other models and shows a
better trade than others.
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1 Introduction

Hypothyroidism, a butterfly-shaped neuroendocrine gland, regulates pulse rate, blood volume,
and temperature in humans [1]. Since the diagnosis of malignancy, lung nodules have steadily grown
over the last 50 years [2], and this vital organ has received much attention across the country. According
to reports, thyroid illness afflicted more than 300 million citizens in 2018 [3], and the figure is
continuously climbing today. Disease, the most often observed condition in men aged 30 to 39, was
much more common in female categories, with four times the chances of diagnosing than males [4].
Because pancreatic illness is becoming more common, the diagnosis technique in pharmacies has not
changed during the twentieth century [5]. Thyroid illness is classified as operational or malignant, and
it is detected using traditional processes. A thyroid function test is necessary (i.e., hypothyroidism
and hyperthyroidism). The thyroid gland produces two primary hormones: triiodothyronine (T3)
and thyroxine (T4) [6]. The thyroid function assessment includes T3 and T4, free T3 (FT3) and free
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T4 (FT4), as well as thyroid-stimulating hormones (TSH), which are used to detect levothyroxine
and hypertension [7]. Researchers distinguish thyroid tumours into normal and malignant types for
thyroid neoplasm illness (cancerous cells). The early diagnosis of aberrant lung nodules can help
avoid cancer and reduce the prevalence of chronic. Sonography, such as magnetic resonance imaging
(MRI), computerized tomography (CT), radio-iodine scintigraphy, positron emission tomography
(PET) scans, and ultrasound pictures, are commonly used to aid in thyroid diagnostic techniques [8].
Nevertheless, radiology is insufficient to distinguish malignant from benign tumours, necessitating
fine-needle aspiration cytology (FNAC) [9,10].

Computer-aided diagnosis (CAD) techniques, which use data mining algorithms, and profound
possible improvements to detect, diagnose, and cure disease, have been widely used in the clinical area
[11,12]. Identifying levothyroxine and hyperactivity uses a wide variety of statistical and machine learn-
ing classification models, such as k-nearest neighbour [13], regression methods, and logistic regression,
to mention a few. Conversely, deep learning models were frequently used in computed tomography
to diagnose suspicious lesions. Researchers have generally focused on using ultrasound imaging to
improve hypothyroidism illness diagnosis prediction performance. Generally, the classification tasks
for detecting malignant thyroid cancer using sonograms achieved estimation accuracy ranging from
72% to 92%, outperforming untrained models. Ultrasound images, however, have limits since they
are prone to noise and mottling. Ultrasound images are used to categorize specific complex nodules
based on a single imaging method used to define diagnostic risk stratification insufficiently, resulting
in ineffective therapeutic adoption agencies. The objective of the work is to predict thyroid using a
novel machine learning approaches that intends to address the prediction challenge encountered in
the prevailing approaches. The major research gap is the lack of proper automated tool for prediction
with reduced execution time. This research concentrates on modelling an efficient clinical decision
support system for thyroid prediction using ensemble learning where the weights of the classifier are
optimized and attains a better prediction rate.

The remainder of the work is structured as follows: Section 2 analyses existing approaches and
issues; Section 3 elaborates on the proposed cascaded random vector network methodology. The
numerical outcomes of the anticipated model are provided in Section 4, followed by the research
summary in Section 5.

2 Related Works

Thyroid diseases still exist in operational (hypothyroidism, hypertension, and thyroiditis) and neo-
plastic (goitre, adenoma and four forms of malignancy thyroid nodules). Papillary adenocarcinoma,
follicular melanoma, anaplastic carcinoma, and medullary carcinoma are the four malignant forms
of nodules that result in malignant tumours [14]. In recent decades, many studies have used CAD
techniques to identify hypothyroidism illness, and this article summarises the findings and describes
the research needs.

According to earlier research, binary classifier problems were the most commonly completed.
Neural network models have been used often in these researches to categorize hypothyroidism and
hyperthyroidism. For example, by integrating linear discriminant analysis (LDA), k-nearest neigh-
bours (KNN), and adaptive neuro-fuzzy learning algorithm, reference [15] suggested a hybrid decision-
making support system for detecting thyroid problems, with a performance of 98.5 percent. In [16], the
authors also utilized LDA, and his investigations revealed that the hyperthyroidism and hyperactivity
classification provides performance rates of 99.62 percent and 99.62 percent, respectively. Support
vector machine (SVM), Random Forest (RF) and KNN were also used independently, with the RF
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technique achieving 98.5 percent accuracy rates [17]. In comparison to identifying thyroid disorders,
detecting illness is challenging for researchers. Due to a rise in thyroid cancer cases, distinguishing
thyroid cancer as malignancy is a challenging study topic. Several studies have used machine learning
algorithms to extract multiple elements from ultrasound images to identify stomach cancer. Nodule
size, vascularity, micro-calcifications, border, form, contouring, and neovascularization are the most
typically encountered parameters used to categorize thyroid cancer on images obtained [18]. SVM,
KNN, LDA, and other machine learning-based have also been shown to be helpful in the detection of
malignant tumours.

Deep learning has become a hot topic in machine learning during the last several years. Learning
algorithms have resulted in very high diagnostic accuracy for thyroid illness identification. Meanwhile,
deep learning can proactively choose characteristics from inputs, resulting in improved diagnostics
performance and speed. Since the introduction of deep neural networks, image categorization imple-
ments the logic domain that has already been widely used in industrial industries, such as education,
commerce, and, most crucially, medicine. Furthermore, deep learning models provide a novel approach
to categorization that several researchers have used to identify an array of disorders, including breast
cancer [19], melanoma sickness [20], and lung cancer. These two used most often, and effective
deep learning techniques for categorizing thyroid cancer are artificial neural networks (ANN) and
convolutional neural networks (CNN). Previous research suggests that ANNs can accurately identify
either “benign” or “malignant” hypothyroidism, with an overall accuracy of roughly 82%.

Although several experiments have identified malignant thyroid cancer, a recommender of these
techniques has yet to emerge due to their limitations. Previous research can assist doctors in distin-
guishing malignant multinodular to a large extent, but most approaches require time to categorize
tumours, which is complicated or time. Thyroidectomy is also intended to remove all cancerous
thyroid nodules rather than just the endocrine glands. As a result, identifying each nodule using
ultrasounds takes time, and finding malignant nodules during operations is impossible, especially
given the sensitivity of ultrasounds to scattering disturbances. As a result, implementing binary
classification activities utilizing ultrasound pictures in clinical settings remains difficult. CT is a more
effective method for identifying aberrant endocrine glands than ultrasound pictures, with improved
diagnostic accuracy, and it is always necessary before surgery. Despite this, few trials are using CT
for thyroid cancer screening. As a result, Xception is now the best option because of its improved
performance and reliability. As a result, this present research presents a strategy that incorporates the
Xception structure and has an adaptable multi-channel design. A comparison of sonograms and CT
scans were provided in this research to highlight the utilization of diverse neuroimaging techniques.
The methodology enables doctors to pick the most approach for thyroid cancer diagnosis while
disregarding the peculiarities of the input sequence, determining output options, and having it relevant
to both steady and unsteady data sets.

3 Methodology

This section possesses various steps of the anticipated model. These steps include i) data acqui-
sition, ii) outlier prediction, and iii) multi-stage weight-based ensemble learning process (MS-WEL).
Fig. 1 depicts the flow of the anticipated model.
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Figure 1: Workflow of the thyroid prediction model

3.1 Data Collection

From the “Federico II” Naples hospital [5], the datasets need to be taken from patients related
to thyroid disease to be treated for conducting the research. Moreover, the data sources need to be
gathered from every patient, including personal data like date of birth, age, pathology, sex, education,
marital status, and profession; also details of family history, the physical features like weight, height,
data concerned to possible pregnancies and mensuration for women, body mass index, and few
considering alvus, diuresis, appetite are considered. In addition, some clinical data also needs to be
considered, like neck, skin, thorax, heart, extremities, eyes, and abdomen. The obtained datasets are
deemed to incorporate two data sets concerning 800 patients.

Secondly, the data source is obtained from the diary of doctors’ visits. It provides all the related
data of every patient regarding clinical visits and tests conducted while visiting the doctor. The two
data sources provide the data, and then it is combined into a single massive dataset with the help
of a patients’ ID used as an element. Consecutively, the cleaning work needs to be carried out. The
management of all the uncorrected data and missing values is primarily performed. However, patients
who have a single visit are eliminated from the dataset by looking at every patient’s clinical history.
They are not required for the evolution of the disease in this research.

Further, this proposed approach selects only the patients who suffered from hypothyroidism due
to the examined medicine in predicting the disease. There are three macro-groups of pathologies
in the gathered datasets. They are (a) congenital hypothyroidism, (b) Hashimoto’s thyroiditis with
hypothyroidism, and (c) hypothyroidism. Finally, the collected dataset has 247 patient data, with 51
men and 195 women and a mean age of 46. In some circumstances, patients with hypothyroidism visit
the hospital for more than a year or have many appointments in a single year. In particular, a group
of collected datasets has 2784 instances that refer to a specific patient and a particular visit while the
essential clinical and physical data are deposited (See Table 1).
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Table 1: Dataset attributes

Feature Description Type

Height Patients’ height (cm) I
Body mass index Patients’ BMI F
Age during visit Patients’ age during hospital visit I
Pathology Patients’ thyroid disease S
Pathologies severity Thyroid disease severity S
Pathologies causes Thyroid disease causes S
Weight Patients’ weight (kg) I
Gender Patients’ gender (Male-Female) S
Familiar anamnesis:
Thyroid diseases

Thyroid disorder patients’ family (yes-no) B

Familiar anamnesis:
Diabetes

Diabetics patients’ family B

Menarche Patients age during menarche (female patients alone) I
Menstruation Woman period (female patients) (regular-irregular) S
Pregnancies Pregnancies count (female patients) I
Interruptions in pregnancy Interruption count during pregnancy (female patients) I
Menopausal age Patients’ age during menopause (female patients) I
Appetite Patients’ appetite rate

(poor–good–regular–excessive–great-variable)
S

Bowel function Patients’ bowel function
(regular–irregular–constipation–frequent-variable)

S

Diuresis Patients’ diuresis degree
(regular–irregular–frequent–poor-variable)

S

TFH TSH (Thyroid simulating hormone) is a pituitary hormone
that restores the thyroid gland to generate (T4) and (T3)
converts the body’s metabolism

F

FT3 FT3 thyroid hormone with iodine F
FT4 FT4 Thyroxine is a thyroid hormone that is partly made up

of iodine
F

Thyroglobulin Thyroid cancer therapy efficiency F
Ab Thyroid anti-bodies are the immune system elements

misdirected against the thyroid gland or some fundamental
reasons for its general functions.

F

AbTg Anti-body thyroglobulin F
TPO Anti-thyroperoxidase anti-bodies F
LT4 Levothyroxine specifies L-thyroxine using the hybrid

hormone thyroxine (T4). Used to heal and avoid some
thyroid cancers types (doses/ week)

I

LT4 treatment LT4 treatment trend (higher–lower–stable-others) S
Note: S-String, I-Integer, F-Float, B-Boolean.
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3.2 Outlier Prediction

The outlier(s) are the occurrence point(s) significantly different from the term frequency in
machine learning and deep learning. In this case, anomalies identification is used to identify and
eradicate anomalies from the data. The improvement of efficiency is a substantial benefit of eliminating
outliers. Because an outlier can decrease the effectiveness of any machine learning method, this study
uses isolation forest (IF). This unsupervised outlier identification methodology identifies outliers
rather than profiles expected points. The IF differentiates outliers after creating isolated trees and
retaining outliers as short overall duration under isolated trees. The IF can be a feasible and valuable
tool for identifying outliers. It makes the point that exceptions are more subject to isolation; as a result,
outliers may be identified across the forests as reports with shortened projected track durations.

After the sub-steps above, we apply normalization to the data. The information is restructured in
this stage to be used for future study. The primary goal of data normalization is to organize the data
and remove any irrelevant or extraneous information that may be present. The standard normalizing
approaches include min-max, z-score, and a variety of other techniques. The min-max scalar method
is used in this case, which is the most resilient technique for the estimation collection. The min-max
scalar normalization approach is used, and the dataset is rearranged either to a value between 0 and 1.

3.3 Multi-Stage Weight-Based EnsembleLlearning Process (MS-WEL)

Here is a novel multi-stage weight-based ensemble learning model based on weighted voting.
The model is constructed to identify the thyroid using various approaches. In the first stage, various
classifier models are adopted to participate and generate the weighted ensemble learning. The classifier
parameters are tuned via a genetic algorithm to generate an optimized baseline model. Moreover, the
initial stage processing helps select the desirable optimization model from base classifiers using positive
predictive values (PPV). Moreover, the weighted evaluation of the base model is constructed with two
diverse processes: 1) weight optimization using grid searching and 2) optimum weight analysis after
MCC for the generation of an ensemble model for further analysis. In the successive stage, the weighted
ensemble model is developed to tune the model’s weight. The values of Mathews correlation coefficient
(MCC) are considered to generate the optimal weight for every developed ensemble model.

3.4 Hyper-Parameter Analysis Using GA

A genetic algorithm (GA) is a meta-heuristic hyperparameters optimization tool that selects the
population’s best-fitting chromosomal or individual people. GA is used in this work to modify the
hyper-parameters of each base Support Vector Machine (SVM) classifier to increase the effectiveness
of the proposed model. Because all of the hyperparameters in the GA are intuitionistic, the represen-
tations utilized for the primary base classifiers are a vector of integers. Each number represents the
value of one of the basic classification model’s hyperparameters that are now being tuned. Construct
the starting demographic of each type in the GA’s first stage. The feature subset variables for each
classifier are selected at random from the stated search areas. In the second stage, assess each classifier’s
optimization technique. The AUC practical assessment indicator is employed as the fitness function
of each used classification model during the trials. The most accurate classification is those that are
the fit. Then, from the group, identify the two best-fit people. Following that, an arbitrary crossovers
point is chosen, and the heads of both people are switched to create new offspring, and the function
called is given authority to modify the children, giving those distinct parents. Following that, the
optimization algorithm of the created offspring is verified. If such kids are deemed fitter, they will
supplant the majority’s less fit people. These three procedures are repeated until the number of
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designated generations reaches the maximum value. Finally, the method detects the majority’s best-fit
people and displays them as the method’s output. The appropriate hyperparameters provide the most
significant influence on the accuracy of any ML classifier. As a result, one of the most basic operations
is to generate optimum base models, which aids in the development of the recommended MS-WEL
model. In this scenario, the hyperparameters of each classifier are tuned using the GA. The parameter
settings used to perform the GA as a hyperparameter tuning strategy are described. The optimized base
models, which will provide the highest sensitivity, are generated using hyperparameters that have been
fine-tuned. The hyperparameter is specified before initiating the learning process. The hyper-parameter
model tuning enhances the model performance during validation set. This method implements the
above-specified classification techniques with potentially reduced for each given classifier, as stated in
Eq. (1). In the following stage, these fine-tuned base models aid in the improvement of two weighed
learning versions.

BL (θL) = {B1 (θ1) , B2 (θ2) , . . . , B1 (θ1)} (1)

where BL = {B1, . . . , B1} ∈ the list of base classification models such that L ∈ [1, 1] , θ ε GA generates
optimized parameters, and the lists θL = [θ1, . . . , θl} ∈ the characteristics for each primary classification
that have been optimized. The best-optimized classification algorithm is chosen because it produces a
fully functional and preferable efficiency for the proposed methodology to be developed. If we choose
the best-optimized alternative(s) for each base classifier from the created optimized base modelling list,
the suggested approach’s situation will improve; alternatively, it will worsen. As a result, the optimum
base assumptions suited for developing an ensemble model are considered in this proposed research.
After using a positive predictive value, this method picks the most preferred base models from each
classifier’s optimized foundation models list (PPV). The optimized base versions for each classifier
are then used to create a weighted ensemble learning modelling with their optimal frequency using the
WV method. The process shows how to choose the most suitable optimized based system(s) from a list
of created optimized base classifiers for each classifier in this study. In this case, the model yields the
ProbBL

(θL) significance level for each base classifier optimized baseline model BL(θL). The calculation
shows the resulting significance level ProbBL

(θL) as in Eq. (2):

ProbBL (θL) = {ProbB1(θ1), ProbB2(θ2), . . . , ProbB1(θ1)} (2)

In this case, the favourable predictive validity for each classifier is generated by such improved
base models, as shown in Eq. (3):

PPVBL (θL) = {PPVB1(θ1), PPVB2(θ2), . . . , PPVB1(θ1)} (3)

Then, for each classifier shown in the calculation, calculate the sum of PPV of such optimized
base classifiers BL(θL).

μPPV = 1
L

∑1

L=1
PPVL (4)

where PPVL ∈ is the PPV number for each classifier optimized base model. The mean PPV cost of all
optimized training sets for each classifier is equal to or less than each employed optimized foundation
model’s PPVL score for each classifier described in the equation to pick the most acceptable optimized
base model(s) for each classifier.

μPPVL ≤ PPVL (5)

Then, for each classifier, such ability to achieve its objectives, optimized base models are shown
in Eq. (6):
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BS (θS) = {B1 (θ1) , . . . , BS (θS)} (6)

where S ∈ [1, s] ∈ Several available optimal base classifiers are provided for each classifier from 1 to s.

3.5 Weight Optimization

Each SVM classifier’s appropriate and desired weight boosts productivity in a weighted voting
method. To construct an ensemble model, it is required to proactively construct the ideal weight via
which any category may obtain the right and most acceptable weight. In this respect, the optimum
weight for each classifier’s chosen optimized base model is generated using a grid search technique
(GS). In this regard, the technique outlines the generation of optimal weight for each classifier chosen
optimized base classifiers. The proportion of each chosen optimized base model is supplied using
Eq. (7):

ω = {Ss} (7)

where S ∈ [1, s] ∈ the no of chosen optimized primary modelling for each classifier, Ss ∈ the number
of the mixture, and ω ∈ the weights of each classifier specially chosen optimal base models. Following
that, the calculation indicates how to use the GS approach to modify such assigned weights and get
the actual optimized cost by each classifier choice optimized base model.

ωS (ϕS) = {ω1 (ϕ1) , . . . , ωS (ϕS)} (8)

In Eq. (8), ωS (ϕS) represent the optimized values for all select optimized support modelling of
each classifier, where ϕS = {ϕ1, . . . , ϕS}. The GS approach is used to optimize the weight from linear
regression through s from each classifier.

3.6 Weighted Ensemble Model

This section discusses creating a unique weighted model using a weighted voting mechanism. The
WV approach, described by the problem, is used to combine all of the proposed optimal training sets
for each classifier. This technique combines the chosen optimized models trained for each classifier
with the supplied new optimal weights for each optimized base model to produce each weighted model.

E (Xm) =
∑s

S=1
BS (θS) optimal weightS(Xm) (9)

Here, E(Xm) ∈ original building weighted modelling and BS(θS) ∈. For every classifier, all
optimum basic models were picked. The process for forming a weighted framework for constructing
the recommended MS-WEL concept is described in Eq. (9).

3.7 Multi-Tier Weighted Model

This section explains how to use the Weighted Vector (WV) approach to create a multi-tier
weighted EL model (MS-WEL). The proposed model in this work integrates two previous weighted
learning algorithms with the WV approach. The first layer of the recommended MS-WEL model
produces two lists of basic classification techniques used as inputs in this technique. Each round
generates two weighted learning models. One classifier is collected from the two classifiers at each
repetition to create a scaled learning framework. This procedure continues until the classifier becomes
accessible. The weight of each produced weighted learning model is initially allocated using calculation
in the second layer of the recommended MS-WEL technique. The suggested MS-WEL model may be
developed by explicitly generating n number of weighted learning alternative(s). The frequency of n is
set as 2 in this suggested study.
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Wn = {2n} (10)

where When signifies the scores applied to each weighted model, and n indicates the probability of the
weighted model derived. The grid search approach indicated in the equation is then used to optimize
such assigned weights Wn.

Wn (ϕn) = {W1 (ϕ1) , . . . , Wn (ϕn)} (11)

The above equation Wn (ϕn) represents the optimized weights for all weighted learning structure,
where ϕn = {ϕ1, . . . , ϕn} ∈ w eight optimization for a weighted learning structure from 1 to n using
the GS approach. The ideal parameters for all produced weighted learning modelling are then derived
using the MCC value offered by each balanced learning modelling.

On = MCCn ∗ Wn(ϕn) (12)

For each stacked learning model, on is the newly created optimal weight. Finally, both created
weighting learning models are combined using an external technique to build a unique recommended
multi-tier weighted learning model to forecast thyroid illnesses utilizing computation.

MS − WEL (Xm) =
n∑

o=1

Oo,qEo,q(Xm) (13)

where Eo,q(Xm) represents created weighted ensemble learning representation at each repeats up to n.

4 Numerical Results

The evaluation of the efficiency and accuracy of the machine learning technique is performed with
the help of performance indicators. When a person is categorized as HD, the positive classification is
considered. The person comes under negative classification when the person is not classified as HD.

TP = True Positive (If the technique is accurately found as HD).

TN = True Negative (If the technique indeed recognized the opposite class, like patients with no
heart problems).

FP = False Positive (If the technique inaccurately recognized the HD patients, that is, finding the
non-HD patients as HD patients).

FN = False Negative (If the technique inaccurately recognized the opposite class, like HD patient
as the average patient).

Accuracy = TP + TN
TP + TN + FP + FN

(14)

Precision = TP
TP + FP

(15)

Sensitivity = TP
TP + FN

(16)

F1-score = 2 ∗ (precision ∗ recall)
(Precision + Recall)

(17)

False Positive Rate = FP
FP + TN

(18)
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False Negative Rate = FN
TP + FN

(19)

Negative Predictive value = TN
TN + FN

(20)

The proposed classifiers’ performance is better than the existing research in this research (Table 4).
Moreover, some restrictions are dependent on the particular approach called feature selection.
Illustrate with an example that highly accurate outcomes are produced when high reliance on Relief
has occurred in this type of case. In addition, there is an adverse impact when a more level of missing
values is available in the datasets. When the missing values are a little remarkable, this model needs to
manage the problems. Further, a large dataset needs to develop the model more specific even though
the training dataset is considerably extended in the proposed approach (See Figs. 2 to 4). The process
of addressing the problems via the appropriate methods and using other datasets is demonstrated when
this model is utilized.

Table 2 compares various performance metrics like TP, FP, FN, precision, recall and accuracy.
The proposed model gives average prediction outcomes of 95.9% precision, 96.75% recall and 97.28%
accuracy (See Figs. 2 to 4). Here, a successive iteration for 100 epochs is considered where the samples
of 12 iterations are provided in the above table. The average TP for 12 iterations is 617.5, FP is 32.5, and
FN is 27. The model performance is higher compared to various existing approaches. Based on these
outcomes, it is observed that the proposed MS-WEL works well in thyroid prediction and establishes
a better trade-off. Similarly, the prediction quality is improved by adopting superior feature selection
approaches. The former model selects seven features while the latter selects eight features. Those
selected features are fed as an input to the classifier, and better prediction outcomes are attained.
The proposed model gives 97% prediction accuracy which is substantially higher the RF, SVR and
LR. The proposed model is tested under the standard benchmark dataset and the computation with
other benchmark standards consumes more time and leads to complexity in prediction.

Figure 2: Precision evaluation
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Figure 3: Recall evaluation

Figure 4: Accuracy evaluation

Table 2: Prediction outcomes

Iterations TP FP FN Precision Recall Accuracy

1 595 9 20 98.5 98 97
2 580 6 32 99 96 96.5

(Continued)



12 IASC, 2024, vol.39, no.1

Table 2 (continued)

Iterations TP FP FN Precision Recall Accuracy

3 635 21 50 98 93 92.8
4 650 36 19 95 98 96.8
5 570 46 11 93 99 97.5
6 650 26 11 99 99 98.89
7 650 31 22 97 97 96.25
8 650 76 13 96 99 98.89
9 630 62 14 90 99 98.5
10 560 15 33 92 96 98.2
11 650 26 57 97.5 93 98.1
12 590 37 42 96.5 94 98
Overall 617.5 32.5 27 95.9 96.75 97.28

5 Conclusion

This work concentrates on modelling an efficient machine learning approach for thyroid predic-
tion. The dataset is taken from the available online resources for thyroid prediction. The initial pre-
processing steps like outlier prediction are done to eliminate the unnecessary information or artefacts
over the dataset. Then, the classification is done with the MS-WEL model, where the weight of the
base classifier is estimated and intends to provide superior prediction accuracy. The proposed model
gives an average precision of 95.9%, recall and 97.28% accuracy. Similarly, the average outcomes for
12 successive iterations are 617.5, FP is 32.5, and FN is 27. The model establishes a better trade-off
and assists the physicians in predicting the thyroid’s occurrence. The major research constraint is the
analysis with the computational time needed for execution that has to be reduced. However, the major
drawback is the more comprehensive analysis with the ensemble model and weight prediction. It will
be rectified by adopting a deep classifier in the future.
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