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ABSTRACT
Due to the increasingly severe challenges brought by various epidemic diseases, people urgently need intelligent
outbreak trend prediction. Predicting disease onset is very important to assist decision-making. Most of the exist-
ing work fails to make full use of the temporal and spatial characteristics of epidemics, and also relies on multi-
variate data for prediction. In this paper, we propose a Multi-Scale Location Attention Graph Neural Networks
(MSLAGNN) based on a large number of Centers for Disease Control and Prevention (CDC) patient electronic
medical records research sequence source data sets. In order to understand the geography and timeliness of infec-
tious diseases, specific neural networks are used to extract the geography and timeliness of infectious diseases. In
the model framework, the features of different periods are extracted by a multi-scale convolution module. At the
same time, the propagation effects between regions are simulated by graph convolution and attention mechan-
isms. We compare the proposed method with the most advanced statistical methods and deep learning models.
Meanwhile, we conduct comparative experiments on data sets with different time lengths to observe the predic-
tion performance of the model in the face of different degrees of data collection. We conduct extensive experi-
ments on real-world epidemic-related data sets. The method has strong prediction performance and can be
readily used for epidemic prediction.
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1 Introduction

Infectious diseases so far are still one of the diseases that seriously endanger human health [1,2].
Especially in recent years, various new infectious diseases have emerged, such as Corona Virus Disease
2019 (COVID-19) [1], severe acute respiratory syndrome, and highly pathogenic avian influenza [2].
Therefore, it poses a higher challenge to the prevention and control of infectious diseases in the 21st century.

However, it is difficult for doctors to determine the outbreak trend of infectious diseases in a region
through limited data. One reason is that the case data and information between different hospitals are
usually not shared, so less data is used for analysis [3]. Another reason is that accurate outbreak trend
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prediction requires considerable clinical expertise and years of experience [4]. For some emerging infectious
diseases, it is challenging for doctors to predict the outbreak trend. In the regions and countries where expert
doctors are lacking, human predictions are difficult to meet the needs of disease surveillance. In addition, the
security of medical data sharing is also challenging [3].

Therefore, for infectious diseases such as influenza, it is urgent to build an intelligent outbreak prediction
method. Early prediction of infectious diseases provides the best opportunities for timely intervention and
resource distribution [5]. It not only helps the health care department to prepare the corresponding
vaccine in time but also would alleviate the financial burden. In addition, it is possible to predict whether
the incidence of infectious diseases has reached the highest point so that the auxiliary policy can be
dynamically adjusted.

However, most models [6–14] require a large number of multivariate data sets to train, but the data of
various hospitals are often not sufficient. In addition, information such as weather, and geography is not
integrated with the data set of the Centers for Disease Control and Prevention. On the other hand,
because of the privacy of the patient’s medical record, the data between hospitals usually do not make
unified standardization and are also not allowed for information sharing.

Recently, some researchers [15–18] have attempted to use time-series data to predict. For instance,
IeRNN [16] simulates time information by propagating the power model. And Long Short-Term Memory
(LSTM) [19,20] is used to extract space information. However, there is still no sufficient consideration of
time and spatial properties enhanced predictions.

� Therefore, such a research challenge remains: how to use a small amount of data to predict the
incidence of infectious diseases in different regions? In this paper, we propose the MSLAGNN. In
summary, it contributes to the community in the following aspects.

� We propose a depth learning framework that combines graph neural networks with attention
mechanisms. Based on the time and space of infectious diseases, the model is used for the
prediction of infectious disease incidence.

� We conduct morbidity prediction experiments in patients with infectious diseases such as epidemic
colds and Hand-Foot-Mouth Disease (HFMD). The results show that this method is better than the
baseline method under the evaluation indicator, especially when the processing data is set. In
addition to the popular cold, in order to verify the applicability of different clinical tasks on
different data sets on different data sets, we also predict the incidence of hand and foot disease. A
large number of experiments show that the prediction of the disease monitoring and the number of
incidences can be conducive to judging the risk and explosive period of infectious diseases.

� As proof of this framework to assist in infectious disease monitoring, we also build an interface for the
short-term forecast of infectious diseases, which can reveal the number of new diseases in various regions.

The remainder of this paper is organized as follows. Section 2 reviews machine learning and depth learning
methods recently predicted in infectious diseases. In Section 3, the problem and model prediction targets for
this paper are set forth. Section 4 introduces the analysis method for designing predictive models.
Section 5 shows and discusses the results of the experiment. Section 6 concludes the paper.

2 Related Work

2.1 Infectious Disease Prediction

In many studies, the number of infectious diseases predictions is expressed as a time series regression
problem, wherein the self-return model is widely used. Qi et al. [7] adopted a SARFIMA model that
simultaneously considers short memory and a long memory for hemorrhagic fever complicated with renal
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syndrome (HFRS) sequences to fit and predict. In addition, the propagation of the dynamic model of
infectious diseases is predicted. Wang et al. [8] expanded the classic standardized incidence ratio (SIR)
model of infectious disease propagation to consider the time-dependent parameters, including diffusion
rates. Time-dependent explains the changing characteristics of the detection, quarantine, and treatment
regimen, and the diffusion rate contains the floating population. Zou et al. [9] proposed a new epidemic
model (SUEIR) to predict the spread of new crown viruses-19, including the diagnosed cases and death
cases at the US and state levels. It considers the unpredictable/unreported COVID-19 cases and training
through the machine learning algorithm based on the historical data report.

2.2 Infectious Disease Prediction Based on Deep Learning

Due to the lack of reporting and delay, it is difficult to take action on infectious diseases. Recently, in
consideration of large data forecasting, infectious diseases are predicted by optimizing the parameters of
the depth learning algorithm. When three infectious diseases are predicted in the next week, Chae et al.
[4] compared the performance of the depth neural network (DNN) and LSTM learning model and self-
regression integrated mobile average (ARIMA) learning model. The prediction method based on deep
learning is more excellent.

Ma et al. [10] proposed a migration learning framework DistCare, which utilizes existing public online
electronic diseases to improve the prognosis of new infectious diseases in hospitals. It learning to embed new
crown virus-related medical characters based on a large number of existing electronic medical records.
Through imitation teacher model, more comprehensive learning data. In addition, there is a model to
relies on more diverse data to achieve higher precision rates. SAAIM [11] uses multi-source electronic
data, including the history of China’s Chongqing influenza disease, weather data, Baidu search index, and
Sina Weibo data to predict the Chongqing influenza-like illness (ILI). Retrospective transverse surface
regression analysis evaluation temperature and relative humidity on new crown virus-19 cross-community
spread. However, such multivariate data is difficult to accurately acquire and has limitations.

2.3 Space-Time Prediction

Time and space prediction (such as people flow forecast) is of great significance in intelligent urban
applications such as urban planning, intelligent transportation, and public safety. The large death case
data behind infectious diseases indicates the importance of infectious diseases protection and prediction.
At the same time, the occurrence and spread of infectious diseases have strong geographical and
timeliness, for example, influenza will run periodically in a certain region. Nuraini et al. [15] proposed a
SiQRD model that predicts the spatial and space evolution of Germany in the resolution of the county
and the city and accurately predicts the accumulated infection and death of each county. On the other
hand, some researchers consider the time characteristics and spatial features of infectious disease
propagation and then combine the two features. Li et al. [16] developed an integrated time and space
model based on epidemic differential equation (SIR) and recursive neural network (RNN). The former is
simplified and discrete is a compact model of a regional time infection trend, and the latter is the most
recent neighbor area, impact model. The latter captures potential spatial information. Deng et al. [17]
designed a chart nerve network based on the intersection, combined with graphical structures (such as
geographic location) and time sequence features (such as time series) during dynamic propagation, for
learning embedded in long-term ILI prediction time series.

3 Problem Formulation

Many infectious diseases spread fast, and they need to monitor the number of people in the hospital. In
addition, due to the characteristics of infectious diseases, the number of patients increases during the peak
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period, and the hospital’s medical resources are not necessarily sufficient. It is predicted that the number of
incidents in various regions can help assess the peak period of the disease in the peak period in order to make
a response measures. In addition, it is also crucial to hospital scheduling and resource management. We
officially define our research issues and provide a list of symbols used in MSLAGNN in Table 1.

We obtain the patient’s electronic medical record through the local disease control center. Extracting the
number of incidence of time sequences per day in N-regions, performing input time sequences in T size,
for example, a set of time sequences in the n1 region fxn1; 1, xn1;2, � � �g. The source data set is used as
the model input, and the model outputs the prediction result fŷn1; 1, ŷn1;2, � � �g which indicates the
number of incidences after d days in the region N.

4 Method

MSLAGNN studies a sequence source data set based on a large number of disease control center patient
electronic medical records. To learn the geographical and timeliness of infectious disease spread, use specific
neural networks to extract the geographical and timeliness of infectious diseases, respectively. Fig. 1 shows
the proposed MSLAGNN framework, which contains three key steps:

� Model framework results from different time cycles by extended convolution model.

� The model framework extracts the spatial relevance between the regions through the RNN and
attention mechanism and uses the extension convolution model to get the characteristics of
different time cycles.

� Each region is used as a node and then integrates the characteristics through the message passing of
the common network.

Table 1: Notations used in MSLAGNN

Notation Definition

xi;t Number of cases of region i at time t on the source dataset

yi;t Prediction results of region i at time t on the source dataset

ŷi;t Real results of region i at time t on the source dataset

A0 Initial weight matrix of attention

A Cross weight matrix of attention

T Model input window size

N Total number of regions on the source dataset

D The model predicts the number of cases after D days

W Weight parameters for intermediate states and hidden layers

h Super parameter of hidden layer state

b Bias corresponding to each layer of the neural network

it; ft; gt An intermediate value of the LSTM model
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4.1 Multi-Scale Time Feature Learning

Due to the accumulation of susceptible people, certain infectious diseases often have periodic
prevalence. For example, due to the climate, it is easy to breed some influenza viruses in China, and
among patients during the winter and spring season are more. Therefore, it is possible to predict the time
characteristics of infectious diseases. This work [21] demonstrated the effectiveness of expansion
convolution to extract image local mode. Therefore, this article is used to draw on the model of AdaCare.
AdaCare demonstrates the excellent ability to capture long-term trends and short-term abnormal changes
in biomarkers. In this module, the expanded convolution module extends, and the multi-scale receiving
domain is extended by a plurality of parallel consolidation branches, with the same filter size and peak,
but different expansion rates k1, k2, …, K. In the framework of this article, the source data set
fxn1; 1; xn1; 2; � � �g is input to the multi-scale convolutional neural network (CNN) module, and the
features on different time scale are extracted, such as feature every 7 days or every 30 days. From
mathematics, the extended convolution is applied to the convolution of the input of the definition gap,
and the convolution can be expressed as:

ds½i� ¼
XL

l¼1
xs½iþ k � l� � c½l� (1)

Xj is the time series of the j area in X source data. hj is the feature vector output of the corresponding
module. Each convolution filter has a different K. And L is the length of the convolution filter. In
addition, L � K must not exceed the maximum value of the input window T, and b represents the volume
filter here. h represents the time characteristics of each region itself at different periods, and will also be
used as input for the map volume module.

4.2 Space Attention Learning

The epidemic of infectious diseases is usually geographically. While considering the popular relevance
between adjacent regions, we consider whether there is no correlation between infectious diseases without
adjacent regions. This is due to the current convenience of transportation and the climate, the range of
personnel flows is more increased, and the infectious disease infection is also expanded. In this paper, we
extract spatial correlation characteristics in two steps.

First, the LSTM neural network is used in the characteristics extraction of each region, and the effect of
LSTM achieves excellent results in this work. This article uses a modified LSTM neural network. Each row
of source data x is input into LSTM, which extracts the characteristics of the j area at each time node.
Mathematically, the LSTM extraction process:

it ¼ rðWiixt þ bii þWhiht�1 þ bhiÞ (2)

ft ¼ rðWif xt þ bif þWhf ht�1 þ bÞ (3)

gt ¼ tanhðWigxt þ big þWhght�1 þ bhgÞ (4)

Figure 1: MSLAGNN model frame map
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ot ¼ rðWioxt þ bio þWhoht�1 þ bhoÞ (5)

ct ¼ ft � ct�1 þ it � gt (6)

ht ¼ ot � tanhðctÞ (7)

where ht indicates that the hidden layer is in the T hour. it, ft, gt are the outputs of the input gate, forget gate,
and unit gate in LSTM, respectively, and the three are the intermediate state of the module.Ot is the output of
the model LSTM, that is, the popular feature of the t. Xt represents the number of incidents in t,W, and b is a
hyperparameter of LSTM.

In the study, the attention mechanism explains the relationship between regions. The correlation between
the various regions is studied by the resulting intermediate state hi. The weight matrix A is as follows:

aij ¼ reluðwihi þ bi þ whhj þ bjÞ (8)

where ai;j represents each value of the weight matrix A, namely the correlation between the infectious
diseases between the region i and the region j. Wi, Wi, bi, bj are hyperparameters.

The geographical distribution between the regions is considered while extracting the influence between
the region. The initial weight matrix A0 is constructed by the regions. For example, if the i area is adjacent to
the j area, then ai;j is set to 0.

4.3 Graph Neural Network

In the study, each region is considered as a node, and N regions form a picture of N nodes. The time
characteristics of the different cycles of multi-scale CNN, the popular features of the LSTM extracted,
and the spatial relevance between the attention mechanism extraction. The modeling neural network
combines these features, each epoch iteration is used to calculate the time and space characteristics of
each region.

hli ¼ sigmod
X

j2N Wiaijhlj þ bl
� �

(9)

where hli represents the characteristics of region i. And Wi and b represent the hyperparameters of this
iterative hidden layer. ai;j represents the corresponding value of region i and region j in the characteristic
matrix. hlj is the popular feature of region j. Sigmod is an activation function.

5 Experimental Evaluation

In this section, we use the medical record resource from the CDC of one city in central China, which is
called as Cangtha in the following. We conduct experiments on the data set of 42 infectious diseases in the
nine cities in Cangtha to assess network performance. We answer the following questions:

� Q1. Can MSLAGNN be applied to a wider range of time and space prediction tasks and steadily
improve performance compared to the most advanced networks?

� Q2. Is the proposed search space more effective than the searching space in the image domain?

� Q3. What is the impact of the number of layers and channels of MSLAGNN’s architecture?
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5.1 Experiment Setting

5.1.1 Data Description
A brief introduction to the dataset is shown in Table 2:

We divide the data into the training set, verification set, and test set according to the proportion of 5:2:
3 according to the time order. In the search phase, we use the verification set to learn the neural structure. In
the training phase, we use the training set to train models and verification sets to perform early stop strategies.
Finally, through the test set, the prediction effect of the model is obtained.

Details are as follows: Records of 42 infectious diseases in 9 urban areas between 2019 and 2021 are
obtained. ILI cases are reported in Cangtha CDC all year round. The experiment focuses on the disease
prediction of influenza and HFMD. It can be seen from the gray part of Fig. 2 that the epidemic outbreak
begin on October 31, 2019. In the experimental part of this paper, this period is called the outbreak period.

5.1.2 Evaluation Indicators
Three precision indicators are used to evaluate the performance of the model: Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), and Mean Square Error (MSE).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

XN

i¼1
ðŷi � yiÞ2

r
(10)

MAE ¼ 1

N

XN

i¼1
jyi � ŷij (11)

MSE ¼ 1

N

XN

i¼1
ðyi � ŷiÞ2 (12)

Table 2: Features recorded in the dataset

Disease City Time (day)

Influenza 9 511

HFMD 9 515

Figure 2: Time series of influenza-like illness percentages
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5.1.3 Baseline
We introduce several advanced models as our baseline method, without additional label data or external

body resources, as shown below:

� Recurrent neural network (RNN) demonstrates a powerful ability to predict time-dependent. For
our question, we adopt a global RNN, that is, the parameters are shared in different locations.

� λ Long short-term memory (LSTM) is an RNN variant that effectively solves the traditional
circulating neural network gradient explosion, and can handle long-term sequence data, with a
long memory.

� λ AdaCare captures long-term and short-term changes of biomarkers as clinical features, predicting
multiple time scales.

5.2 Experiment Results

Tables 3 and 4 show the performance of all methods on the Cangtha dataset. MSLAGNN is always
superior to the transfer and non-transfer baseline, which proves the ability of MSLAGNN to learn robust
and healthy. Specifically, compared with the optimal method. MSLAGNN reduces RMSE of 2% in
Cangtha HFMD dataset, MSLAGNN reduces MAE of 27% in Cangtha Influenza dataset.

To test the general use of MSLAGNN, we compare it with other baseline models on the HFMD dataset.
Tables 5 and 6 show the performance of the model is still excellent. Compared to another optimal baseline
method LSTM, MSLGNN achieves a 4% lower MAE relatively to the HFMD dataset.

Table 3: RMSE of different methods on the Influenza dataset

Method D = 1 D = 7 D = 10

LSTM 0.0876 0.0917 0.1424

RNN 0.0942 0.1018 0.1450

AdaCare 0.0897 0.0963 0.1598

MSLAGNN 0.0861 0.0861 0.1340

% relative gain 0.0174 0.0650 0.0567

Table 4: MAE of different methods on the Influenza dataset

Method D = 1 D = 7 D = 10

LSTM 0.0458 0.0472 0.0708

RNN 0.0460 0.0545 0.0724

AdaCare 0.0455 0.0480 0.0675

MSLAGNN 0.0331 0.0386 0.0674

% relative gain 0.3746 0.2228 0.0015
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5.3 Ablation Tests

As shown in Fig. 3, overall, MSLAGNN produces smaller prediction errors. In addition, in the influenza
dataset (see Fig. 3b), the estimated value of MSLAGNN fits the real value better than other existing models.
It can be seen that MSLAGNN has the least lag. At the same time, MSLAGNN can accurately predict the
peak on the HFMD dataset (see Fig. 3a).

In this experiment, as shown in Table 7, it is necessary to test each module of MSLAGNN.
MSLAGNN_MS is not suitable for multi-scale convolution modules. MSLAGNN_Atten does not use the
attention mechanism but uses A0 directly. MSLAGNN_GNN is the connection layer that directly inputs
the intermediate value without using GNN. In addition, the performance of the model is tested on data
sets with different time lengths. In the influenza dataset, set the complete data set, outbreak period,
200 days (a), 200 days (b), and 400 days, a total of 5 data sets. The same is true for the HFMD dataset
(Table 8).

MSLAGNN uniformly outperforms all other tested models in the performance metrics consisting of
RMSE and MAE. During the period from 2019 to 2021, MSLAGNN (RMSE = 0.113, MAE = 0.056)
reduces 73% RMSE, 72% MAE compared to the MSLAGNN_Atten (RMSE = 0.426, MAE = 0.205), and
50% RMSE, 43% MAE compared to MSLAGNN_MS (RMSE = 0.228, MAE = 0.098). In large data sets,
MS_Conv and the attention mechanism significantly improve the prediction performance of the model.
Meanwhile, the GNN mechanism also improves performance. With the gradual reduction of data sets, the
performance of each model is gradually similar, but MSLAGNN still maintains the optimal prediction
effect. During the outbreak period, MSLAGNN still has good accuracy metrics and performed best
among all the tested models.

As shown in Table 8, each module still shows a performance improvement. Because the change in the
HFMD dataset is relatively stable, the impact of the change in data set size is not obvious. The model shows
the best performance from 06 February, 2020, to 25 August, 2020. The analysis of the data set shows that the

Table 5: RMSE of different methods on the HFMD dataset

Method D = 1 D = 7 D = 10

LSTM 0.1150 0.1230 0.1261

RNN 0.1252 0.1246 0.1250

AdaCare 0.1687 0.1693 0.1697

MSLAGNN 0.1147 0.1227 0.1227

% relative gain 0.0026 0.0024 0.0028

Table 6: MAE of different methods on the HFMD dataset

Method D = 1 D = 7 D = 10

LSTM 0.0560 0.0631 0.0650

RNN 0.0581 0.0645 0.0637

AdaCare 0.0642 0.0648 0.0649

MSLAGNN 0.0536 0.0614 0.0622

% relative gain 0.0448 0.0277 0.0241
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incidence is rising slowly with a small amplitude fluctuation, with strong linear characteristics. At the same
time, MSLAGNN is good at handling such data.

Figure 3: Estimation results of MSLAGNN in comparison to reference models

Table 7: RMSE and MAE test forecast performance on the Influenza dataset

2019/10/31–
2021/3/23

2019/10/31–
2020/2/6

2020/2/6–
2020/8/25

2020/8/25–
2021/3/23

2020/2/6–
2021/3/23

RMSE

MSLAGNN 0.07163 0.20534 0.04184 0.05139 0.05667

MSLAGNN_MS 0.07935 0.19343 0.04174 0.05152 0.07270
(Continued)
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In order to test the effect of MSLAGNN’s input window size on prediction performance, t was set to
7 days, 14 days, and 21 days. The results of RMSE and MAE are shown in Fig. 4. On the HFMD
dataset, the window increases, MAE and RMSE decrease (see Fig. 4a), and the prediction performance is
better. We can avoid using very long sequences for training and achieve relatively comparable results. On
the influenza dataset (see Fig. 4b), MAE and RMSE are similar when windows are 14 and 21. In
addition, this comparative experiment also shows the performance of MSLAGNN in predicting the
number of onset (y) in the time span. Overall, the effect of prediction after 2 days is the best, and the
effect of prediction after 7 days and 10 days is similar. MSLAGNN has good prediction results on
different scales.

Table 7 (continued)

2019/10/31–
2021/3/23

2019/10/31–
2020/2/6

2020/2/6–
2020/8/25

2020/8/25–
2021/3/23

2020/2/6–
2021/3/23

MSLAGNN_Atten 0.09457 0.21810 0.04161 0.05149 0.06987

MSLAGNN_GNN 0.09123 0.21672 0.04313 0.05164 0.05659

MAE

MSLAGNN 0.03685 0.14980 0.02094 0.02566 0.04038

MSLAGNN_MS 0.04327 0.19013 0.02111 0.02565 0.04230

MSLAGNN_Atten 0.05157 0.15977 0.02110 0.02552 0.04613

MSLAGNN_GNN 0.05211 0.18220 0.02059 0.02509 0.04128

Table 8: RMSE and MAE test forecast performance on the HFMD dataset

2019/10/26–
2021/3/23

2020/2/6–
2020/8/25

2020/2/6–
2020/8/25

2020/8/25–
2021/3/23

RMSE

MSLAGNN 0.11380 0.20017 0.04051 0.06685

MSLAGNN_MS 0.22817 0.21957 0.04065 0.11589

MSLAGNN_Atten 0.42601 0.21918 0.04705 0.11024

MSLAGNN_GNN 0.16855 0.22261 0.05229 0.06312

MAE

MSLAGNN 0.05630 0.11203 0.01861 0.06104

MSLAGNN_MS 0.09879 0.11251 0.01953 0.08132

MSLAGNN_Atten 0.20526 0.11232 0.02850 0.07419

MSLAGNN_GNN 0.07250 0.11355 0.03364 0.06252
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6 Conclusion

In this paper, we propose a framework based on graph neural networks MSLAGNN for space-time
prediction time of infectious diseases. In order to effectively extract the time and spatial features of the
disease, MSLAGNN is trained by the region attention and MS module. Then the influence of each region
in propagation is simulated by GNN. Experimental results on the real-world flu dataset and the HFMD
dataset show that MSLAGNN is better than several baseline methods and promotes the epidemic
prediction of infectious diseases in the future.
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