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ABSTRACT

One of the major causes of road accidents is sleepy drivers. Such accidents typically result in fatalities and financial
losses and disadvantage other road users. Numerous studies have been conducted to identify the driver’s sleepiness
and integrate it into a warning system. Most studies have examined how the mouth and eyelids move. However,
this limits the system’s ability to identify drowsiness traits. Therefore, this study designed an Accident Detection
Framework (RPK) that could be used to reduce road accidents due to sleepiness and detect the location of accidents.
The drowsiness detection model used three facial parameters: Yawning, closed eyes (blinking), and an upright head
position. This model used a Convolutional Neural Network (CNN) consisting of two phases. The initial phase
involves video processing and facial landmark coordinate detection. The second phase involves developing the
extraction of frame-based features using normalization methods. All these phases used OpenCV and TensorFlow.
The dataset contained 5017 images with 874 open eyes images, 850 closed eyes images, 723 open-mouth images,
725 closed-mouth images, 761 sleepy-head images, and 1084 non-sleepy head images. The dataset of 5017 images
was divided into the training set with 4505 images and the testing set with 512 images, with a ratio of 90:10. The
results showed that the RPK design could detect sleepiness by using deep learning techniques with high accuracy on
all three parameters; namely 98% for eye blinking, 96% for mouth yawning, and 97% for head movement. Overall,
the test results have provided an overview of how the developed RPK prototype can accurately identify drowsy
drivers. These findings will have a significant impact on the improvement of road users’ safety and mobility.
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1 Introduction

According to the World Health Organization’s (WHO) data, one of the major contributing factors
to traffic accidents is driver weariness [1]. The National Sleep Foundation also found that 32% of
drivers would drive while fatigued at least once a month [2]. Driving when tired puts drivers and other
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road users at risk for road accidents. Therefore, laws have been passed in several nations to address
this issue. For instance, China’s Road Traffic Safety Law states that “drivers are not permitted to drive
continuously for more than 4 h, and the rest break between every two long-term drives should not
be less than 20 min”. Similar legislation is also applied throughout Europe, it stipulates that “drivers
should stop and relax for no less than 20 min every 4.5 h of continuous driving” [3].

The revolutionary idea of the Internet of Things (IoT) architecture has gained enormous popular-
ity over the last decade, resulting in exponential growth in the IoT networks, connected devices, and
the data processed therein [4]. Many Internet of Things (IoT) products that collect environmental
data and utilize conventional machine learning techniques to analyze it have recently entered the
market. Google’s Nest Learning Thermostat is one example [5] as it records temperature data in a
structured way and then uses algorithms to understand its user’s temperature preference patterns and
schedules. IoT can also help find a vehicle’s location in the event of an accident on the highway [6].
Research conducted by [7] could detect real or fake face images by reducing the dimensions of the face.
Microsoft’s Windows IoT team has also recently released a facial recognition security system that uses
deep learning technology to perform tasks such as unlocking doors when recognizing its user’s face.
Nevertheless, with data transfer using IoT, it is necessary to pay attention to the protocol to save
energy [8–10].

Information Technology (IT) in Artificial Intelligence (AI) describes the future and everything it
entails. Not only have conventional computer techniques been altered by AI, but it has also substan-
tially altered many different sectors. Businesses are becoming more intelligent and the world is evolving
digitally. Therefore, IT organizations must continue to keep up with the intricate procedures that
speed up innovation. AI can conduct human-like activities, including learning new material, solving
problems, and recognizing speech and text. Computers can also perform specialized jobs by analyzing
vast volumes of data and finding recurrent patterns in this data by using AI-powered technologies.
Transparency Market Research (TMR) predicted that the worldwide artificial intelligence market will
grow at an excellent Compound Annual Growth Rate (CAGR) of 36.1% between 2016 and 2024, rising
from $126.14 billion in 2015 to $3,061.35 billion by the end of that year.

Annual increases in road fatalities reached 1.35 million people in 2016. Based on the number
of motor vehicles, the fatality rate has, nevertheless, remained relatively consistent in recent years.
However, the rate of road fatalities has increased, despite it remaining relatively stable over the
previous 15 years at roughly 18 deaths per 100,000 people [11]. Therefore, drivers play a crucial role in
maintaining passenger safety. Traffic laws, such as those governing road signs, vehicle speed, stopping
distance, and driving etiquette, must be understood by drivers [12]. Road accidents typically occur due
to distraction and a lack of focus. Drivers concur that driving takes their total concentration and that
multitasking is dangerous [13]. Another cause of road accidents is microsleep. Microsleep is the loss
of awareness or alertness brought on by fatigue or sleepiness. Microsleep typically lasts between one
and two minutes, but if the driver transitions into a sleep phase, it may last longer. When someone
is engaged in a difficult task, like driving or spending a lot of time gazing at a computer, microsleep
frequently occurs [14].

Eye blinks or movements can be physically observed sleepiness. A tired detection tool, the
Percentage of Eye Closure (PERCLOS), measures a participant’s percentage of eyelid closure over
time and indicates slower eyelid closure than blinking. Various real-time operator drowsiness detection
systems use the PERCLOS evaluation and custom software capabilities to pinpoint the beginning
of weariness. Each technology developer employs a distinct mix and combination of hardware to
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improve the precision and ability to detect eye movements, eyelid behavior, head movements, and facial
expressions [15].

Certain circumstances prevent accidents from being immediately reported to the closest ambu-
lance. Most of the time, no emergency services are available, thus resulting in a lower first aid response
and delayed services which may result in fatalities within minutes. Therefore, a solution that addresses
all of these issues and can effectively reduce the time delay brought on by medical vehicles must be
developed.

An image recognition neural network type called a convolutional neural network (CNN) can
be employed to detect weariness. The purpose of the CNN is to process arrays of picture data.
This approach comprises of several processes and has a trainable design. Each method consists of
a convolution layer, an activation layer (ReLu), and a pooling layer. Additionally, CNN provides
a classification procedure for categorizing objects, including flattening, wholly connected, softmax
classifiers, and drop out. A total of 96.42% of people use CNN to identify tiredness based on eye
movements [16].

In this study, the proposed architecture comprises of four deep-learning models, namely AlexNet,
VGG-FaceNet, FlowImageNet, and ResNet, in addition to using the driver’s RGB video to identify
drowsiness. The model also considers four distinct variables for implementation, such as head motions,
facial expressions, hand gestures, and behavioral characteristics. Meanwhile, the AlexNet model was
employed for various backdrop and environment variations such as indoor, outdoor, daytime, and
nighttime variations. To extract face traits like ethnicity and gender, VGG-FaceNet was employed. For
behavioral characteristics and head movements, FlowImageNet was employed and ResNet was used
for hand gestures. The results from hand gesture detection are sufficiently precise. The model would
then divide these characteristics into four categories: Awake, drowsy with blinking eyes, yawning, and
dozing off. This model’s output would then be used to create an algorithm that will run the data
through a SoftMax classifier, which would then provide a positive (sleepy) or negative result. This
method has an accuracy rate of 85% [17].

Based on the problems above, this study formulates what parameters are used to determine the
characteristics of sleepy guides and what models are appropriate to detect drowsiness. This paper is
organized as follows: methodology, discussion, results, and conclusion.

2 Methodology

The main goal of this study is to create an accident recognition framework for monitoring drowsy
drivers by using convolutional neural network technology. Thus, an Accident Detection Framework
(RPK) was designed to reduce the occurrence of road accidents due to sleepiness.

2.1 Drowsy Detection and Prediction Based on Facial Signs

The proposed visual system for the detection and prediction of driver drowsiness was designed
by analyzing the state of the driver’s eyes, mouth, and head movement. To label the driver as sleepy
or not sleepy, the proposed detection method consists of several stages, starting from image input,
pre-processing, sleepy detection, feature recognition based on eyes, mouth, and head, then combining
features to determine sleepy and non-sleepy labels.
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2.2 Face Detection

Facial landmark detection is a computer vision task where the model has to predict critical points
that represent areas or landmarks on the human face, eyes, nose, lips, etc. It is considered a fundamental
task that can perform other computer vision tasks, including head pose estimation, gaze direction
identification, facial gesture detection, and face switching. Fig. 1 is a standard face dataset. The 68
x and y coordinates indicate the most critical points on a person’s face. The locations of the facial
markers are as follows: Jaw: 1–17; right eyebrow: 18–22; left eyebrow: 23–27; nose: 28–36; right eye:
37–42; left eye: 43–48; and mouth: 49–68.

Figure 1: Illustration of 68 landmarks on the human face

2.3 Determination of Point Aspect Ratio for Each Driver

Of the 68 landmarks on the human face, 37 to 42 are the right eye’s coordinates. From that number,
it could then be converted from A to F, as shown in Fig. 2 below.

Figure 2: Six landmarks associated with eyes

The horizontal separations between points A, E, and B were calculated and the vertical separation
between F and C were determined as well. The separations between these landmarks were determined
by the equations shown below ((1)–(3)):

DA,E =
√

(Ax − Ex)
2 + (

Ay − Ey

)2
(1)

DB,D =
√

(Bx − Dx)
2 + (

By − Dy

)2
(2)
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DF ,C =
√

(Fx − Cx)
2 + (

Fy − Cy

)2
(3)

The distance between two landmarks for x and y is shown as Dx,y. Here, the coordinates of
landmark A are shown as Ax, Ay. The locations of landmarks for A, B, C, D, E, and F were also
discovered. After computing the horizontal and vertical distances, the distances between the ocular
landmarks were determined. Then, the eye landmark distance for both eyes was determined by using
Eq. (4).

L = DA,E + DB,D

DF ,C

(4)

L denotes the eye landmark distance. The left and right eyes’ eye landmark distances were then
calculated. The length is l.l for the left eye and l.r for the right eye. The equation calculates this data’s
average point landmark distance, L.

L = l.r + l.l
2

(5)

The difference between the mean distance of eye landmarks with open and closed eyes is seen in
Fig. 2. The EAR threshold ranges from 0.20 to 0.41, with 0.20 being the minimum and 0.41 being the
maximum amount [18].

2.4 Determination of Mouth Aspect Ratio for Each Driver

A wide-open mouth is a sign of yawning. Similar to how eye closure was detected, loose lips were
determined by using facial landmarks. The person was identified as yawning if the lip distance derived
from the frame was greater than the threshold. The positions of 2D face landmarks were indicated by
the numbers 49 through 68. The number of yawns that will occur could be calculated by using these
landmarks and the outcome of the mouth’s state, as shown in Fig. 3 below.

Figure 3: Mouth aspect ratio

If the subject yawns more than the predetermined limit, it would trigger a sound alert. The mouth’s
horizontal and vertical distances were then computed by using the following equation:

MAR = (50 − 60) + (51 − 59) + (52 − 58) + (53 − 57) + (54 − 56)/(2 ∗ (49 − 55)) (6)

There are 20 points on the MAR. The mouth part starts with the numbers 49 to 68. The mouth
consists of the right (point 49) and left (point 55), the upper part is the points 50 to 54, and the bottom
is the points 60 to 56. How the calculation of the upper mouth is subtracted from the lower part
and then divided by the value of the mouth length from points 49 to 55. Under standard speaking
settings, the mouth opening level varies between 0.4 and 0.5 but will be larger than 0.6 when the driver
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yawns, with a maximum level of roughly 1.2. The threshold value for mouth opening degree in this
investigation was chosen at 0.6. Drivers are deemed fatigued when their maximum mouth opening
level in 60 s surpasses 0.6, as described in Table 1.

Table 1: The threshold value for mouth opening

Driver condition Value Feature description

Not tired 0 The degress of mouth opening is less than 0.6
Tired 1 The degress of mouth opening is more than 0.6

The threshold value for mouth opening degree in this investigation was chosen at 0.6. Drivers are
deemed fatigued when their maximum mouth opening level in 60 s surpasses 0.6. The degree of mouth
opening and eye condition were used in this study to identify the driver’s weariness. The categorization
of tiredness and pre-classification was conducted throughout the data-collecting procedure based on
the numbers.

2.5 Sleepy Detection and Prediction Based on Facial Signs

The suggested technique is based on an eye-opening threshold established for all motorists, which
results in errors for motorists with large or small eyes. To solve this issue, the driver’s adaptive aperture
threshold (EARThresh) was used to make determination easier. Fig. 4 displays the suggested method’s
model.

Figure 4: A proposed model to detect sleepiness by using facial landmarks

For each driver, the EAR and EARthresh values were first computed. Then, by contrasting EAR
and EARthresh, the degree of the driver’s fatigue could be ascertained. This investigation would be
routinely conducted while driving. This approach does not rely on frequency since it would be incorrect
if the driver was talking or wearing a mask. The image dataset has 18,957 images of heads, eyes, and
mouths. The colors and sizes of these photos vary. To perform the training and testing procedure, the
images were preserved. The following is a description of the method employed in this study:

• Step 1. Pre-processing. Before entering the data, the packages used in data processing were
installed, namely Keras, TensorFlow, and ImageDataGenerator. The Keras package is a deep
learning library for data classification, and the TensorFlow package is a library for deep
learning.

• Step 2. Face recognition. This step consists of identifying and detecting faces using facial
landmarks from the image. These facial landmarks include the eyebrows, eyes, nose, mouth,
and jaw.
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• Step 3. Determination of each driver’s eye-opening threshold. In this step, 32 feature points
based on the recognition of facial landmarks were used. Afterward, the locations of the mouth
and eye points were determined.

• Step 4. Detection and prediction of sleepy or not sleepy. The input data is the video frame
from the camera on the vehicle. The video was divided into several clips with a duration of 300
s. After that, testing was conducted with many different values to achieve the recommended
optimal values, such as CounterEyeLimit = 15 and CounterYawnLimit = 25. The stages for
detecting them are presented in Algorithm 1.

Algorithm 1: Drowsiness detection and prediction
Input: Video input from the camera
Output: Drowsiness_Detection = True/false (sleepy or not sleepy)
Begin

For each clip from the video do
Countereye = 0;
Counteryawn = 0;
Drowsiness_Detection = Fake;

For each i = 1 . . . n do
Count EARi with Eq. (1);
Count MARdistance with Eq. (2);

End for

Count EARhresh = Average (EAR1, EAR2, . . . ,EARn);
For each i = 1 . . . n do

if EARi> = EARThresh then
Countereye + = 1;

End if
if MARdistance > MARThresh then

Counteryawn + = 1;
End if

End for

if Countereye > CounterEye Limit then
Drowsiness_Detection = True;

End if
if Counteryawn > CounterYawnLimit then

Drowsiness_Detection = True;
End if

End for
End.

2.6 Pre-Processing of Image Data

Image pre-processing is one of the steps taken for data sets to ensure that the machine training
will run well. This step would then turn the data which were initially in the form of images into data
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in arrays so that the machine can learn it. Converting data into array form requires ImageDataGener-
ator() from the Keras library. Codes like horizontal_flip, vertical_flip, and height_shift_range as well
as the ImageDataGenerator() function were used to change the image. The validation_split function
was used to validate the training, and this validation_split splits the data from the dataset, and the
dataset was divided into 80% for training and 20% for validation.

The datagen object is an ImageDataGenerator() object that has many functions and it processes
the data before it is loaded. In this study, the rescaling function was used to change the scale of the
image values. Therefore, when the image was processed, it would then be represented as a 3D array
(sometimes called a Tensor) with values of between 0 to 255. The rescale parameter was given the
value “1/255,” meaning that each value will be multiplied by 1/255. Thus, the value range will change
between 0 and 1. This is intended to facilitate neural network learning.

2.7 Feature Extraction and Training

The training data set was transmitted via CNN for feature extraction. Two adaptive networks
for drowsiness detection were then developed by enhancing various layers of this network. Next, an
adaptive network was created by suppressing the AveragePooling2D layer and adding layers such as
Flatten, Relu, Dropout, and Dense (Sigmoid). This seeks to address the overfitting issue and hasten
model convergence. The inclusion of the Flatten, Two Relu, Dropout, and Dense layers also implies a
different range of changes (Sigmoid).

The recommended network, a transfer learning technique, was first trained using the Bing Search
API, Kaggle, and RMFD datasets. Trained weights were applied and they were retrained using the
training data to modify the parameters of this network. As a result, learning happened more quickly,
training took less time, and significant training datasets were unnecessary. When the loss value did not
decrease during the training procedure, we opted to end the training phase.

2.8 Dataset Description

Without putting the driver in danger, pictures and videos were captured by cameras for the driver’s
sleepy state to compile an experimental dataset of drowsy and awake faces from diverse sources [19].
The efficacy, cost, security, and ease of data collection are the main advantages of this study. The
collected pictures and videos of driving scenes resemble an actual road test. The dataset contains 5017
images with 874 open-eye images, 850 closed eyes images, 723 open-mouth images, and 725 closed-
mouth images. Additionally, the data set contains 761 sleepy head images and 1084 non-sleepy head
images. The dataset of 6448 pictures for method two was divided into 80% (4501) for training and 20%
(498) for testing. The dataset directly influences the accuracy of sleepiness detection and prediction.

2.9 Situation and Parameters

The Nvidia Geforce GPU, 12 GB of RAM, and Windows 10 Pro operating system setup were used
to compare and assess the two suggested methods. TensorFlow v2.10.0 was used as the library for the
training of the proposed network model. The recommended approach was tested when people yawned,
closed their eyes, and remained still. To enhance accuracy during the experiment, the parameters were
fine-tuned before achieving the ideal parameter values.

The first situation was to create a model for classification based on yawning. By using a sequential
model, this classifier detected whether the mouth is yawning. The results of this model can be seen in
Fig. 5 below.
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Layer (type)  Output Shape Param #
conv2d_(Conv2D) (None, 224, 224, 16) 208

max_pooling2d (MaxPooling2D (None, 112, 112, 16) 0

batch_normalization_12 (BatchNormalization) (None, 112, 112, 16) 64

conv2d_1 (Conv2D) (None, 112, 112, 32) 2080

max_pooling2d_1 (MaxPooling2D (None, 56, 56, 32) 0

batch_normalization_13 (BatchNormalization) (None, 56, 56, 32) 128

conv2d_2(Conv2D) (None, 56, 56, 64) 8256

max_pooling2d_2(MaxPooling2D (None, 28, 28, 64) 0

batch_normalization_2 (BatchNormalization) (None, 28, 28, 64) 256

conv2d_3 (Conv2D) (None, 28, 28, 64) 16448

max_pooling2d_3 (MaxPooling2D) (None, 14, 14, 64) 0

batch_normalization_3 (BatchNormalization) (None, 14, 14, 64) 256

conv2d_4 (Conv2D) (None, 14, 14, 128) 32896

max_pooling2d_4 (MaxPooling2D (None, 7, 7, 128) 0

batch_normalization_4 (BatchNormalization) (None, 7, 7, 128) 512

flatten(Flatten) (None, 6272) 0

dropout (Dropout) (None, 6272) 0

dense (Dense) (None, 128) 802944

dense(Dense) (None, 2) 258

Total params: 864,306

Trainable params: 863,698

Non-trainable params: 608

Figure 5: CNN model for yawning mouths

The next step was to create a model for the classification based on selected points. This classifica-
tion would detect opened and closed eyes. The results of this model can be seen in Fig. 6 below.

A model was then created for head movement classification. This classification would detect
whether the driver is keeping their head upright. The results of this model can be seen in Fig. 7 below.

3 Results and Discussions

The confusion matrix was used to assess the effectiveness of the network model for detecting
drowsiness, as well as to compute the accuracy, loss value, and training time metrics. Loss is the value
for the training loss function and was calculated from the training data set and predictions from the
model. Accuracy depicts the accuracy of training and is the calculated value of the training data set’s
accuracy and the model’s prediction. Validation loss is the calculated value of the loss function of the
validation data set and prediction from the model with the input data from the validation data set.
The validation accuracy is a value that is calculated from the validation data set and predictions from
the model with input data from the validation data set. The X-axis represents the number of iterations,
while the Y-axis on the loss graph will display the loss value at each iteration. An iteration is a training
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cycle in which the model sees all the training data once. When training begins, the number of iterations
will start from 0 or 1.

Figure 6: CNN model for open and closed eyes

Figure 7: CNN model for head
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Fig. 8 shows that the average loss during observation is approximately 0.050099, indicating that
the model has a moderate error rate. The average accuracy during observation is around 0.980437,
indicating that the model exhibits high accuracy on the training data.

Figure 8: Accuracy and loss value chart for the mouth

Fig. 9 depicts that the average loss during observation is approximately 0.017369, indicating that
the model tends to have a low error rate when predicting training data. The average accuracy during
observation is around 0.997960, signifying that the model possesses a very high accuracy level on the
training data. This signifies that the model can predict the training data well.

Figure 9: Accuracy and loss value chart for the head

Fig. 10 illustrates that the average loss during observation is approximately 0.154297, indicating
that the model has a relatively low error rate. The average accuracy during observation hovers around
0.989213, showing that the model maintains a very high accuracy level on the training data.

The Confusion Matrix was used while running tests and assessments. The Recall value reflects
the model’s success in locating information, while the F1-Score compares the average precision and
weighted Recall. Precision describes the accuracy between the required data and the forecast outcomes
produced by the model. The findings of the confusion matrix for mouth 96%, eyes 98%, and head 97%.

There were two different sets of experiments. The driver warning system was tested using
Experiment Set 1 in various situations with the same driver, surroundings, and lighting conditions.
A total of three problem sets were tested, namely normal driving, driving while wearing glasses, and
driving while wearing a hat.
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Figure 10: Accuracy and loss value chart for the eyes

The prototype was tested with five different individuals in Experiment Set 2. This system has two
basic categories of drivers: Those who use glasses and those who do not. To achieve consistent results,
the drivers used the same vehicle and drove under identical lighting conditions.

Table 2 contains the findings of Experiment Set 1. The default detection of tiredness in scenario
number 1 occurred as anticipated. The results in scenario 2, when the driver wore glasses, were accurate
experimental results that met one of two anticipated outcomes. When the driver wears glasses, the
empirical findings of scenario 3 indicated that the system could not identify tiredness but performs
better when detecting default behavior. Conversely, the experimental data for scenario 4 showed the
reverse performance. Lastly, the threshold result for scenario 5 has the worst accuracy. There was a
calibration phase mistake due to the face identification step’s failure to recognize facial landmarks,
thereby making the sleepiness threshold a value of 0.06.

Table 2: Drowsiness detection

Scenario 1 Threshold
EAR

A drowsy count
is expected

Sleepiness
count found

The standard count
is anticipated

Known default
count

1 0.25 2 2 2 2
2 0.30 2 1 2 1
3 0.19 2 0 2 1
4 0.24 2 1 2 0
5 −0.06 2 N/A 2 N/A

The face detection findings were then analyzed in more detail as it might impact detection
precision. As shown in Table 3, scenario 1 has a success rate of 83.61% and has the most significant
proportion of frames with the driver’s face identified at roughly 83.61%. Scenario 2 follows with a
success rate of 77.66% and approximately 29.11% of the frames in scenario 3 contain the driver’s face.
Whereas scenario 4 achieved a success rate of 65.19%. However, only 12 out of 1624 frames, or around
0.86%, of number 5 contain the driver’s face.
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Table 3: Five different scenarios for face detection

Scenario 1 Video length Number of frames The number of times
the driver’s face was
detected in the frames

Accuracy of the
driver’s face detected
in the frames (%)

1 56 s 1678 1403 83.61
2 54 s 1625 1262 77.66
3 49 s 1473 429 29.11
4 55 s 1652 1077 65.19
5 54 s 1624 14 0.86

The experimental results for different sleepiness thresholds were recorded. The results for driver
warning systems regarding drowsy and inattentive detection results are as follows:

• A True Positive (TP) result indicates that an alarm was triggered when drowsiness or an
inattentive state was detected.

• A False Positive (FP) occurs when an alarm is triggered when no signs of drowsiness or a default
state are detected.

• A True Negative (TN) occurs when an alarm is turned off when the system detects that the
driver does not show any drowsiness or inattention.

• A False Negative (FN) result indicates that the alarm was not triggered even though signs of
drowsiness or a default state were detected.

The performance of the driver’s warning system is reported in the following section. The
Experiment Set 2 was conducted to test the sleepiness detection system for drivers using and not
wearing glasses. The tiredness detection of drivers without glasses had an excellent accuracy rate of
85.80%, which is higher than the average for those using glasses. The outcomes are shown in Table 4.

Table 4: Results of the experiment to detect drowsiness

TP TN FP FN Acc (%) Description Average (%)

1 467 1031 127 123 85.69 Not wearing glasses
85.802 169 855 167 13 85.05 Not wearing glasses

3 182 974 56 122 86.65 Not wearing glasses

4 107 1059 265 268 68.62 Wearing glasses
70.955 212 1013 326 193 70.24 Wearing glasses

6 245 1032 237 212 73.98 Wearing glasses

According to Table 5, drivers without glasses have a default detection accuracy of 73.77%, whereas
those who use glasses have a default detection accuracy of an average of 78.44%. The sleepiness
threshold values for each candidate from the second dataset are listed in Table 6. Those without glasses
have a substantially greater drowsiness threshold than candidates who use glasses. The reflection of
the lights from the driver’s spectacles may affect the threshold value for the candidate’s eye size (when
wearing glasses) and may be to blame for the false negative detection. This is because the system will
generate incorrect sleepiness threshold values due to the inaccurate driver eye size measurement.
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Table 5: Results of the default detection experiment

TP TN FP FN Acc (%) Description Average (%)

1 184 1153 188 239 75.79 Not wearing glasses
73.772 152 703 192 161 70.77 Not wearing glasses

3 277 712 207 127 74.75 Not wearing glasses

4 175 1162 49 270 80.73 Wearing glasses
78.445 176 1163 50 271 80.66 Wearing glasses

6 252 1015 238 209 73.92 Wearing glasses

Table 6: Results of a sleepiness threshold

Dataset 2 Drowsy threshold Average threshold Description

1 0.35
0.37

Not wearing glasses
2 0.36 Not wearing glasses
3 0.40 Not wearing glasses

4 0.19
0.24

Wearing glasses
5 0.28 Wearing glasses
6 0.24 Wearing glasses

To determine the accuracy of the distance estimate generated by the system, a measurement
comparison between the actual measurement and the estimated result shown by the system was
conducted. To do so, tests were performed to compare the exact distance of the objects measured
manually with the actual distance. The results shown in this system indicate that measuring various
distances between 600–900 mm results in an accuracy of 96.2%. The highest accuracy in measurement
with a length of 600 mm is 97.2%.

Fig. 11 exhibits the distance between the camera and the driver while in the vehicle. Fig. 12 is
a framework for detecting drowsiness which consists of several components such as the Raspberry
Pi microprocessor, camera module, LCD, and speakers. These components are connected to the IoT
Cloud Gateway to be monitored by operators or administrators.

4 Comparison of Drowsiness Detection

A comparison of the effectiveness of sleepiness-detecting techniques is shown in Table 7. The
accuracy of the methods examined ranged from 83% to 97.1%, whereas the accuracy of this study’s
proposed method is 97%. Most earlier methodologies concentrated on examining the mouth and
ocular regions to find blinks and yawns. They employed the Haar cascade classifier to identify facial
landmarks and predict tiredness. However, the traditional method, which estimates eye and mouth
conditions using hand-engineered characteristics, has numerous shortcomings concerning drowsiness
detection.
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Figure 11: The ideal distance between the driver and the camera

Figure 12: Framework for detecting drowsiness

Table 7: A comparison of drowsiness detection methods’ accuracy

Resources Method Acc

[20] Eye closure and yawning-based drowsiness detection
utilizing facial landmarks and Haar cascade classifiers.

85%

[21] Real-time driver warning system using Raspberry Pi and
facial landmark detection.

83.39%

[22] A driver’s tiredness may be detected using facial landmark
analysis based on eye movements and yawning.

85%

[23] Model for detecting driver sleepiness in an Android
application using convolutional neural networks.

83.33%

[24] Using EM-CNN, a convolutional neural network is used to
identify driver weariness.

93.62%

[25] Face recognition software with a Raspberry Pi 3. 97.10%
[26] Driver drowsiness detection using deep learning. 96%
[26] Using deep learning to identify drowsy driving. 94%
Scenario 1 Facial landmark detection. 83%

(Continued)
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Table 7 (continued)

Resources Method Acc

Scenario 2 MobileNet-V2. 96%
Scenario 3 ResNet-50V2. 97%

Furthermore, parameter tweaking is necessary for Haar cascade classifiers when employed for
detection since they are prone to false positive detection. This is because it only considers the two
primary aspects of blinking and yawning for tiredness identification. Although this approach obtains
an accuracy of 96%–97.1% in trials, it has several limitations in real-world applications. Moreover,
different blink and yawn time thresholds would need to be specified for each driver to identify
their tiredness level. Additionally, fatigue is a physiological phenomenon that occurs naturally in
people due to various disorder-causing variables. Thus, predicting tiredness just by blinking and
yawning is inaccurate. Other indications of head and eye movements and physiological traits should be
considered to develop more precise predictions. For a more accurate detection, an effective technique
that combines deep learning with two neural networks constructed as an extension of MobileNet-V2
and ResNet-50V2 could be used.

The sleepy driver warning system used in this study was created using facial landmark approaches.
The training outcomes in the three recommended situations, 1, 2, and 3, have an accuracy of 83%, 96%,
and 97%, respectively (Table 7).

Scenario 2 has superior outcomes in terms of accuracy and loss value. However, scenario 2
requires more training time. Thus, we may conclude that scenarios 2 and 3 deliver exceptional
products compared to scenario 1. The suggested approach with scenario 1 has the great benefit of
producing quick results. However, when the driver is not gazing at the camera when the system is
initially configured, the technique’s estimation of the eye-opening threshold is unreliable. Additionally,
forecasts based exclusively on eye movements are incorrect because the system becomes confused if
the drivers blink too frequently or open their eyes too little.

Additionally, choosing an input threshold that influences how well a prediction is made prevents
sleep from being detected as failing. It is challenging for scenario 1 to deliver reliable findings if the
driver shuts his eyes but is not sleepy. Overall, blinking and yawning are not reliable enough indicators
of sleepiness. Therefore, for a more precise forecast other indications of head and eye movements
(head tilt, inability to maintain a straight posture) need to be considered. This was done in scenarios 2
and 3.

5 Conclusion

The results of this study produced a new data set for the classification of drowsy drivers with as
many as 5017 images. An Accident Location Detection Framework (PLK) that occurs in real-time
based on the Internet of Things (IoT) was designed, along with the development of a Drowsiness
Detector Model (PPM) by using a convolutional neural network based on three detection parameters,
namely yawning, closing the eyes (blinking), and keeping the head upright.

The efficiency of the suggested strategy was examined by using the experimental findings. The
findings demonstrate that the proposed method can use deep learning to attain a high accuracy of
97%. This study showed the method’s viability and adaptability for the creation of apps for doze
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alert warning systems, particularly mobile applications. Furthermore, the findings of this study have
contributed to the prevention of automotive accidents brought on by drivers who fall asleep while
operating a vehicle. However, further studies should focus on real-time or almost real-time operation
systems as the primary need for sleepiness detection.
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