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ABSTRACT

This study proposed a new real-time manufacturing process monitoring method to monitor and detect process
shifts in manufacturing operations. Since real-time production process monitoring is critical in today’s smart
manufacturing. The more robust the monitoring model, the more reliable a process is to be under control. In
the past, many researchers have developed real-time monitoring methods to detect process shifts early. However,
these methods have limitations in detecting process shifts as quickly as possible and handling various data volumes
and varieties. In this paper, a robust monitoring model combining Gated Recurrent Unit (GRU) and Random
Forest (RF) with Real-Time Contrast (RTC) called GRU-RF-RTC was proposed to detect process shifts rapidly.
The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and non-
normal distribution datasets. Then, to prove the applicability of the proposed model in a real manufacturing setting,
the model was evaluated using real-world normal and non-normal problems. The results demonstrate that the
proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average
out-of-control run length (ARL1) in all synthesis and real-world problems under normal and non-normal cases.
The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model
in modern manufacturing process monitoring applications. The result reveals that the proposed method improves
the shift detection capability by 42.14% in normal and 43.64% in gamma distribution problems.
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1 Introduction

Nowadays, to keep tracking smart manufacturing production processes in real-time, a large
amount of multivariate data is collected and analyzed using advanced sensors and big data applications
[1]. These enable to monitor multiple critical-to-quality characteristics and detect process shifts early
[2,3]. If the production process shifts from the desired process, the system should provide signals
to reduce the cost of production [4]. According to [5], an inability of early process shift detection
not only increases production costs but also leads to the shutting down of the systems in the long
run. The importance of early shift detection has been revealed by several studies such as in oil
refinery process [6], fussed filament fabrication process in additive manufacturing [7], semiconductor
manufacturing [8], and sheet metal forming processing [9]. These studies revealed the importance of
quick shift detection and continuous process monitoring in reducing production costs and enhancing
manufacturing competitiveness. The monitoring method using shift detection is evaluated based on
the average out-of-control run length (ARL1), which measures the time between the occurrence of a
shift and its detection [10].

To achieve a reduction in production costs through monitoring big production data and early
process shift detection (ARL1), researchers have proposed various machine learning (ML) methods.
For instance, Deng et al. [11] developed a random forest monitoring method called real-time-contrast
chart (RF-RTC), which is a prominent statistical process monitoring (SPM) tool that classifies data
into reference and real-time and transforms the monitoring takes into a set of classification problems.
In a recent study by Haanchumpol et al. [12], a multivariate control chart using spatial signed rank
was used to detect minor non-normal distribution changes, demonstrating better performance than
the benchmarks. Similarly, Sikder et al. [13] used random forest with weighted voting to detect process
shifts and reduce output variability. He et al. [3] proposed a distance-based monitoring approach
using a support vector machine (D-SVM), which outperformed the RF-RTC monitoring chart.
Additionally, the integration of SVM with a differential evolution algorithm (DE-SVM) was proposed
for a one-sided monitoring control chart [14]. The performance of the proposed chart surpassed that
of the D-SVM chart. However, the mentioned ML monitoring methods enhance shift detection but
still suffer from higher ARL1 and high-dimensional data problems.

On the other hand, deep learning (DL) monitoring methods improve the detection time and
capacity in monitoring high-dimensional data problems. For example, Long Short-Term Memory
Real-Time Contrast (LSTM-RTC), a type of DL, enhances the detection accuracy and time [4]. The
LSTM-RTC shows promise in overcoming the limitations of previously developed ML monitoring
methods, as it can handle high-dimensional multivariate time series (MTS) data with various distri-
butions. However, while these mentioned ML and DL monitoring methods provide favorable results
and address some gaps encountered by traditional monitoring methods, both monitoring methods
have limitations. The ML-based methods mentioned above struggle with monitoring high-dimensional
datasets and tend to have relatively larger ARL1 values for various datasets. Similarly, the LSTM-RTC
is unsuitable for monitoring small datasets and demonstrates relatively larger ARL1 values for high-
dimensional datasets. For instance, the LSTM-RTC is not applicable for monitoring datasets with less
than 10,000 instances in the 10-dimensional and less than 100,000 instances in the 100-dimensional
dataset.

This study proposed a new monitoring method called GRU-RF-RTC, which combines a stacked
Gated Recurrent Unit (GRU) and Random Forest (RF) with Real-Time Contrast (RTC) to address the
research gaps encountered by the existing methods. The GRU-RF-RTC approach involves extracting
features using GRU and feeding them into an RF classifier for binary classification. GRU is highly
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effective in feature extraction, while RF is a robust and interpretable algorithm commonly used for
classification tasks. The combination of GRU and RF allows automatic feature extraction from small
and large raw datasets without overfitting and well classification, leveraging the respective strengths
of each algorithm. Using RF as a final output layer in a binary classification task provides better
classification results. The GRU-RF-RTC is scalable and can handle various data volumes. Its parallel
processing capabilities improve its performance in dealing with large volumes of datasets. The model
also incorporates preprocessing steps to handle various data varieties. As a deep learning component,
GRU excels at capturing complex patterns within sequences, thereby addressing the challenge of
handling multivariate time-series data [4,15,16]. This makes the model versatile in adept data with
temporal dependencies. The robustness of RF against various data distributions enables it to handle
various distributions and operates well with balanced and imbalanced datasets [11,17]. RF mitigates
the risk of overfitting for specific data distributions by utilizing multiple decision trees [17,18] and is
insensitive to the values of the number of randomly selected variables [17,19]. Also, the RF adapts
to varying data distributions by assigning appropriate weights to features using feature importance
during the classification process. As a result, in monitoring the process, there is no required to find the
optimal hyperparameters for new incoming real-time data. These properties make RF handle various
scales among variables and perform well even if outliers exist [17]. The RTC part enables continuous
monitoring of manufacturing processes. It evaluates incoming data against predefined thresholds
and triggers alerts if it crosses the threshold [4], which ensures robustness in dynamic manufacturing
environments [17]. Compared to existing methods such as RF-RTC and LSTM-RTC, the GRU-RF-
RTC approach quickly detects process changes in small and large datasets of various dimensions. The
main contributions of this paper are:

• A new real-time contrast process monitoring model based on a stacked Gated Recurrent Unit
and Random Forest (GRU-RF-RTC) was proposed to detect process shifts quickly.

• The proposed monitoring is able to increase detection accuracy across various data volumes
and data varieties.

• For each data volume, dimension, and distribution, this proposed model reduced the ARL1

values compared with the previous works and addresses the limitations that couldn’t be achieved
by existing ML and DL-based monitoring methods.

The proposed GRU-RF-RTC model was tested on the synthesized and real-world datasets,
including multivariate normal and non-normal production process problems. The proposed model
was compared with RF-RTC [11], LSTM-RTC [4], and GRU-RTC. The experiment results show that
the proposed GRU-RF-RTC has promising performance against benchmark methods. Similarly, other
ML algorithms are also possible to use. In this study, researchers demonstrate the possibilities of using
the combinations of DL and ML for process monitoring.

2 Literature Review
2.1 Machine Learning (ML) Application in Manufacturing

In literature, ML algorithms have been employed to continuously collect production data and
process it in order to enhance manufacturing performance. These algorithms enable extracting
predictive insights, identifying complex manufacturing patterns, and providing a foundation for an
intelligent decision support system [20]. ML finds applications in various manufacturing activities,
including intelligent inspection, predictive maintenance, prediction, quality improvement, process
monitoring and optimization, production planning, supply chain management, and job scheduling
[21]. ML algorithms have been utilized to monitor intelligent manufacturing processes, such as the
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semiconductor manufacturing process, with results indicating that the proposed model outperforms
other methods [22]. Similarly, ML algorithms have been utilized to monitor and predict the conditions
of machinery in manufacturing industries [23]. For example, ML algorithms have been employed
to monitor multistage manufacturing systems and have shown promising results [24]. Clustering
and auto-encoders were used for fault detection and diagnosis of industrial processes [25]. Zermane
et al. [26] used an RF algorithm to monitor the cement production process, demonstrating strong
performance in real-time classification, fault detection, and monitoring of production status. In
another study, RF was applied to monitor product quality [27], and the result revealed the performance
of the proposed model. RF and k-mean clustering were also utilized for monitoring the additive
manufacturing process [28].

In addition, an SVM has been used for quality monitoring and prediction in the abrasion-resistant
material manufacturing process [29] and real-time process monitoring in the automotive industry [30].
One-class SVM (OC-SVM) has been employed to monitor system conditions, showing promising
results [31]. In another study, SVM was used to monitor the production process, demonstrating the
effectiveness of SVM in monitoring systems [32]. Similarly, a cost-effective SVM was designed for
real-time quality monitoring of the manufacturing process in the automotive industry, providing
promising results compared to traditional methods [33]. SVM was also applied for real-time tracking
and monitoring of product quality in the manufacturing process, showing the performance of the
proposed method [34].

Generally, as shown in the literature above, various ML algorithms have been employed in
manufacturing process monitoring (MPM). To measure and compare the performance of various
MPM models, researchers have employed different evaluation metrics, including mean square error
(MSE), mean absolute error (MAE), and ARL1. The ARL1 is commonly used as a comparison base
to evaluate the model’s performance in the MPM domain. For instance, Wei et al. [35] used ARL1

as a comparison base to assess the performance of the kernel linear discriminant analysis (KLDA)
MPM method. Similarly, Jang et al. [17] utilized the ARL1 to measure the performance of the MPM
method developed using RF with variable importance and novelty detection. Shin et al. [36] compared
an MPM chart using weighted voting with an RF, evaluating F-measure (FWRF), G-mean (GWRF),
and Matthews correlation coefficient (MWRF) using ARL1. In these comparisons, a lower ARL1 is
preferred while keeping the average in-control run length (ARL0) constant (ARL0 = 200).

By using these evaluation metrics and comparing the ARL1 values, researchers can determine the
effectiveness of different MPM models in detecting and controlling out-of-control conditions while
maintaining a consistent level of in-control performance. The choice of ARL1 as a comparison base
reflects its significance in assessing the performance of MPM models and guiding decision-making
in real-world manufacturing settings. Similarly, this study utilized the ARL1 value to evaluate the
proposed model performance.

2.2 Deep Learning Application in Manufacturing

Deep learning (DL) has become an integral part of manufacturing, helping to improve produc-
tivity by integrating many systems, monitoring the entire production process, and reducing overall
production costs using data collected via various devices and sensors. As a result of its capabilities,
DL has become the focus of many researchers and business owners to process, analyze, predict, and
handle big manufacturing data characterized by high volume, high velocity, and wide variety [37].
For instance, Rama et al. [38] used DL to predict and monitor production processes, which showed
promising results compared to traditional methods. A hybrid DL with improved singular spectrum
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decomposition was employed for multistep forecasting for diurnal wind speed, and the research result
indicates that the method enhances forecasting accuracy [39]. In another study, reference reference [37]
used DL to predict product quality, production, and equipment status using historical and real-time
data, resulting in improved productivity and reduced downtime.

Similarly, Chen et al. [40] used DL for monitoring and predicting tool wear state in real-time, and
it outperforms other methods. Generative adversarial network (GAN) is a well-known DL method
utilized in many applications in manufacturing. For instance, multi-index GAN (MI-GAN) [41], deep
convolutional GAN (DCGAN) [42], and adversarial domain adaptation transfer learning were utilized
to predict the tool wear conditions [43]. These GAN versions provide promising results with higher
accuracy. Chen et al. [44] used DL (Deep Boltzmann Machines, Deep Belief Networks, and Stacked
Auto-Encoders) to detect faults in rolling bearings, and the study provided promising results. A study
by Yan et al. [45] demonstrated that deep order-wavelet convolutional variational autoencoder has
a higher capability to identify faults in rolling bearings in various speed conditions. Their results
showed a significant performance improvement compared to other methods. Furthermore, a deep
belief network was applied to diagnosis failures, revealing that the proposed method outperformed
the state-of-the-art [46]. In another study, a deep regularized variational autoencoder was developed
for fault diagnosis of rotor-bearing systems throughout their life-cycle process [47]. Additionally, a
multiscale cascading deep belief network was applied to detect faults in rotating machinery, and it
demonstrated superior performance compared to benchmark methods [48].

DL also plays a vital role in quality control, especially in modern extensive data-driven manufac-
turing. Lee et al. [49] and Fuqua et al. [50] highlighted the utilization of DL in quality control and
process monitoring. Moreover, DL has been applied in process monitoring, specifically in the context
of directed energy deposition in additive manufacturing using thermal images [51]. The study provides
a promising result that shows the potential application of DL in real manufacturing settings. Long
short-term memory (LSTM) was applied for real-time additive manufacturing monitoring, which
offers favorable results [52]. Yan et al. [53] proposed a multi-domain indicator-based optimized stacked
denoising autoencoder to detect fault patterns in rolling bearings automatically, and the findings
are promising. The integration of DL in quality control and process monitoring demonstrates its
capability to handle complex and high-dimensional manufacturing data. As manufacturing processes
become increasingly data-driven, DL techniques are poised to ensure high-quality products and drive
advancements in modern manufacturing practices.

Gated Recurrent Unit (GRU) is a type of DL introduced by [54] as an improved version of
LSTM with fewer gates. GRU consists of two gates rest gate (rt) and update gate (zt). The rest gate
(rt) is responsible for short-term memory and determines how much the previous state (ht−1) should
remember. The update gate (zt) is responsible for long-term memory, controls the information flow and
determines how much the new state holds a copy of the old state. GRU is easier to implement and takes
less time to execute computation due to its fewer gates. Many studies have shown that, like other DLs,
GRU has been applied in manufacturing applications, such as production prediction and analysis. The
result of the studies revealed that the GRU models outperform traditional methods for predicting and
analyzing production processes [55–58]. Many studies have revealed that the performance of GRU and
LSTM is generally similar [59]. However, some studies indicate that GRU performs better in smaller
datasets, while LSTM is more suitable for larger datasets [60].

In addition, CNN, a type of DL, has also been used in manufacturing using image-based data from
manufacturing operations by various researchers. For instance, a study by [61] was used to monitor
and predict cutting tool life, which gives a favorable accuracy. Kou et al. [62] have also applied CNN
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for monitoring tool conditions using image datasets, demonstrating promising results. However, when
CNN deals with numerical time series data, its performance is dominated by RNN-based models, such
as LSTM or GRU, multiple research studies have proven these facts. For example, according to the
study by Jansen et al. [63], LSTM outperforms CNN in predicting machine failures in manufacturing
processes using multivariate time series data. Zhou et al.’s [64] study also found that the GRU network,
one of the RNN-based models, provides better tool wear monitoring than the CNN network. A
comparison between RNN and CNN was conducted in the predictive monitoring of the business
process, and the results also demonstrated that RNN provides better results than CNN [38]. In another
study by Widiputra et al. [65], a comparison of CNN and RNN-based networks such as LSTM was
conducted and revealed that CNN was worse in prediction accuracy when dealing with numerical time
series data due to its key characteristics, including a high point in feature extraction (high-level feature
extraction). Therefore, as the objective of this study is monitoring the manufacturing process using
multivariate time series datasets that require long-term dependencies, this work focused on sequential-
based models, GRU and LSTM and its comparison.

However, while ML and DL-based methods mentioned above have been utilized in process mon-
itoring and outperformed traditional multivariate monitoring methods, these models face difficulty
in monitoring high-dimensional data and quickly detecting process shifts. Therefore, a fascinating
question arises: If both the mentioned ML and DL-based methods improve process shift detection,
should we consider combining the two? To our knowledge, no previous research has combined ML
and DL in the process monitoring domain. To answer the above research question and address the
current research limitation, we propose a method that combines GRU and RF, with GRU as a feature
detector and RF as a classifier using the features extracted by GRU. We present the details of our
proposed method in the methodology below.

3 Methodology

This paper proposed GRU-RF-RTC, a new real-time contrast multivariate MPM method that
combines stacked GRU and RF. It is designed to detect process shifts quickly in both small and
high-dimensional datasets. The stacked GRU layers progressively learn higher levels of abstraction
[15], capturing complex temporal patterns and enhancing the representation of sequential data.
The deep network structure improves the representation of sequential data and extract important
features [16,66]. Stacked layer exhibits a higher capability to extract features and outperforms a
single layer, especially when dealing with large datasets [67]. This approach leverages the strengths
of GRU in learning temporal dependencies and extracting rich features from sequential data. The
extracted features are then fed into the RF classifier, which utilizes decision trees to identify non-linear
relationships and improve the classification.

The combination synergistically provides hierarchical feature extraction and representation,
enhances classification power, mitigates overfitting, and achieves robustness and superior perfor-
mance. In this model, the stacked GRU layers extract essential features by learning meaningful
representations from sequential data, while RF leverages these features for classification. By har-
nessing the complementary strengths of GRU and RF, this approach enhances feature extraction
and classification accuracy while providing interpretability through feature importance analysis. The
model provides a powerful solution for MPM tasks and demonstrates the potential of combining deep
learning and ensemble learning to enhance the robustness and reliability of the classification model.

Assume Xt = [xt−w, xt−w+1, . . ., xt] be the multivariate batch streaming data generated from a
production machines (process) at timestamp t. This mapping of input data to a sequence of output data
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is performed using consecutive computations defined from Eqs. (1) to (5). The following notations are
listed to define the computations in the GRU gates.

Xt is the current state as a three-dimensional input vector at timestamp t.

ht−1 ht and h̃t are previous hidden state, hidden state and candidate hidden state at timestamp t−1
and t, respectively.

rt and zt are the rest gate and update gate at timestamp t, respectively.

σ is the sigmoid activation function.

Wx and Wh are the weight parameters of current state and hidden state, respectively.

br and bz are the biases of the rest gate and update gate, respectively.

The rest gate rt in Eq. (1) takes the input data Xt from the current input state and ht−1 from the
previous state, and multiply them by their respective weight (Wxr) and (Whr) and adds to the bias (br).
Finally, this result is multiplied by the sigmoid activation function σ . The update gate zt in Eq. (2)
takes the input data Xt from the current input state and ht−1 from the previous state, multiply them by
their respective weight (Wxz) and (Whz) and add to the bias (bz). Then, this result is multiplied by the
sigmoid activation function σ . The candidate hidden state h̃t in Eq. (3), takes the current input state Xt

and multiply by its weight Wxh. The result adds to the product of rest gate rt, previous hidden state ht−1,
and previous hidden state weight Whh and then added to the bias bh. Lastly, this result is multiplied
by the tanh activation function. The hidden state ht in Eq. (4) is determined by the multiplication of
update gate zt and candidate hidden state h̃t plus one minus update gate zt multiplied by the previous
hidden state ht−1.

rt = σ [Xt ∗ Wxr + ht−1 ∗ Whr + br] (1)

Zt = σ [Xt ∗ Wxz + ht−1 ∗ Whz + bz] (2)

h̃t = tanh [Xt ∗ Wxh + [rt ∗ ht−1] ∗ Whh + bh] (3)

ht = Zt ∗ h̃t + ht−1 ∗ (1 − Zt) (4)

The final prediction for a given input sample Xt is based on the majority vote of the predictions
from all the trees in the forest as seen in Eq. (5):

q = mode[f1 (x) , f2 (x) , ...., fT (x)] (5)

where fi(x) is the predicted class label of the ith decision tree for the input sample x.

The proposed GRU-RF-RTC is trying to minimize the binary cross-entropy loss (a.k.a validation
loss), defined in Eq. (6), between the actual output y and monitoring statistics q in real-time classifi-
cation problems. The learning process of the GRU-RF-RTC control chart is performed based on the
repeated iterative training and updating of the network parameters using the errors obtained using
Eq. (6).

Loss = (y) (−log (q)) + (1 − y)(−log (1 − q)) (6)

The objective of the GRU-RF-RTC is to minimize the ARL1. It also means that a model with lower
ARL1 can detect the process shift quickly once the shift happens. In that sense, the performance of the
MPM relies on its quick capability to detect the shift. The more robust the prediction performance of
the GRU-RF-RTC chart, the quicker the process shift detection is. In the literature [4], the LSTM-RTC
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monitoring chart method appeared to have lower ARL1 than ML-RTC, such as the RF- and SVM-
based RTC.

Fig. 1 shows the detailed structure of the proposed model with a dropout layer between the
two GRU layers and an RF layer at the end. The blue boxes and circles in the figure indicate the
gates inside the GRU cells and nodes in RF, respectively. The first GRU layer processes the input
sequence, capturing relevant dependencies and patterns. This layer extracts essential features from the
input sequence, representing the sequential information in a compressed form, and learns long-term
dependencies by incorporating memory and an update gate, capturing relationships between distant
elements in the sequence. The input shape is a tensor of batch size, moving window size, and data
dimension size. This layer captures the relation of the input sequence data and returns as a sequence
of tensor data of batch size, moving window size, and cell size.

Figure 1: GRU-RF-RTC model architecture

The dropout layer between the first and second layers regulates the network and trains the weight
using batch training iteration (by dropping some weights turn by turn from the first layer). This
dropout technique avoids the probability of some weight dominating the other and makes all the
weights trained appropriately. The dropout prevents model overfitting by randomly dropping out a
fraction of the outputs from the previous layer during training and provides good performance, as
explained by [68–71]. This dropout regulation helps the network to learn more robust and generalized
representations. The dropout regularizing process does not change the output between the first GRU
and dropout layers. The dropout’s output is an input for the second GRU layer.

The second GRU layer builds upon the features and representations learned by the first GRU
layer. This layer captures additional dependencies and patterns that might have missed by the first
layer. The second layer performs a deeper level of feature extractions, incorporating the learned
representations from the first layer and further refining them. This layer aids the model can capture
more intricate relationships and dependencies within the sequence, enabling it to learn the hierarchical
data representation and generate more nuanced and accurate predictions. The presence of the second
GRU layer makes the model more effective in capturing information not cached by the first GRU
layer.
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The output of the second layer is flattened and fed to the random forest (RF) classifier. The RF
classifier determines the production process status using the features extracted by the GRU layers as
input. The output of RF is a batch of (bs, n0). As a process monitoring using a binary classification task,
n0 is set to be one, as mentioned in the literature as a convention [4]. If the monitoring result is closer
to one, the production process is more likely to be out of control (shifted), whereas the production is
in control if the result is closer to zero.

The detailed flow process chart of the proposed method is presented in Fig. 2. The data are
collected from the production machines using sensors. The multivariate time series sensor data are
fed into a stacked GRU network based on the specified moving window size. Then, the GRU extracts
important features from these input sensor data and feed them into the RF classifier. The RF classifier
performs classification and displays monitoring statistics indicating whether the process is in-control
or out-of-control. This mapping of input data to a sequence of output data is performed using
consecutive computations defined from Eqs. (1) to (5) above. The process is performed continuously
when a new observation is added to the moving window and for every new data, the model monitor
and examine whether the process is out of control or in control.

Figure 2: Illustration of flow-process chart of GRU-RF-RTC monitoring model

4 Experiments and Results
4.1 Experimental Settings

Control Limit (CL)

To classify the process as either in-control or out-of-control, a detection threshold (control limit)
h is determined for each data value through consecutive simulation, reflecting the production process’s
status. The control limit acts as a threshold level for the GRU-RF-RTC MPM in assessing the
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production status. In order to enhance the monitoring accuracy of the GRU-RF-RTC approach, a
search is performed to find the optimal control limit for each problem. The control limit is crucial for
achieving better detection precision for MPM [4]. The control chart releases a few false alarms when
the system is in-control. However, if the process shifts to an abnormal condition (out-of-control), it
surpasses the CL and generates more false alarms. As mentioned above, the RL1 is the time elapsed
from the occurrence of the process shift until its detection, while the in-control run length (RL0)
represents the duration until a false alarm is triggered. The model’s performance is evaluated based
on the ARL1 determined from a large set of observations. A lower ARL1 value indicates better
performance while maintaining a constant ARL0. The CL is determined by setting ARL0 close to
200 as mentioned in literatures [3,4,11,17].

Hyperparameter Section

The hyperparameters of the combined model (DL and ML) were determined using trial-and-
error procedures without utilizing an optimization algorithm. The hyperparameters were selected
using iterative procedures based on various combinations of hyperparameters and examining model
performance using ARL1 metrics [72]. This iterative technique is executed continuously by adjusting
the hyperparameters until the best configuration that provides minimum ARL1 values is found.

Result Comparison Procedures

This section presents performance comparison procedures using synthesis and real-world datasets
in various volumes, dimensions, and distributions. The comparison was conducted in three stages, as
described below. Firstly, the performance of the proposed model was compared with benchmark meth-
ods using datasets of varying volumes under normal distributions. The objective of this comparison
was to evaluate the effectiveness of the proposed model across different data volumes and assess its
performance relative to the benchmark methods. Secondly, the comparison was conducted based on
data variety under normal distributions. This stage evaluates the proposed model’s ability to handle
diverse data dimensions. By comparing the performance of the proposed model with other methods
across different data varieties, we can gain insights into its strengths and weaknesses.

In addition, the proposed model was tested using a synthesis bivariate gamma distribution
dataset to validate the model performance for non-normal distributions. Thirdly, the comparison was
carried out using real-world datasets to validate and ensure the proposed model’s performance and
applicability in real manufacturing scenarios. These datasets were collected from real-manufacturing
processes and other sources encompassing normal and non-normal distribution. Testing the proposed
model using real-world data enables us to assess its effectiveness and suitability for practical industrial
applications. Through these consecutive comparisons, we aim to comprehensively evaluate the pro-
posed model’s performance and the potential for real-world implementation in manufacturing settings.

To conduct the experiments, researchers utilized the evaluation framework outlined in the
literature [4,17]. In addition, a bivariate gamma problem with δ = 0 to δ = 3 and real-world data: wine
production [73], paper production [5], predictive maintenance [74], and MAGIC gamma Telescope
[75] datasets were used to examine the performance capability of the proposed models from simple to
relatively complex problems. These comparisons used the original parameters settings of RF-RTC and
LSTM-RTC for each benchmarking reference data size: S0 = 1000 for RF-RTC [11] and S0 = 100,000
for LSTM-RTC [4] except for the two real-world data. Also, the reference data size for GRU-RTC and
the proposed GRU-RF-RTC models are set to S0 = 100,000, which is the common data size recorded
by most IoT devices in smart manufacturing [4,5].

The ARL1 is determined using Eq. (7), with N representing the replication number. In this study,
a value of 1000 was chosen for N to ensure consistent results. To assess the variation of RL1, we
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employed the standard error denoted as SE. Statistical testing of the performance difference was
conducted using a 95% confidence interval. To ensure a fair comparison, we set the control limits for
each chart according to conventional standards that achieve an average in-control run-length (ARL0)
of approximately 200 [11].

ARL = 1
N

∑N

n=1
RLr (7)

The process shift of multivariate normal distribution is determined using Eq. (8). In these equa-
tions, μ1 and μ0 represent the mean values of the out-of-control and in-control processes, respectively,
and � denotes the covariance matrix in a p-dimensional multivariate dataset. The process shift,
denoted as δ = √5, implies that the mean values of five variables in the dataset (e.g., 50-dimensional
or 100-dimensional) are shifted by one unit.

δ = √
(μ1 − μ0)′�−1(μ1 − μ0) (8)

The detection improvement of the proposed model is determined in terms of percentage utilizing
Eq. (9). In the equation, A and B represent the best benchmark and best proposed ARL1 values, respec-
tively. The percentage improvement shows an improvement in shift detection. This improvement (quick
shift detection) reduces production interruption and the possibility of producing defective products.
This quick process shift detection capability reduces waste of materials and rework costs and enhances
resource optimization. These processes ensure quality control and efficiency of manufacturing systems,
contributing to a more effective and competitive manufacturing environment.

Improvement (%) = A − B
A

∗ 100 (9)

4.2 Result on Synthesis Data

This section compares the results obtained using different data volumes for 10- and 100-dimension
and constant volumes for different data dimensions of synthesis normal distribution problems.

4.2.1 Results on Multivariate Data Volumes

The comparison between the proposed GRU-RF-RTC model and benchmark methods is pre-
sented in Table 1. As seen from the table, the stability of the LSTM-RTC model is compromised when
dealing with data volumes below 10,000 in the 10-dimensional case and below 100,000 in the 100-
dimensional case. Although RF-RTC and GRU-RTC exhibit stability across most data volumes in
both dimensions, they yield higher ARL1 values. Conversely, the GRU-RF-RTC model consistently
performs well across different data volumes and dimensions, surpassing all benchmark models in all
problem scenarios. Its exceptional performance highlights its ability to handle diverse data volumes
and dimensions effectively.

Table 1: Comparison of ARL1 based on different data volumes and dimensions in 5-shifts

10-dimension 100 500 1000 5000 10000 50000 100000 200000

RF-RTC [11] 9.275 8.811 6.840 6.260 6.840 7.188 7.304 7.458
LSTM-RTC [4] – – – – 5.180 4.423 3.180 3.682

(Continued)
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Table 1 (continued)

GRU-RTC (this work) 2.855 5.291 7.464 6.346 4.668 5.358 3.262 4.337
GRU-RF-RTC (this work) 2.483 2.514 2.681 2.715 2.616 2.628 2.464 2.713

100-dimension 100 500 1000 5000 10000 50000 100000 200000

RF-RTC [11] 10.648 8.440 8.260 6.969 7.615 9.809 9.969 10.163
LSTM-RTC [4] – – – – – – 4.290 3.511
GRU-RTC (this work) – – – 8.943 10.281 9.167 4.928 4.220
GRU-RF-RTC (this work) 2.593 2.718 2.788 2.888 2.909 2.951 2.782 2.901

4.2.2 Results on Multivariate Data Varieties

In this section, comparisons were conducted based on data variety. Table 2 presents the com-
parison results of the proposed and benchmark methods for different dimensions (10, 50, and 100)
with shifts of 5 and 10. The results indicate a significant variation between the ARL1 values of the
proposed and benchmark models, which reveal that GRU-RF-RTC outperforms benchmark methods
for monitoring the manufacturing process under various dimensional problems.

Table 2: Experimental results on various dimensional multivariate normal problems

10-Dimensional
δ = √0 δ = √5 δ = √10

h ARL0 SE ARL1 SE ARL1 SE

RF-RTC [11] 0.51 202.16 6.03 6.84 0.06 6.37 0.03
LSTM-RTC [4] 0.45 200.32 3.78 3.51 0.04 3.18 0.02
GRU-RTC (this work) 0.46 201.6 3.25 3.26 0.03 3.05 0.02
GRU-RF-RTC (this work) 0.45 201.13 3.12 2.46 0.02 2.35 0.02

50-Dimensional
δ = √0 δ = √5 δ = √10

h ARL0 SE ARL1 SE ARL1 SE

RF-RTC [11] 0.55 198.68 6.49 7.48 0.07 6.31 0.06
LSTM-RTC [4] 0.47 200.85 3.97 3.84 0.04 3.58 0.03
GRU-RTC (this work) 0.49 202.21 2.71 4.18 0.03 3.89 0.03
GRU-RF-RTC (this work) 0.45 200.73 3.78 2.67 0.02 2.42 0.02

100-Dimensional
δ = √0 δ = √5 δ = √10

h ARL0 SE ARL1 SE ARL1 SE

RF-RTC [11] 0.50 201.42 6.69 8.26 0.08 6.51 0.06
LSTM-RTC [4] 0.51 201.13 3.59 4.29 0.04 3.91 0.03
GRU-RTC (this work) 0.55 199.12 2.39 5.92 0.03 3.25 0.03
GRU-RF-RTC (this work) 0.45 200.73 3.78 2.78 0.02 2.65 0.02
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4.2.3 Results on Multivariate Gamma Datasets

In this subsection, the performance of the proposed method on a multivariate non-normal dataset
is presented. The data for in-control gamma distribution is generated with a shape parameter 1 and
rate parameter 1. On the other hand, for out-of-control, the shape parameter is kept at 1, and the rate
parameter is varied to simulate the mean and variance shifts. Six different shift amounts (λ = 0.5, 1,
1.5, 2, 2.5, and 3) are considered, which uniformly shift all variables. The process shift increases as the
rate parameter decreases. For this, a moving window size of 10 is set. The procedure follows the same
method used by [14], which was previously investigated by [17].

Table 3 compares the proposed method with the existing methods. The ARL1 and SE in the
column show each model’s average run length and standard deviations, respectively. The table
highlights that the GRU-RF-RTC method outperforms the benchmark method, as the boldface shows.
The GRU-RF-RTC method consistently achieves lower values of ARL1 and SE for all types of process
shifts. These results demonstrate that the GRU-RF-RTC model is highly effective in detecting process
shifts early and significantly reduces the ARL1 value, regardless of the magnitude of the shift in the
gamma distribution cases. Also, the findings indicate that the proposed GRU-RF-RTC method is not
only valuable for monitoring normal distribution but also it is an excellent process monitoring model
for gamma distribution cases as well.

Table 3: The comparison of ARL1 and SE for the proposed and benchmark methods on a bivariate
gamma dataset

GRU-RF-RTC
(h = 0.6)

GRU-RTC
(h = 0.7)

RF-RTC
(h = 0.69)

LSTM-RTC
(h = 0.62)

δ ARL0 SE ARL0 SE ARL0 SE ARL0 SE

0 200.74 3.23 199.5 8.72 200.38 8.91 201.89 3.29
0.5 4.65 0.15 4.79 0.20 20.96 1.51 22.1 0.8
1.0 2.38 0.07 4.10 0.10 7.83 0.17 7.8 0.2
1.5 2.29 0.06 2.66 0.07 6.58 0.15 3.7 0.1
2.0 1.74 0.04 1.98 0.05 5.95 0.13 3.0 0.1
2.5 1.71 0.04 1.82 0.04 5.48 0.12 2.5 0.1
3.0 2.17 0.03 2.70 0.04 5.18 0.12 2.2 0.1

4.3 Results on Multiple Real-World Datasets

To evaluate the performance of the proposed method, we conducted tests using both real-world
normal and non-normal datasets. We utilized wine production, purple production, and predictive
maintenance datasets for normal distribution cases. On the other hand, for non-normal distribution
cases, we employed the Cherenkov gamma ray telescope. The findings for each case study are presented
in the following section.
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4.3.1 Real-World Datasets

Wine Production Datasets

The comparison of ARL1 value using the wine dataset between the proposed GRU-RF-RTC and
the benchmark models is presented in this section. As studied by [76], the quality indexes of wine are
converted into a binary classification. The classification is categorized as good if the index is 7 and
above; else classified as bad if the index is 6 and below. The dataset has 4898 instants with 11 variables.
The Z scale normalization was used to normalize the datasets.

Paper Production Dataset

The usage of chemicals, pulp fiber, and other process variables (blades, rotor speed) was recorded
by sensors in paper production lines for continuous monitoring of paper breakage. The dataset consists
of 18,398 data samples with 61 features. The data were normalized using Z-scale normalization.
Detailed information regarding this dataset is available in [5]. From the dataset, 13,398 instances were
set as the training set, while 5000 instances were used for validation. Similarly, S0 was considered ref-
erence data from the training data. The validation dataset was employed to evaluate the performances
of the proposed and benchmark methods and determine the control limit.

Predictive Maintenance Datasets

A real-world predictive maintenance dataset was used to evaluate the model’s performance in
detecting machine failure occurrences while the machine is working. The objective is to detect machine
failures as quickly as possible, which is similar to detecting changes in the production process. The
predictive maintenance dataset used in the experiments consists of 10,000 data points with 6 features.
The data were normalized using z-score normalization before experimenting. The details about the
dataset are available in the UCI machine learning repository [74]. First, the dataset was divided into
training (7500 data instances) and validation (2500 data instances). The S0 was taken from the training
dataset, and the threshold levels (CL) were determined using the validation dataset. Then, the model’s
performance against the benchmark was evaluated through consecutive experiments.

Multivariate Non-Normal Datasets

A real-world data from the Cherenkov gamma ray telescope was used for evaluating the proposed
GRU-RF-RTC. The data contains 19020 samples, from which 6688 hadron events and 12,332 are
gamma events with 10 Hillas parameters (attributes), which are Length, Width, Size, Conc, Conc1,
Asym, M3Long, M3Trans, Alpha, and Dist. The data is available publicly in the UCI machine
learning repository in the name of MAGIC Gamma Telescope [75]. The study aims to classify
gamma particles (signal) from the images of hadronic showers initiated by cosmic rays in the upper
atmosphere background. Previously, researchers used this data in outlier detection [77,78] and process
shift detection [17]. In this study, the gamma events are considered reference data, and the hadron
events are a shift.

4.3.2 Results on Real-World Datasets

The summary of the analysis of the three real-world problems mentioned above (wine, paper,
and predictive maintenance) is presented in Table 4. As can be seen, the proposed GRU-RF-RTC
detects the process shift quicker than the benchmark methods. In predictive maintenance problem,
quicker detection means it catches the machine failures as quickly as possible when it occurs. Based on
this understanding, the result indicates that the GRU-RF-RTC method detects machine failure faster
than the benchmark methods. This shows the proposed method is critical in monitoring the machine’s
condition and manufacturing process.
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Table 4: Experimental results on real-world production datasets

Wine production dataset h ARL0 SE ARL1 SE

RF-RTC [11] 0.81 195.48 13.38 8.48 1.12
LSTM-RTC [4] 0.62 201.16 11.14 3.91 0.12
GRU-RTC (this work) 0.68 201.14 1.52 3.00 0.02
GRU-RF-RTC (this work) 0.68 201.14 1.52 2.44 0.02

Paper production dataset h ARL0 SE ARL1 SE

RF-RTC [11] 0.43 199.1 1.32 4.60 0.02
LSTM-RTC [4] 0.40 201.2 1.27 2.92 0.03
GRU-RTC (this work) 0.56 200.08 5.13 2.30 0.02
GRU-RF-RTC (this work) 0.56 200.08 5.13 2.00 0.02

Predictive maintenance dataset h ARL0 SE ARL1 SE

RF-RTC [11] 0.74 203.1 1.3 5.10 0.02
LSTM-RTC [4] 0.70 201.1 1.11 4.50 0.03
GRU-RTC (this work) 0.72 199.1 1.15 3.20 0.02
GRU-RF-RTC (this work) 0.72 199.1 1.15 2.20 0.02

For the result of multivariate non-normal datasets, as can be seen from the normal Q-Q Fig. 3
below, the data is not the multivariate normal distribution. The experiment was conducted by taking
13,000 data from gamma events as reference data and 5000 from hadron events as a shift. Table 5
presents the detection performance of the GRU-RF-RTC against benchmarks. The results indicate
that GRU-RF-RTC outperforms the benchmarks in detecting shifts. So, the proposed GRU-RF-RTC
is also critical for monitoring non-normal distribution problems, which are common in manufacturing
processes.

4.4 Discussion

This study compared the proposed GRU-RF-RTC model with benchmark methods, including
RF-RTC, LSTM-RTC, and GRU-RTC, on synthesized MTS datasets with normal and gamma
distributions. Additionally, we evaluated the model’s performance on real-world datasets, such as wine
and paper production cases, a predictive maintenance problem, and the MAGIC Gamma Telescope
dataset. The experimental results demonstrate that the GRU-RF-RTC model outperforms all the
benchmarks in terms of quicker process shift detection as indicated by smaller ARL1 values. This
superiority can be attributed to the combined effect of GRU’s capability in feature extraction and
the robustness of RF in classification. In the literature, machine learning (ML) methods such as RF-
RTC [11] and deep learning (DL) methods such as LSTM-RTC [4] have shown better performance
in shift detection compared to traditional monitoring methods. However, previous studies have not
explored the combined application of the mentioned ML and DL methods in process monitoring.
This study aims to showcase the synergistic effects of RF and GRU to enhance the performance
of manufacturing process monitoring methods. The results presented in Tables 1–5 demonstrate the
superior performance of the GRU-RF-RTC method compared to the benchmark methods in promptly
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detecting process shifts from normal operating conditions. Specifically, the proposed GRU-RF-RTC
method enhances the detection capability by 42.14% in normal and 43.64% in gamma distribution
cases.

Figure 3: Normal Q-Q plots for various variables at gamma events in the MAGIC gamma telescope
data

Table 5: Experimental results on gamma datasets

h ARL0 SE ARL1 SE

RF-RTC [11] 0.7 202.2 1.4 4.7 0.02
LSTM-RTC [4] 0.8 198.9 1.2 3.4 0.02
GRU-RTC (this work) 0.7 200.8 0.8 2.5 0.02
GRU-RF-RTC (this work) 0.7 201.1 0.8 2.0 0.01

The time complexity of the proposed model is described in terms of Big-O notation. In GRU, the
complexity depends on the input sequence length N, input dimension D, units in the first M, and units
in the second layers P of GRU [79–81], while RF depends on the number of trees T, the number of
samples in dataset M, and the number of features in dataset F [82,83]. Therefore, the time complexity of
the proposed hybrid model can be approximated as the time complexity of the summation of the GRU
and RF as seen in Table 6. Obviously, the proposed hybrid GRU and RF have more time complexity
than GRU and RF individually. However, the proposed model achieved higher performance in terms
of ARL1 and SE.
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Table 6: Time complexity of the proposed model

Model Time complexity in Big O notation

Random forest (RF) [82,83] O (T ∗ M ∗ log(M) ∗ F)
GRU only [79–81] O (NM∧2 + NMD + NP∧2+ NDP)
The hybrid model of GRU and RF O (NM∧2 + NMD + NP∧2+ NDP + TMFlog(M))

The application of DL and ML is common in manufacturing. Also, the GRU-RF-RTC is
compatible with standard manufacturing software and hardware systems because various software
has been developed in the past and applied in manufacturing systems. For example, a Manufacturing
executive system (MES) is one of the software integrated with DL and ML in a manufacturing system
[84]. In this, ML is integrated into multi-agent MES for anomaly detection. In addition, various
graphical user interfaces (GUI) [85] are suitable for interacting with practitioners with various DL and
ML. This GUI can simplify data input, model configuration, and result interpretation. For instance,
WEKA and Orange are typical GUI tools that provide an integrated environment with an interactive
interface used for data mining and visualizations [86]. Also, the proposed model used automated data
preprocessing, such as data cleaning, feature extraction, and scaling, which avoids manual work [86].
These properties make the proposed model user-friendly.

DL and ML played significant results in manufacturing applications. However, they encounter
challenges when applied in real manufacturing scenarios. The model required powerful computational
resources such as hardware, regular model updating, continuous training to acquire the required
knowledge regarding data analysis, availability of data quality, and access and feeding real-time data
into the model with the compatibility of typical data acquisition systems [87].

5 Conclusion

This research proposed a new MPM method combining GRU and RF to monitor and detect
process shifts quickly. The proposed method leverages the strengths of both GRU and RF. GRU is
utilized for feature extraction, and the extracted features are then fed to RF for classification. GRU is
highly effective in extracting features, while RF is a robust and interpretable algorithm commonly used
for classification tasks. By combining GRU and RF, the proposed model enables automatic feature
extraction from small and large datasets without overfitting, resulting in accurate classification and
enhanced robustness in detecting changes in the production process.

The robustness of the monitoring model is essential for maintaining the system’s reliability. The
proposed method was tested using multivariate synthesis and real-world problems with normal and
non-normal data distributions. The proposed model demonstrates quicker process shift detection with
smaller ARL1 values than existing methods. The GRU-RF-RTC method improves detection time
and can be applied to monitor datasets of any size, addressing a research gap in previous work.
Significantly, the combination of GRU and RF enhances the model’s robustness in monitoring and
quick detection and enables it to handle datasets of any distribution, variety and size. The results
indicate that the proposed GRU-RF-RTC model enhances shift detection by 42.14% in normal
distribution problems and 43.64% in gamma distribution problems.

Based on the experimental result, researchers showcased the effectiveness of the GRU-RF-RTC
in multivariate process monitoring under normal and gamma distribution cases. Further study can be
conducted to investigate the performance of the proposed model in other types of data distribution,
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such as Poisson and t-distribution. Although the proposed method is effective in multivariate process
monitoring, a follow-up study can be extended to demonstrate its detection capability on other process
monitoring methods, such as the exponentially weighted moving average (EWMA). Additionally,
exploring and validating the combination of other deep learning and machine learning classifiers for
MPM applications would be an interesting avenue for research. Moreover, exploring the potential of
process monitoring using the image-based encoding of time series data is worthwhile. The trade-off of
model accuracy and complexity can be studied for algorithm efficiency. Last but not least, extending
the application of this model to other domains would be a valuable extension of the research.
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