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ABSTRACT

High-dimensional datasets present significant challenges for classification tasks. Dimensionality reduction, a
crucial aspect of data preprocessing, has gained substantial attention due to its ability to improve classification per-
formance. However, identifying the optimal features within high-dimensional datasets remains a computationally
demanding task, necessitating the use of efficient algorithms. This paper introduces the Arithmetic Optimization
Algorithm (AOA), a novel approach for finding the optimal feature subset. AOA is specifically modified to address
feature selection problems based on a transfer function. Additionally, two enhancements are incorporated into the
AOA algorithm to overcome limitations such as limited precision, slow convergence, and susceptibility to local
optima. The first enhancement proposes a new method for selecting solutions to be improved during the search
process. This method effectively improves the original algorithm’s accuracy and convergence speed. The second
enhancement introduces a local search with neighborhood strategies (AOA_NBH) during the AOA exploitation
phase. AOA_NBH explores the vast search space, aiding the algorithm in escaping local optima. Our results
demonstrate that incorporating neighborhood methods enhances the output and achieves significant improvement
over state-of-the-art methods.
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1 Introduction

Feature selection is one of the fundamental and essential processes when implementing machine
learning methods due to the increasing number of features in datasets. The presence of numerous
features can hinder the classifier’s effectiveness in solving classification problems and diminish its
overall performance. Moreover, an abundance of features can lead to overfitting, typically resulting
in degraded performance. In single-objective feature selection, the goal is to identify a reduced subset
of features that maintains low prediction error while minimizing the number of selected features [1,2].
By utilizing fewer features and training examples, the two primary objectives of feature selection can
be achieved, leading to a reduction in computational complexity and an increase in generalization
performance and model accuracy.
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Three categories of evolutionary feature selection techniques exist filter, hybrid, and wrapper
techniques. In comparison to wrapper algorithms, filters are computationally more efficient because
they employ metrics like mutual information [3-5], fisher score [0], correlation [7], ReliefF [£],
inconsistency rate [9], or even an ensemble of such metrics [10], filter approaches have the drawback
of not being biased toward the Machine Learning (ML) algorithm [! 1], according to an evaluation
of 22 distinct filtering techniques by [12], there is no filter approach consistently outperforms all
other methods. While wrapper algorithms examine the efficacy of the feature subsets depending on
the effectiveness of the prediction model [13], which frequently yields higher performance [14—-18].

A filter and a wrapper are combined in a two-stage process to implement the hybrid approaches.
With the intention of narrowing the search space, a filter is initially applied to the features of a
hybrid approach. The meta-second heuristic’s step only employs the highest-ranking characteristics.
Researchers have employed this strategy of removing characteristics of low rank [19,20]. Two signifi-
cant limitations plague such methods. First, only features are affected by the decreased search space,
thus, this strategy would not be very useful for data with a large number of samples. Second, the
features with low rank when paired with other features, might become significant. Furthermore, all
possible feature interactions are missed by this filter-based methodology, some hybrid methods have
overcome this problem by combining local search with optimization methods [21,22].

The computing problems associated with employing Genetic Algorithms for feature selection
in a wrapper scenario for big datasets were addressed by proposing a two-stage surrogate-assisted
evolutionary strategy [23]. Pashaei et al. developed a hybrid wrapper feature selection technique
that combines Simulated Annealing (SA), a crossover operator, and the Binary Arithmetic Opti-
mization Algorithm (BAO) to find the lowest collection of informative genes for classification [24].
Ewees et al. [25] proposed a method that combines the standard BAO with the Genetic Algorithm
(GA) operators.

Feature selection is a challenging task due to its intractable nature. To address this challenge,
a new meta-heuristic optimization algorithm called the Arithmetic Optimization Algorithm (AOA)
has been proposed. AOA has been modified to specifically address the feature selection problem, and
it considers two objectives: maximizing prediction accuracy and minimizing the size of the selected
subset.

A local search with neighborhood search strategies (NBH) has been introduced within the AOA
algorithm to search effectively among large search spaces, namely, the AOA_NBH algorithm. The
proposed AOA_NBH algorithm was compared with the original AOA algorithm and with other state-
of-the-art methods. The following summarizes the main contributions of this paper:

e A recently proposed AOA algorithm for continuous optimization problems has been modified
to deal with discrete optimization problems by investigating the S-shaped transfer function to
be applied to feature selection problems.

e Two objectives are considered in the formulation of the feature selection problem, i.e., minimiz-
ing both the error rate and the size of the selected feature subset.

e A Tournament selection method has been proposed to maintain the diversity of the AOA
population.

e A new local search method is proposed to improve the local intensification of AOA, with two
neighborhood methods.

The organization of this paper is as follows: the Arithmetic Optimization Algorithm with selection
method and local search method are represented in Section 2, Section 3 represents the experiential
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results with some discussions on the results, and Section 4 presents the comparison of the proposed
algorithm with three population-based algorithms, finally, the conclusion and future works are
presented in Section 5.

2 The Proposed Arithmetic Optimization Algorithm

AOA is a population-based stochastic algorithm based on a mathematical foundation [26]. The
AOA typically consists of two phases of search, referred to as exploration and exploitation, which
are patterned after mathematical operations. The exploration phase employs multiplication (x) and
division (=) operators, while the exploitation phase uses addition (4+) and subtraction (—) operators.
The AOA first generates search agents at random. Each one is a solution to a problem. The best
solution is determined by calculating the fitness function for each solution. The Math Accelerated
Function (MAF) value is then used to determine whether AOA should perform exploration or
exploitation procedures, where the Math Accelerated Function is a tool used to guide decision-
making between exploration and exploitation procedures. Its relevance lies in its ability to provide
a quantitative measure that informs the system about the most appropriate strategy at a given point
in time. Finally, the MAF value is adjusted using the following Eq. (1):

()

MAF (Citr) = min + Citr (M)

total Itr

where total_Itr denotes the total number of iterations. The minimum and maximum values of the
accelerated function are referred to as Min and Max, respectively. As can be observed in the following
Eq. (2), the AOA’s exploration phase mainly uses multiplication (x) and division (=).

bst; = (Opt +€) x (UB; — LB)) x u+ LB;), r<0.5

2
bst; x Opt x ((UB; — LB)) x u+ LB)), otherwise @

where bst; is the diminution j of the best solution so far, r is a random number between 0 and 1, the
search domain’s lower and upper boundaries are denoted by UB; and LB;, where € is a small integer
value in the jth dimension and u represents the control function. Additionally, the Optimizer (Opt) is
represented in Eq. (3).

1
Citr®

OptCitr) =1 — ——
Pt ) total_hral

3)
The parameter o controls the execution of the exploitation phase. Where the addition (+) and
subtraction (—) are used in the exploitation phase by means of Eq. (4).

bst; — (Opt+¢€) x (UB,— LB) x u+ LB)), r<0.5

4
bst; + Opt x (UB, — LB;) x u+ LB)), otherwise )

2.1 AOA for Feature Selection Problem

Feature selection can be considered as a binary problem, where the solution is a list of zeros and
ones, zero for the removed selected features and one for the selected features. Thus, a binary algorithm
should be implemented to solve the problem of feature selection. In AOA, the transfer function is used
to obtain the binary solutions after computing the new solution. AOA was first presented in continuous
problem space; therefore, we developed a transfer function for AOA known as an S-shaped transfer
function (TransFunc) [27] to address the binary problem space as shown in Eq. (5).
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1
1 4 exp(—P; (Citr))

where Citr is the number of iterations currently being performed. Eq. (6) is used to update the solution
in AOA for S-shaped transfer functions to produce the subset of features.

TransFunc(P; (Citr)) = (5

0,r > TransFunc(P; (Citr))

6
1,r < TransFunc(P; (Citr)) ©

P, (Citr+ 1) = [

The minimization of the number of selected features and the minimization of the classification
error rate can be seen as two opposing objectives in the multi-objective optimization problem of feature
selection. Each solution is assessed in accordance with the suggested fitness function, which is based
on the KNN classifier to determine the classification error rate as well as the number of features of the
solution that were specifically chosen for the solution. The original version of AOA and the updated
AOA (AOA_NBH) algorithms assess the solution quality using the fitness function in Eq. (7).

SelectedFeatures

fitnessFun = 3 x et + (1 — 9) x (7

where fitnessFun is the fitness function to be minimized, 9 is a parameter between zero and one, which
denotes the weight of the error rate and the number of features being selected in the function, and
et is the error rate given by the classifier [26]. The overall AOA for feature selection is represented in
Algorithm 1.

TotalFeatures

Algorithm 1: AOA for feature selection pseudocode

1 Initialize the AOA parameters:

2 a: exploitation parameter,

3 m: control function,

4 N,,: population size

5 total_Itr: maximum number of iterations.

6 P, o —1.2 ... Ny initial the population of N, solutions by a

7 random feature subset.
8 while(Citr <total_Itr)
9 calculate the fitness using (7) for each solution.

10 Find the best solution in the population (bst).
11 Egs. (1) and (3) are used to update the MAF and

12 Opt.

13 for k:1 — N

14 for j:1 — Dataset_Diminations

15 if r1 <= MOA // Exploration phase

16 Update P[k.j] using Eq. (2).

17 Use Eq. (6) to transfers the value of P[k,j]
18 else // Exploitation phase

19 Update P[k.j] using Eq. (4).

20 Use Eq. (6) to transfers the value of P[k,j]

(Continued)
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Algorithm 1 (continued)

21 endif
22 endfor
23  endfor

24 Citr =Citr + 1
25 endwhile
26 Output the best solution (bst).

2.2 Selecting the Solutions for Exploitation: AOA

Considered all solutions to be exploited which resulted in a slowdown of the algorithm speed and
delayed convergence, thus the idea of choosing only the promising areas of the search space is suggested
in order to speed up the algorithm and make the algorithm converge toward the optimal solution faster.
According to Goldberg et al. [28], a tournament selection approach is a straightforward and easy-to-
use selection mechanism.

One of the known selection methods in evolutionary algorithms is the tournament selection [29],
n solutions are chosen at random from the population during the tournament selection procedure.
These solutions are contrasted with one another, and then a tournament is held to choose the winner.
The selection pressure is then adjusted by comparing a generated random number between 0 and 1
with a selection probability that acts as a convenient mechanism which is 0.5. If the generated random
number is greater than 0.5, the highest fitness solution be chosen; otherwise, the weakest solution will
be selected. Tournament selection allows most solutions a chance to be chosen while maintaining the
diversity of the chosen solutions [29].

2.3 AOA with Local Search (AOA_NBH)

AOA is a new optimization technique that showed good performance in several optimization
problems. AOA uses the addition and subtraction operators to perform the exploitation regardless
of the fitness values of the newly produced solution. The proposed method replaces the exploitation
operators with a local search with neighborhood methods. It treats a solution as its starting point,
improves it, and then replaces the original solution with the improved one. The working solution will be
selected by tournament selection, then change neighborhood operators (0 becomes 1 and one becomes
0) are applied including changing random one, two, or three features. The pseudocode of the proposed
local search method is illustrated in Algorithm 2.

Algorithm 2: The proposed local search

1 LocalSearch: NBH(P)

2 Itrls<-max number of local search iterations

3 P,<Select solution using tournament selection.

4 UIC =0 //Unimproved count

5 K<« Number of features to be changed (select or deselect)
6 While (i<itrls OR UIC>= itrls/2)do:

7 P,x<«change K random feature where K is 1, 2 or 3
8 if(fitnessFun(P,*) < fitnessFun (P,))

9 P. =P

10 UIC=0

(Continued)



516 IASC, 2024, vol.39, no.3

Algorithm 2 (continued)

11 else
12 UIC+=1
13 endWhile

14 return P,

The suggested local search is implemented in Algorithm 1, by replacing the exploitation phase.
The local search is applied after the exploitation of the AOA algorithm, the process of local search
starts with a given population P, and then the tournament selection selects a solution to be improved.
The process of the local search is performed until the maximum number of iterations is exceeded or the
solution is not improved after performing 50% of the local search’s iterations. The fitness function is
then performed to check the quality of the new solution, the solution is accepted if its quality is better
than the original one, otherwise, the counter of unimproved moves will be increased by 1, and finally,
the improved solution will be replaced by the new solution in the population. This method provides a
fast improvement of the selected solutions in population which speed up convergence speed.

This approach gives a fast improvement of the chosen solutions within the population, which
in turn speeds up the rate at which the optimization process converges. In other words, it quickly
enhances the quality of alternative solutions that the algorithm is taking into account. This quick
advancement speeds up the algorithm’s convergence to the ideal or nearly optimal solution, requiring
less time and computer resources to get a successful result. Essentially, it accelerates the convergence
of the algorithm by concentrating on the most promising options early on in the search process.

3 Experiential Results and Discussions

In this part, the effectiveness of this work is evaluated using 14 UCI datasets that have been utilized
in several reliable studies. Table 1 [30] has a presentation of these datasets. The results of this study
have been carried out utilizing a personal computer with an Intel 15-2.30 GHz processor and 8.0 GB
of RAM. Ten runs are used in this experiment. Moreover, each considered dataset for experiments is
split into 80% for training and 20% for testing [31].

Table 1: Databases utilized in the experiments

# Dataset name Number of features Number of samples Number of classes
1 Breast cancer 9 699 2
2 German 20 1000 2
3 HeartEW 13 270 2
4 CongressEW 16 435 2
5 KrvskpEW 36 3196 2
6 Lymphography 148 18 2
7 Parkinsons 23 197 2
8 SonarEW 60 208 2
9 SpectEW 22 267 2
10 Tic-tac-toe 9 958 2
11 WaveformEW 40 5000 3

(Continued)
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Table 1 (continued)

# Dataset name Number of features Number of samples Number of classes
12 WDBC 30 569 2

13 WineEW 13 178

14 700 16 101 6

The algorithms under examination employed the same number of iterations and population size,
the final parameter settings for the AOA, and the proposed local search based on experimental findings
using various parameter values as follows:

« equals to 5.
uequals to 0.5.
min is set to 0.2.
max is set to 0.9.

The population size is set to 20.
The number of iterations of 500 was used in all algorithms.

The number of local search iterations (itrls) is set to 50.

Table 2 compares AOA and AOA_NBH in terms of accuracy and the number of selected features.

Table 2: Comparison of accuracy and number of selected features between different versions on AOA

# Dataset name Accuracy Selected features
AOA AOA_NBH AOA AOA_NBH

Worst  Avg Best Worst  Avg Max NSF Avg NSF Avg

1 Breastcancer  0.9000 09157  0.9552 0.9429 0.9573 0.9714 3 33 4 4

2 German 0.6950 0.7150  0.7550  0.6800 0.7085 0.8000 10 13 11 13.4

3 HeartEW 0.7333 0.8100  0.9167 0.7667 0.8433 0.9167 2 3 2 4.1

4  IonosphereEW 0.7887 0.8268  0.8732 0.6761 0.7789 0.8873 2 31 2 3

5 KrvskpEW 0.8875 0.918438 0.93125 0.9484 0.9575 09719 5 6.8 4 8

6 Lymphography 0.7000 0.7200  0.7667 0.7000 0.7400 0.8000 4 72 2 3.6

7  Parkinsons 0.8461 0.8667  0.8974 0.7692 0.8513 0.9231 3 62 6 7.4

8 SonarEW 0.7142 0.7619  0.8571  0.6905 0.7857 0.8809 6 78 4 6

9  SpectEW 0.7037 0.7815  0.8703 0.7222 0.8037 0.8703 15 20.6 3 4.2

10 Tic-tac-toe 0.7708 0.8541 0.8906 0.8906 0.8906 0.8906 5 78 9 9

11 WaveformEW  0.8050 0.8192  0.8390 0.8110 0.8236 0.8420 13 142 12 134

12 WDBC 0.8859 0.9070  0.9298 0.8859 0.9122 0.9473 10 12 2 3

13 WineEW 0.9444 09722 1 0.9722 0.9889 1 3 46 3 4.8

14 Zoo 0.7619 0.8285  0.9523 0.8095 0.8761 0.9523 2 46 5 6.8
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Several important criteria and performance comparisons were used to assess the feature selection
methods. A 5-fold cross-validation approach was used to generate these measures, The findings in
Table 2, summarize the results of 10 separate runs for each method, where the worst, average (avg),
and best accuracy for each run were presented. The number of selected features that produced the
best accuracy is denoted by NSF and the results in boldface illustrate the best performance for
each instance.

In general, most of the maximum achieved accuracies by AOA_NBH outperformed those
achieved by AOA algorithm, except 5 datasets achieved exactly the same best accuracies, but they
achieved better average accuracies over 10 runs as can be observed in Fig. 1. Where the x-axis shows
the names of the datasets and y-axis show the accuracy value.
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Figure 1: Comparing AOA and AOA_NBH in terms of accuracy

When considering the number of selected features in comparison, the AOA_NBH algorithm
outperforms the AOA in 10 out of 14 datasets as can be observed in Fig. 2. Where the x-axis shows
the names of the datasets and y-axis show the number of features.
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Figure 2: Comparing AOA and AOA_NBH in terms of number of selected features
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This behavior may be explained by the improvement of exploitation behavior, which is improved
by the local search method. This strategy focuses search efforts on promising areas in the search
space rather than randomly exploiting a large and ineffective area. This local search method enables
the algorithm to effectively focus on regions where substantial improvements in accuracy or feature
selection may be made, leading to a more successful optimization process. The convergence behavior
of both algorithms is shown in Fig. 3, which demonstrates how AOA_NBH and AOA algorithms
improved in optimizing the fitness function over iterations, four dataset’s convergence curves demon-
strate that AOA_NBH exhibits faster convergence than AOA in the tested datasets. We can observe
that AOA_NBH was able to get the best results across the tested datasets.
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Figure 3: Convergence behavior of the AOA and the AOA_NBH algorithms

These convergence curves showed an interesting trend: across most datasets, AOA_NBH consis-
tently showed faster convergence than the AOA method. Examining different performance metrics,
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including classification accuracy, fitness values, and the number of chosen features, which all contin-
ually preferred the AOA_NBH method, helped to support this acceleration in convergence.

4 Comparison with Population-Based Algorithms

From the previous section, we discovered that the AOA_NBH method outperforms the AOA in
terms of the number of selected features and accuracy across all datasets. In this part, we contrast the
performance of the best strategy provided with the approaches from the feature selection literature
that are most closely related. The outcomes of AOA_NBH, Moth-Flame Optimization (MFO)
algorithm, Whale Optimization Algorithm (WOA), particle swarm optimization (PSO) and Binary
Whale Optimization Algorithm (BWOA) [32] in terms of accuracy are shown in Table 3, but the BWOA
does not apply for all the mentioned datasets, so the symbol (—) means no results for these datasets.

Table 3: Comparison of accuracy between AOA_NBH, BWOA, MFO, WOA, and PSO in terms of
accuracy

# Dataset name AOA_NBH BWOA PSO MFO WOA
1 Breast cancer 0.9714 0.7690 0.9642 0.9000 0.9000
2 German 0.8000 0.7662 0.7400 0.7350 0.7600
3 HeartEW 0.9167 0.8466 0.8333 0.9167 0.7667
4 IonosphereEW 0.8873 0.9142 0.8451 0.8732 0.8592
5 KrvskpEW 0.9719 - 0.9375 0.9593 0.9484
6 Lymphography 0.8000 - 0.7667 0.8000 0.8333
7 Parkinsons 0.9231 — 0.8974 0.9231 0.9231
8 SonarEW 0.8809 0.8804 0.8571 0.8571 0.8333
9 SpectEW 0.8703 - 0.8148 0.7778 0.8148
10 Tic-tac-toe 0.8906 - 0.8489 0.8906 0.8906
11 WaveformEW 0.8420 0.8267 0.8380 0.8150 0.8290
12 WDBC 0.9473 0.9469 0.9210 0.9211 0.9122
13 WineEW 1 0.8841 1 1 0.9167
14 700 0.9523 0.8891 0.9523 0.9523 0.9047
Average 0.9038 0.8621 0.8726 0.8801 0.8637

AOA_NBH performs better than other algorithms on all datasets except for two, on which WOA
and BWOA perform somewhat better than other approaches while still falling short of AOA_NBH
and placing second, whereas, on 86% of the datasets, AOA_NBH performs significantly better than
other techniques, with an average accuracy of 90% compared to the closest approach’s accuracy of
88% for the MFO algorithm followed by PSO, WOA and BWOA algorithms with 87%, 86.37% and
86.21% average accuracy, respectively. This may be recognized by the fact that the improvement in the
exploration and exploitation of AOA can explore the promising areas of the feature space.

Fig. 4 shows clearly that the AOA_NBH performs more effectively than the other algorithms
(PSO, MFO, and WOA) in the majority of the datasets, however, in some datasets, similar results are
obtained. Where the x-axis shows the names of the datasets and y-axis show the accuracy value.
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Figure 4: Comparing AOA_NBH, MFO, WOA, and PSO in terms of accuracy

As the efficiency of the proposed algorithm is shown through the results, it is useful to express the
results in the form of boxes to show the capability of the proposed AOA_NBH in producing stable
solutions by measuring the variation in the results on four databases. Fig. 5 represents the box plot of
all algorithms using four datasets, where each algorithm has performed 10 different runs.

Fig. 5 shows that the median accuracies (represented by the horizontal lines inside the boxes)
of the AOA_NBH algorithm when using the Breast cancer, HeartEW, and IonosphereEW datasets
are greater than that of those AOA, PSO, MFO and WOA algorithms, but AOA_NBH algorithm
only produced higher median accuracy than PSO when using German dataset. Also, when comparing
the dispersion of the results, the interquartile ranges are reasonably small (as shown by the lengths of
the boxes). In this case, the middle half of the data has little variability, though the overall range of the
data set is greater for the AOA_NBH algorithm (as shown by the distances between the ends of the
two whiskers for each boxplot).
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Figure 5: (Continued)
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Figure 5: Boxplot of AOA_NBH, AOA, PSO, MFO, and WOA algorithms when applied on the
German, Breast cancer, HeartEW, and IonosphereEW datasets

To show the significance of the results, the p-value has been frequently employed, where p-value is
a numerical value obtained from a statistical test that indicates how probable it is that you would have
discovered a certain collection of observations if the null hypothesis were true. To determine whether
to reject the null hypothesis in hypothesis testing, p-values are employed.

In Table 4, the p-value test is applied between the AOA_NBH and WOA, AOA_NBH and PSO,
and AOA_NBH and MFQO, in this work, we specify significance levels based on standard thresholds
which using the alpha significance level of 0.05. Statistically the results with p-values less than 0.05
are considered significant, then it can be seen clearly that the percent of the significant values are
acceptable, where the significant percentage between the AOA_NBH and WOA is 78.5%, AOA_NBH
and PSO is 71.4% and AOA_NBH and MFO is 78.5%. This indicates that the local neighborhood
search is a significant modification on AOA algorithm, where the exploitation of AOA improved by
searching effectively on the neighborhood of the best solutions in the population.

Table 4: p-value between AOA_NBH and MFO, WOA, and PSO

# Database name WOA PSO MFO

1 Breast cancer 0.0016 1.0000 0.0016
2 German 0.2059 0.0577 1.0000
3 HeartEW 0.0016 0.0016 0.0269
4 IonosphereEW 0.0016 0.0016 0.0114
5 KrvskpEW 0.0114 0.0078 0.0114
6 Lymphography 0.0270 0.0114 0.0016
7 Parkinsons 0.0478 0.0278 0.0271
8 SonarEW 0.0478 0.0114 0.0078
9 SpectEW 0.0114 0.0278 0.0016
10 Tic-tac-toe 1.0000 0.0016 1.0000
11 WaveformEW 0.7518 0.0114 0.0016
12 WDBC 0.0268 0.0577 0.7518

(Continued)
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Table 4 (continued)

# Database name WOA PSO MFO

13 WineEW 0.0268 0.0016 0.0114

14 Z00 0.0059 0.7518 0.0015
Percentage (%) 11/14 = 78.5% 10/14 = 71.4% 11/14 = 78.5%

5 Conclusion and Future Works

This study presents the Arithmetic Optimization Algorithm (AOA) as a method for identifying the
optimal feature subset. To address binary optimization problems, AOA is modified using a transfer
function. Additionally, the feature selection problem is tackled by modifying AOA to consider two
objectives: increasing prediction accuracy and reducing the number of selected features. To achieve
successful searching within a large space, a local search using neighborhood search methods (NBH) is
incorporated into the AOA algorithm, resulting in the AOA_NBH algorithm. The performance of the
proposed methods applied to AOA is investigated using 14 common UCI benchmark datasets. Three
population-based methods are compared with the results of the proposed techniques, demonstrating
their superiority. The findings reveal that the suggested method converges quickly, leading to the
identification of effective feature sets for most datasets. Future research could explore the effectiveness
of these strategies with various real-world problems and evaluate their performance using additional
classifiers.
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