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ABSTRACT

Smart Industrial environments use the Industrial Internet of Things (IIoT) for their routine operations and
transform their industrial operations with intelligent and driven approaches. However, IIoT devices are vulnerable
to cyber threats and exploits due to their connectivity with the internet. Traditional signature-based IDS are effective
in detecting known attacks, but they are unable to detect unknown emerging attacks. Therefore, there is the need
for an IDS which can learn from data and detect new threats. Ensemble Machine Learning (ML) and individual
Deep Learning (DL) based IDS have been developed, and these individual models achieved low accuracy; however,
their performance can be improved with the ensemble stacking technique. In this paper, we have proposed a Deep
Stacked Neural Network (DSNN) based IDS, which consists of two stacked Convolutional Neural Network (CNN)
models as base learners and Extreme Gradient Boosting (XGB) as the meta learner. The proposed DSNN model was
trained and evaluated with the next-generation dataset, TON_IoT. Several pre-processing techniques were applied
to prepare a dataset for the model, including ensemble feature selection and the SMOTE technique. Accuracy,
precision, recall, F1-score, and false positive rates were used to evaluate the performance of the proposed ensemble
model. Our experimental results showed that the accuracy for binary classification is 99.61%, which is better than
in the baseline individual DL and ML models. In addition, the model proposed for IDS has been compared with
similar models. The proposed DSNN achieved better performance metrics than the other models. The proposed
DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.
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Industrial internet of things; smart industrial environment; cyber-attacks; convolutional neural network; ensemble
learning

1 Introduction

Smart industrial environments use industrial revolution (IR) 4.0 technologies to foster their
operations. These technologies have transformed industries by fostering a shift towards a more
technology-driven approach for the enhancement of industrial production and overall efficiency.
In today’s fiercely competitive global markets, where businesses strive for success and recognition,
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implementing innovative devices and systems is no longer optional–it is necessary to achieve increased
production efficiency, productivity, and quality [1].

IR 4.0 focuses on individual activity tracing and management and is supported by Industrial
Internet of Things (IIoT) technology for information management. IR 5.0 is also focused on smart
manufacturing and urges the co-working of machines and humans with sustainability [2]. Industrial
control systems, smart manufacturing, and transportation systems are some examples of smart
industrial environments. The transition of industries towards smart manufacturing in developed
countries is faster than in developing countries due to its relationship with the economy, because
the slow adaption of emerging technologies may reduce economic activity, which consequently will
stress industry and the economy. It requires a qualified workforce to manage critical smart industrial
infrastructures [3].

In contrast to traditional industries that rely on human resources to increase production, smart
industrial environments consist of a network of interconnected Industrial Internet of Things (IIoT)
devices, routers, and machines that work together to collect, transfer, store, process, and control
data, enabling remote monitoring of overall industrial operations. However, this continuous internet
connectivity exposes these smart objects to various risks and threats. Smart environments often rely on
third-party applications and services, which can introduce vulnerabilities. Threat actors could exploit
those weaknesses to disrupt critical industrial processes, leading to significant financial losses. The
cyber assets within these environments are susceptible to a range of emerging cyber-attacks, such as
botnets, denial of service (DoS), Distributed Denial of Service (DDoS), Man in The Middle (MiTM),
ransomware, and spyware [4]. Fig. 1 illustrates the threat model of an industrial smart environment.

Figure 1: Smart industrial environment threat model

The intrusion detection system (IDS) is a security software that is used to detect intrusion. An
IDS can be used to detect unauthorized access to the system or malicious traffic in the network. An
IDS can be deployed at nodes, network hubs, switches, or routers. Traditional IDS struggle against
emerging threats because their reliance on a known signature leaves them blind to novel attacks. This
necessitates the development of advanced IDS, utilizing ML, particularly DL, which can learn from
a vast amount of diverse security data generated from smart industrial environments which provide
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a rich training ground for such DL-based IDS. As data volume increases, the model accuracy also
increases in predicting both normal and attack events. Therefore, harnessing the latest ML techniques,
especially DL, is crucial for shaping an effective IDS capable of detecting emerging attacks [5].

Ensemble learning is an ML technique to boost model performance by combining multiple
model predictions. The DL model can mitigate industrial smart environments by combining multiple
DL models to achieve a better model. Different work has been undertaken to develop an IDS
with individual and ensemble ML and DL models, e.g., the Convolutional Neural Network (CNN)
and Few-shot learning (FSL) [6], Recurrent neural network (RNN) [7], ensemble CNN, RNN and
multilayer perceptron (MLP) [8], Gated recurrent unit (GRU), and Long Short-Term Memory
(LSTM) [9]. These researchers have used individual ML, DL, and an ensemble of ML, and DL models;
however, they have low accuracy, so as a result, they have a low detection rate so there is space to further
improve IDS performance. We have thus proposed a deep stacked neural network (DSNN) based IDS
for smart industrial environments which consists of two CNNs as base learners, and Extreme Gradient
Boosting (XGB) as the meta learner.

IIoT devices generate huge security logs that contain heterogeneous data and can be used to
develop security systems [10]. Standard public IIoT datasets are also available, such as KDDCUP99
and DARPA which are used for IDS development [11]. These datasets are outdated and do not
contain emerging network events, so such datasets are not viable in the era of IIoT. TON_IoT is
a next-generation dataset for cyber-physical systems (CPS) and IIoT, which contain heterogeneous
telemetry data. The dataset contains cyber-attack events that affect network and application layers
such as MiTM, DoS, and DDoS from attacks at the network layer. Injection, password, and Cross-
site scripting (XSS) attack the application layers. Ransomware, backdoor, injection, password, and
scanning attack both the application and network layer [12].

This paper contributes to knowledge in the domain of DL-based IDS for threat mitigation, as
summarized below:

• This research proposes a new ensemble feature selection method, consisting of two techniques:
zero drop, and information gain. The zero drop selects the features considering zero values, and
the information gain technique selects significant values from the dataset.

• A novel ensemble stacking-based DL model has been proposed for binary classification, called
the Deep Stacked Neural Network (DSNN). The DSNN model consists of two CNN as base
learners, and XGB as meta learners.

• The proposed model was evaluated with various performance metrics. such as accuracy,
recall precision, F1-score, false positive rate (FPR), false negative rate (FNR), and Matthews
Coefficient Correlation (MCC). The model was also compared with similar models proposed
in the literature.

The paper is further organized as follows: Section 2 provides a literature review of existing related
work. Section 3 describes the methodology used to develop the proposed IDS, including the TON_IoT
dataset, preprocessing techniques, and the proposed ensemble model. Section 4 of this paper provides
experimental results and discussions. Finally, Section 5 presents the conclusion and future work.

2 Related Work

In this section, we review various studies related to secure smart environments using ML and
DL based IDS. Saheed et al. proposed LSTM and modified genetic algorithm (MGA) for IDS devel-
opment to protect internet of things (IoT) networks, called IoT defender. The authors used genetic
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algorithm (GA) for feature selection and MGA for fine tuning of the LSTM model. The proposed
approach was evaluated with BoT-IoT dataset and experimental results showed that the proposed
model achieved 99.41% accuracy [13]. LSTM based IDS [14] was proposed by Elsayed et al. to
improve IDS performance. The proposed IDS was evaluated with TON_IOT and InSDN datasets. The
proposed IDS achieved 96.35%, 96% and 98.4% accuracy, detection rate and precision for TON_IoT,
and 99.73%, 98.6% and 98.9% for the InSDN dataset. IDS performance metrics on TON_IoT dataset
need further improvement. An explainable DL based framework to improve intrusion detection in
critical IoT networks was proposed in [15]. The TON_IoT dataset was used to assess the proposed
framework and achieved 99.15% accuracy and a 98.83% F1-score in attack detection. The attack
detection performance could be better. The authors, however, did not handle the class imbalance
learning problem. The attack detection performance could be further bettered with ensemble learning.

In [16], the authors proposed the deep reinforcement learning (DRL) model, which consists
of a feed forward neural network for DL model and Q-learning for reinforcement learning (RL).
The experimental results showed that DRL model achieved 91.4% accuracy, 90.2% recall and 92.8%
precision. An IDS with DL method for vehicular networks was proposed in [17]. The authors trained
IDS with KDDCUP99 and CICIDS 2018 datasets and evaluated them with a testbed dataset created
from network simulation. The experimental results showed that the proposed model achieved an
accuracy of 99.57%; however, the proposed model can be further evaluated with TON_IOT, and
UNSW-NB15 dataset, and their performance can be enhanced with the ensemble stacking of DL
models. In [18], three DL models, CNN, LSTM and hybrid ensemble CNN+LSTM, were proposed
for intrusion detection in the IIoT network. The proposed model was evaluated with UNSW-NB15 and
X-IIoTID datasets. Experimental results showed that CNN+LSTM achieved a binary and multiclass
classification accuracy of 93.21% and 92.9% on UNSW-NB15, and 99.84% and 99.80% on X-IIoTID.
The proposed model accuracy on UNSW-NB15 can be enhanced with ensemble stacking of CNN and
LSTM. In [19], the researchers proposed a LSTM and auto-encoder (LSTM-AE) for the development
of the network IDS. The proposed model was evaluated with CICIDS-2017 and CSE-CICDIS-2018
datasets and compared with CNN and deep neural network (DNN). The experimental results showed
that LSTM-AE achieved 99.99%, and 99.10% accuracy on CICIDS-2017 and CSE-CICIDS-2018.

An ensemble classifier with ML techniques was proposed by [20] to detect and prevent botnet
attacks. The Cyber Clean Center (CCC) dataset was used for evaluation, and experimental results
showed that the ensemble model achieved 94.08% accuracy, 86.5% sensitivity, 85.68% specificity
and 78.24% F1-score. INformation FUsion and Stacking Ensemble (INFUSE) was proposed for
the network IDS [21]. It consists of support vector machine (SVM), k-nearest neighbors (KNN),
decision tree (DT), random forest (RF) and Adaboost as base classifiers, and a 6-layer fully connected
artificial neural network (ANN) as meta classifier. The proposed model was evaluated with NSL-
KDD and results showed that the ensemble model achieved 91.6%, 94% and 91% for accuracy, recall
and F1-score. Network IDS was proposed with the improved binary manta ray foraging (BMRF)
optimization algorithm for feature selection, and RF for classification. It was evaluated with NSL-
KDD and CICIDS-2017. The proposed model achieved 99.3%, which can be further improved [22].
ML based IDS was developed and evaluated with TON_IoT by Gad et al., using the chi-square
technique for feature selection and Synthetic Minority Oversampling Technique (SMOTE) for the
class imbalance problem. XGB achieved 99.1%, 98.4% and 99.1% accuracy, precision, and recall;
however, performance needs improvement [23]. The attack detection system for vehicular networks
was proposed by Sharma et al. and was evaluated with the TON_IoT dataset and compared with the
RF, Naïve Bayes and KNN models. The KNN model achieved a high accuracy of 98.2%, which can
be improved [24].
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Real time IDS was proposed with DNN and evaluated with NSL-KDD. The experimental results
showed that proposed IDS achieved 81% accuracy, with 96%, 70%, and 81% for precision, recall, and
F1-score. The proposed IDS performance can be enhanced with ensemble stacking [25]. In [26], an IDS
was proposed with stacking of five ANN models for the Supervisory Control and Data Acquisition
(SCADA) system security and was evaluated with a real time dataset. The experimental results showed
that proposed stacked DL model performed better than baseline individual DL and ML models. This
work can be extended to develop stacked CNN model. The ensemble model was proposed for botnet
attack detection in IoT traffic [27]. The model was evaluated with three datasets: IoT network traffic,
KDDCUP99, and TON_IoT, and achieved 97.9% accuracy for binary classification to detect normal
and malicious network traffic. A lightweight dense random neural network (DaRaNN) for intrusion
detection in IoT networks was discussed in [28]. The proposed DaRaNN was evaluated with TON_IoT
and achieved 99.14% accuracy. The ensemble stacking of ML models was proposed in [29] to detect
attacks in an IIoT environment. The proposed model was evaluated on NSL-KDD and UNSW-
NB15 datasets. The accuracy, precision, sensitivity, specificity and F1-score were used to evaluate the
model performance score, and experimental results showed that the ensemble stacking model achieved
accuracy of 95.15%, precision 96.47%, sensitivity 95.93%, specificity 93.76%, and F1-score 96.20% on
the UNSW-NB15 dataset. In [30], anomaly-based IDS was proposed with CNN for threat mitigation
in IoT networks. The proposed IDS was evaluated with NID and BoT-IoT datasets, and experimental
results showed that it accomplished 99.51% and 92.85% accuracy on NID and BoT-IoT.

CNN and DT classifiers were proposed for intrusion detection. CNN was used to select features
and a DT classifier was used for cyber-attack classification. NSL-KDD was used for evaluation of
the proposed model and achieved 99.49% accuracy [31]. Deep random neural network (DRaNN) was
proposed in [32] for attack detection in IIoT environments. The authors used fusion particle swarm
optimization (PSO) with the sequential quadratic programming (SQP) technique for optimal training
of DRaNN. The DRaNN was evaluated with three datasets and achieved accuracy of 99.57%, 99.12%
and 98.64% on TON_IoT, UNSWNB15 and DS2OS datasets. LSTM and Deep Feed Forward Neural
Network (DFNN) were proposed for abnormal traffic detection in IoT networks. UNSW-NB15 was
used for the evaluation of the proposed models and achieved accuracy of 90.66% and 64.12% for
LSTM and DFNN [33]. The authors [34] proposed CNN based IDS and evaluated with CSE-CIC-
IDS2018. The authors used SMOTE for dataset augmentation and achieved 98.8% accuracy, 98.1%
recall and 99.5% precision. The proposed CNN model accuracy and recall can be further enhanced
with the ensemble stacking of CNNs. The CNN based attack detection system was developed for
the IoT environment and evaluated with NSL-KDD dataset. The experimental results showed that
the proposed system achieved accuracy of 99.3% for binary and 98.2% for multiclass classifications.
The proposed system accuracy can be further enhanced with ensemble learning and can be evaluated
with the TON_IoT dataset to detect emerging attacks [35]. The authors proposed ML based IDS
for attack detection in vehicular ad hoc networks and evaluated with TON_IoT. The experimental
results showed that XGB achieved high performance results with 99.0% accuracy; however, that
accuracy can be further improved with ensemble models [36]. DNN based IDS was proposed by
Aleesa et al. The proposed model was evaluated with enhanced UNSW-NB15 dataset for binary and
multiclass classification. The experimental results showed that the proposed IDS achieved 99.26%
and 99.59% accuracy for binary and multiclass classification. However, with stand-alone CNN and
ensemble stacking, an improved IDS can be developed [37]. Ensemble stacking of CNN, RNN as
base classifier and DNN as meta classifier was proposed for malware detection in IoT environments.
The proposed ensemble model called malware threat hunting model based on advanced ensemble
learning (MTHAEL) was achieved 99.98% accuracy on the IoT malware dataset. The MTHAEL can
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be evaluated on a large scale IoT dataset and can be further extended for the development of network
IDS for IoT/IIoT environments [38]. The authors of [39] proposed BAT-MC model which consists
of Bidirectional Long Short-Term Memory (BLSTM), multiple convolutional layers and attention
mechanism. The proposed model was evaluated with NSL-KDD, and experimental results showed
that the BAT-MC achieved accuracy 84.25%, which can be further improved with ensemble learning.
NSL-KDD does not contain emerging attack events, so the BAT-MC model needs further evaluation
with the latest network datasets, such as TON_IoT. The researchers [40] developed an IDS with a
Random Neural Network (RaNN) for IIoT. The proposed RaNN was evaluated with UNSW-NB15
dataset and experimental results showed that RaNN achieved 99.54% accuracy. The proposed work
can be extended in various directions, such as its performance can be further enhanced with ensemble
stacking of RaNN and CNN. It also needs evaluation with another emerging IIoT dataset, such as
the TON_IoT dataset. The authors [41] used various supervised ML algorithms such as DT, KNN,
RF, SVM and logistic regression. RF achieved 99.99% accuracy, 96.81% MCC and 97.44% sensitivity;
however, using only the accuracy metric for imbalanced datasets is insufficient to evaluate the model’s
performance; MCC and sensitivity scores can be improved with DL models and ensemble learning.
The authors proposed an ensemble of SVM, instance-based learning algorithms (IBK) and MLP.
It was evaluated with the NSL-KDD dataset and experimental results showed that the proposed
ensemble model achieved 98.24% accuracy, which can be improved with ensemble learning of DL
models, to enhance accuracy [42]. Table 1 summarizes the techniques and performances of various
techniques discussed in this section.

Table 1: Summary of related work

Proposed techniques Dataset Model performance metrics (%)

LSTM, MGA [13] BoT-IoT • Accuracy: 99.41
LSTM [14] TON_IoT • Accuracy: 96.35

• Detection rate: 98.6
• Precision: 98.9

DL [15] TON_IoT • Accuracy: 99.15
• F1-score: 9.83

RL [16] NSL-KDD • Accuracy: 91.4
• Recall: 90.2
• Precision: 92.8

DL [17] KDDCUP99, CICIDS 2018 • Accuracy: 99.57
CNN-LSTM [18] UNSW-NB15 • Accuracy: 93.21
LSTM-AE [19] CSE-CICDIS-2018 • Accuracy: 99.10%
Ensemble classifier [20] Cyber Clean Center • Accuracy: 94.08

• Sensitivity: 86.5
• Specificity: 85.68
• F-score: 78.24

SVM, KNN, DT, RF,
Adaboost, FNN [21]

NSL-KDD • Accuracy: 91.6
• Recall: 94
• F1-score: 91.6

RF [22] NSL-KDD • Accuracy: 99.3

(Continued)
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Table 1 (continued)

Proposed techniques Dataset Model performance metrics (%)

XGB [23] TON_IoT • Accuracy: 99.3
• Precision: 98.4
• Recall: 99.1

KNN [24] TON_IoT • Accuracy: 98.2
DNN [25] NSL-KDD • Accuracy: 81

• Precision: 96
• Recall: 70
• F1-score: 81

DL [26] Real time dataset • Accuracy: 97.36
• Recall: 98.46
• Precision: 97.81
• F1-score: 98.31

Ensemble learning [27] TON_IoT • Accuracy: 97.9
DaRaNN [28] TON_IoT • Accuracy: 99.14
Ensemble stacking [29] NSL-KDD, UNSW-NB15 • Accuracy: 95.15

• Precision: 96.47
• Sensitivity: 95.93
• Specificity: 93.76
• F1-score: 96.20

CNN [30] NID • Accuracy: 99.51
CNN-DT [31] NSL-KDD • Accuracy: 99.49
DRaNN_PSO [32] TON_IoT • Accuracy: 99.57
LSTM [33] UNSW-NB15 • Accuracy: 90.66
CNN [34] CSE-CIC-IDS2018 • Accuracy: 98.8

• Recall: 98.1
• Precision: 99.5

CNN [35] NSL-KDD • Accuracy: 99.3
XGB [36] TON_IoT • Accuracy: 99.0
ANN [37] UNSW-NB15 • Accuracy: 99.26
CNN, RNN, DNN [38] IoT malware dataset • Accuracy: 99.98

• Recall: 99.97
• Precision: 99.96
• F1-score: 99.94

BLSTM [39] NSL-KDD • Accuracy: 84.25
RaNN [40] UNSW-NB15 • Accuracy: 99.54
RF [41] Testbed dataset • Accuracy: 99.99

• MCC: 96.81
• Sensitivity: 97.44

IG-PCA [42] NSL-KDD • Accuracy: 98.24
• Recall: 98.2
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While existing research explores IDS using individual or an ensemble of ML/DL models, there
remains a need to enhance their performance metrics, such as accuracy and recall. This study addresses
this gap by proposing a novel stacking ensemble approach that combines two CNNs with an XGB
model. To the best of our knowledge, this specific combination has not previously been explored in
the literature.

3 Methodology

In this section, an ensemble stacking based model called Deep Stacked Neural Network (DSNN)
was proposed to develop IDS for a better attack detection rate and accuracy in a smart industrial
environment. The proposed DSNN based IDS architecture, CNN base learners’ architecture and its
hyperparameters are discussed in this section. The TON_IoT dataset characteristics and preprocessing
steps are also described.

3.1 Proposed Ensemble Stacking Based Intrusion Detection System

An ensemble stacking based IDS was proposed with DSNN for of normal and attack classification
in network traffic of smart industrial environments. We have proposed heterogeneous stacking model
which consists of two different CNNs as base learners, including CNN-1 and CNN-2, which consist
of 4 and 6 trainable layers. We used XGB as the meta learner, which is an implementation gradient
boosted decision tree and a widely used algorithm, due to its efficiency to achieve better performance
in large datasets. The DSNN was developed with k-fold cross validation technique and evaluated with
TON_IoT testing subset. We used various performance metrics for model evaluation, comparing them
with baseline and existing models. The proposed IDS with DSNN architecture are shown in Fig. 2.

Figure 2: Proposed IDS with DSNN architecture for a smart industrial environment
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Hyperparameters of the proposed DSNN are given in Table 2.

Table 2: The proposed DSNN and its base learner hyperparameters

Hyperparameter Value

No. of base learners 2
Base learners CNN-1 with 9 layers and CNN-2 with 13 layers
Meta learner XGB
Activation functions ReLU, Sigmoid
Dropout rate 0.5
Optimizer Adam
Learning rate 0.001
No. of epochs 100
Loss function for binary classification Binary_crossentropy

3.2 Convolutional Neural Network (CNN) as Base Learner

CNN is a prominent DL algorithm primarily used for computer vision problems. We proposed
two CNN models with different architecture as the base learner for DSNN. We proposed both CNNs
after an iterative process of hyperparameter optimization of CNNs. Both CNNs’ hyper parameters
are the same, except for the number of layers. The CNN-1 consists of a total of 9 layers, of which 4
are trainable and 3 are non-trainable. The CNN-2 model consists of a total of 13 layers, of which 6
are trainable and 7 are non-trainable. We optimized CNNs with an Adam optimizer of learning rate
0.001 and used ReLU and Sigmoid activation functions. Binary Cross Entropy loss function was used
to measure the loss between actual and predicted labels. The CNN architecture is illustrated in Figs. 3
and 4, where X1, X2, . . . , Xn represents features in input layer, and 0/1 represents normal/attack class.

Figure 3: Proposed CNN-1 9-layer architecture
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Figure 4: Proposed CNN-2 13-layer architecture

3.3 Overfitting in Development of DSNN

We resolved overfitting issues in DSNN development in various ways. We proposed the ensemble
feature selection method to select important features which reduces the overfitting problem because
when training with important features, DSNN demonstrate better results. We also used various
regularization layers in base learners, such as max pooling, batch normalization and dropout layers,
to reduce overfitting.

3.3.1 Max Pooling Layer

The max pooling layer was used for the down sampling operation to reduce the parameters. Max
pooling is used to decrease overfitting, training time and increase model performance.

3.3.2 Batch Normalization Layer

The batch normalization layer was used to normalize the layers’ input. It is used between training
layers and helps to decrease training time and increases performance using layer normalization.

3.3.3 Dropout Layer

The dropout layer was used to remove neurons for the down sampling operation, which was used
to reduce model overfitting. We used a 0.5 dropout value for both the CNN-1 and CNN-2 models.

3.4 Experimental Setup

Our experiments were conducted on a readily available laptop with an Intel Core i5 (5th Gen),
processor, 2.30 GHz processor, 8 GB RAM and 750 GB HDD, which provided sufficient processing
power for our chosen software stack (Python, libraries including TensorFlow, Keras, scikit-learn,
matplotlib, and mlxtend). These libraries offered robust functionalities for data manipulation, model
training, evaluation, and streamlining the development of our DL based IDS. We evaluated the system
using both the original imbalanced dataset (with all features) and subsequently augmented the dataset
with selected features. All the DL models (CNN-1, CNN-2 and DNN) used for developing our
proposed DSNN employed the same learning rate, dropout rate, and Adam optimizer. Details of the
baseline DL model parameters are provided in Table 3.
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Table 3: Experimental design with various parameters for development of proposed DSNN

Model Parameters Epochs

DNN 523 100
CNN-1 2464 100
CNN-2 1395 100

3.5 TON_IoT Network Dataset

TON_IoT dataset contains telemetry network traffic data from various sources consisting of
emerging cyber-attack events such as MiTM and ransomware, which is why we selected that dataset
for our research study. There is a need to be familiar with the dataset because it will be used for training
and testing the model. The dataset description is used to explore the data and its features. The dataset
consists of 45 features: out of 45, 43 are training features and 2 features are labels, i.e., Normal/Attack.
Total events are 461,043 which includes 300,000 normal, while 161,043 are attack events. The graphical
representation of class normal and attack examples is given in Fig. 5.

Figure 5: TON_IoT network dataset normal and attack training examples

DL models require enough data for training and subsets for evaluation. We therefore divided the
TON_IoT dataset into two subsets: 80% for training and 20% for testing. The training subset was used
to train the model which will learn the pattern in the data. The testing subset consists of those records
which have never been seen by the trained model. This subset is used to predict unknown attacks for
model evaluation. The training and testing subset statistical description is shown in Table 4.

Table 4: Training and testing subset description

TON_IOT characteristic Subset description

Dataset type Training subset Testing subset

Normal events 240,027 59,973
Attack events 128,807 32,236
Total events 368,834 92,209
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In Fig. 5 and Table 4, the TON_IoT network dataset exploration shows that the whole dataset
and training subset have imbalanced class distribution. Normal events are higher than attack events,
which will result in an imbalanced learning problem in model training. We have tackled the problem
of imbalanced learning with the oversample SMOTE technique. The SMOTE technique is further
discussed in the data augmentation section.

3.6 Preprocessing

Preprocessing is the major step to prepare data for the development of ML based IDS. If the data
is clean, normalized, and relevant it will result in being an efficient model. The preprocessing element
consists of data cleaning, feature transformation, feature selection and data augmentation.

3.6.1 Data Cleaning and Transformation

Data cleaning is a process to clean a dataset which may contain insignificant information, such
as null and zero values. TON_IoT does not contain null values, but features contain zero and dash
“-” values, which we have replaced with zero to make a general value; we then tackled zero with
our proposed zero drop feature selection technique and mean/mode. Features with zeros have been
replaced with mean if it is a numeric feature; zeros in categorical features were replaced with mode.

Data transformation was used to transform data into useful forms for model learning. Feature
normalization and categorization were used to transform the TON_IoT data into a numeric form
which was required by the models. Data normalization was used to transform the large numeric value
into a smaller form. We used the min-max scalar technique to transform data between 0 and 1. Data
normalization helps to reduce training time and increases performance. The Min-Max scalar formula
is shown in Eq (1).

y = (X − min)

(max − min)
(1)

where X represents features and min, max represents features range.

Categorical features need an alternative technique to transform the categorical values into the
required form. We have used a label encoding technique for encoding categorical values such as service
(FTP, HTTP); these values are encoded into numbers (1, 2) where each number represents a feature
value.

3.7 Ensemble Feature Selection

Feature selection is an important step to select relevant features and drop irrelevant features. We
can estimate features’ relevance and select the most important features using the feature selection
method. Data with high dimensions can increase model performance; however, it can also increase
overfitting, so it can be tackled with feature selection which improves model performance and reduces
overfitting. We proposed a novel ensemble feature selection method which consists of two techniques:
one is zero drop (ZD), and the second is information gain (IG). The TON_IoT dataset has many
features which contain important information and may contain zero values. We proposed the ensemble
feature selection technique which selects the features with respect to both issues. The first training
subset was given the zero-drop technique, which returns a reduced training subset; after that the
reduced features training subset was given as the input to IG. The proposed ensemble feature selection
method is further illustrated in Fig. 6.
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Figure 6: Hybrid ensemble feature selection method

3.7.1 Zero Drop Feature Selection

TON_IoT contains various features with a quantity of zeros. Mostly, feature selection techniques
use various threshold scores or association rules to use select features, while features with zero values
are removed or replaced with mean or mode. We proposed a novel zero drop technique to deal with
zero values and select important features based on zero drop (ZD) value. ZD value is the percentage
(%) of the number of zero records with the total number of records in the feature. The equation of zero
drop is given in Eq. (2).

ZD = z
x

× 100 (2)

where z represents % of number of zeros in feature and x represents total number of records in feature.

The zero-drop technique works in that flow, i.e., if the ZD value is less than 95% then it is a
significant feature, otherwise it is not significant and will be dropped. So, we dropped those features
where the ZD value was greater than 95%. ZD feature selection reduced the training set from 43–22
features. Zero drop feature selection is further illustrated in Fig. 7.

Figure 7: Zero drop feature selection

3.7.2 Information Gain (IG) Feature Selection

IG is a prominent feature selection technique to select the most important features. We have given
a reduced training set of zero drop technique to IG. The IG equation is given below:

H (X) =
∑k

i
P(xi) log P(xi) (3)

H (Y |X) =
∑

x,y
P (x, y) log

(
1

P (y|x)

)
(4)

IG (Y |X) = H (X) − H(Y |X) (5)



558 IASC, 2024, vol.39, no.3

Using substitution of Eqs. (3) and (4) in Eq. (5), the IG Eq. (5) will be

IG (Y |X) =
∑k

i
P(xi) log P(xi) −

∑
x,y

P (x, y) log
(

1
P (y|x)

)
(6)

where IG (Y|X ) represents information gain, X represents features, Y represents class, P(X ) represents
probability, H(X ) is entropy and H(Y|X ) represents conditional entropy.

We chose the value 0.01 to select the final training subset features for the model’s training. IG
technique reduced the training subset, which consisted of 17 features, which was the final training
subset. The final training subset was achieved using the ensemble feature selection method shown in
Fig. 8.

Figure 8: Training subset final 17 features with IG feature importance

3.8 Data Augmentation for Imbalanced Learning

Data augmentation is a method to generate synthetic data samples of imbalanced classes to tackle
the problem of imbalanced learning. Imbalanced learning increases bias towards the majority class,
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which also reduces model performance. In TON_IoT, normal events are higher than attacks, which
indicates that normal is majority while attack is minority class, so the Synthetic Minority Over-
Sampling Technique (SMOTE) [43] as an over-sampling technique was proposed to overcome that
problem. The SMOTE technique was applied on the training subset, which made both class events
balance. Normal and attack events distribution in the original training subset after applying SMOTE
is shown in Table 5.

Table 5: Description of TON_IoT training subset

Training subset events TON_IoT original TON_IoT after SMOTE

Normal 2,40,027 2,40,027
Attack 1,28,807 2,40,027
Total 3,68,834 4,80,054

3.9 Performance Evaluation Metrics

We used the following metrics to evaluate the performance of the model:

Accuracy is the percentage of correctly classified records over the total number of records.

Accuracy = (TP + TN)

TP + TN + FP + FN
(7)

Precision is defined as the ratio of the number of true positives (TP) divided by the sum of true
positives (TP) and false positives (FP).

Precision = (TP)

TP + FP
(8)

Recall is calculated as the ratio of the number of TP divided by sum of TP and FN.

Recall = (TP)

TP + FN
(9)

F1-score is the weighted harmonic mean of the precision and recall and reflects the balance
between Precision and Recall.

F1 − Score = 2 × (Recall × Precision)

Recall + Precision
(10)

False positive rate (FPR) is calculated as the ratio of the number of FP divided by the sum of FP
and TN.

FPR = FP
FP + TN

(11)

False negative rate (FNR) is calculated as the ratio of the number of FN divided by the sum of FN
and TP.

FPR = FN
FN + TP

(12)
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MCC is used to find the correlation between true and predicted classes.

MCC = TP × TN + FP + FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(13)

Receiver Operating Characteristic Curve (ROC) is used to graphically evaluate the performance of
the model. It is plotted between true positive rate (TPR) and FPR. Confusion matrix is a table which
shows actual and predicted classes. It consists of TP, TN, FP and FN.

We selected various performance metrics to quantitatively demonstrate model efficiency and to
visually depict its performance from different perspectives. Accuracy measures overall correctness,
while recall and precision focus on specific portions, like TP and FP rates. Additionally, we utilise the
ROC curve to depict the trade-off between TPR and FPR across various thresholds. Furthermore, the
confusion matrix provides a detailed breakdown of the model’s prediction, offering valuable insights
into its strengths and weakness.

4 Results and Discussions

This section presents and discusses binary classification experimental results on the TON_IoT
dataset. The proposed DSNN outperformed more in terms of accuracy and other performance metrics
than individual ML and DL models. The proposed DSNN model was compared with individual
CNN-1, CNN-2, DNN, logistic regression, Naïve Bayes, and XGB. We further compared the DSNN
with related work. To evaluate our model’s performance, we selected various quantitative metrics such
as accuracy, recall, precision, F1-score, MCC, FPR, FNR. Additionally, the ROC curve and confusion
matrix is used for visualization of model performance. The evaluation results of various performance
metrics of the proposed DSNN and baseline models are shown in Table 6.

Table 6: Performance metrics for evaluation

Model Accuracy (%) Recall (%) Precision (%) F1-score (%) MCC (%) FPR FNR

CNN-1 97.01 96.49 95.04 95.76 93.46 0.02705 0.03515
CNN-2 99.31 99.66 98.39 99.02 98.50 0.00875 0.00335
DNN 99.03 98.38 98.85 98.61 97.87 0.00617 0.01616
LR 88.98 96.16 77.65 85.92 78.23 0.14873 0.03837
Naïve Bayes 81.14 94.56 66.09 77.8 75.76 0.26080 0.05100
XGB 97.16 93.42 98.38 95.84 93.76 0.00825 0.06580
DSNN 99.61 99.62 99.28 99.45 99.15 0.00390 0.00385

Quantitative analysis of DSNN performance was completed with the confusion matrix (see
Fig. 9), which showed that DSNN can detect a more accurate attack with a lower FR and FN. The
ROC curve also visually unveiled that DSNN performance was more satisfactory than baseline models,
as shown in Fig. 10.
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Figure 9: DSNN confusion matrix

Figure 10: ROC curve of DSNN and baseline models

The DSNN model provides features to select different hyperparameters such as the selection of
base and meta learners, increasing the number of base learners which can be selected and optimized
with heuristic techniques, i.e., trial and error. We have selected those hyperparameters using the trial-
and-error technique and achieved better performing results than on all the baseline DL and ML
models. In Table 6, experimental results showed that the DSNN model achieved better accuracy, recall,
precision, F1-score, MCC, FPR and FNR scores than all baseline models, except for CNN-2, whose
recall and FNR value was 99.66 and 0.00335, which is slightly higher than the DSNN model. Other
performance metrics, however, were lower than the DSNN. CNN-2 achieved a good score due to its
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deeper structure than CNN-1, and we selected this as the base learner for the DSNN, which enhanced
the DSNN performance metrics more than CNN-2 and CNN-1. The DSNN confusion matrix shows
that that the quantity of TP and TN are high, and FP and FN are low, therefore the FPR of the DSNN
is lowest of all the baseline models. The ROC curve graph also showed that that the DSNN quality
was better than the other baseline models. After the proposed DSNN, individual DL models achieved
better results and showed that DL models are more efficient in intrusion detection. If we compare ML
models, XGB, which is also a type of ensemble ML model, achieved a higher performance than all
the baseline ML models. The Naïve Bayes and logistic regression performance is lower, which makes
them less effective than all the baseline models.

The DSNN’s strong performance can be attributed to several factors. CNNs are adept at learning
from a large amount of data, effectively extracting and learning features. Additionally, we employed
various regularization layers to the model’s parameter size, further enhancing its performance.
Ensemble stacking, which combines the predictions of CNN-1 and CNN-2 (both with good individual
performances) as inputs to train the XGBoost model (another ensemble method), which contributed
to the DSNN’s high accuracy. Therefore, the DSNN with ensemble of CNN-1, CNN-2 and XGB,
achieves superior performance metrics compared to all the baseline models. A comparison of proposed
work with similar research work available in the literature is presented in Table 7.

Table 7: Comparison of proposed work with previous work

Reference Dataset Technique(s) Accuracy (%) Recall (%) Precision (%) F1-score (%) FPR

[7] NSL-KDD LSTM 88.13 – – 99.58 –
[8] TON_IoT ANN 94.17 93 94 93.5 –
[9] TON_IoT GRU 95.69 96.99 91.23 94.02 –
[14] TON_IoT LSTM 96.35 96 98.4 97.19 –
[15] TON_IoT DL 99.15 – – 98.83 –
[16] NSL-KDD DNN, QL 91.4 90.2 92.8 – –
[22] NSL-KDD RF 98.8 96.2 96.8 96.5 –
[23] TON_IoT XGB 92.2 99.60 95.4 97.5 0.026
[24] TON_IoT KNN 98.2 – – – –
[28] TON_IoT RaNN 99.14 99.07 99.23 99.27 –
[32] TON_IoT DraNN 99.57 99.59 – – –
[35] NSL-KDD CNN 99.3% – – – –
[36] TON_IoT KNN 98.2 98.9 95.9 97.4 0.023
[42] NSL-KDD IG-PCA 98.24 98.2 – – 0.017
Proposed TON_IoT DSNN 99.61 99.62 99.28 99.45 0.003902

In Table 7, in comparison with existing related work, it also showed that the proposed DSNN
performed better than existing models. The authors used LSTM [7] for IDS and the DL model results
are not up to potential as compared to DSNN. ANN was evaluated with TON_IoT for attack detection
in IoT network; the ANN efficiency, as compared to DSNN and DSNN, has promising results [8]. The
GRU model was proposed for IDS and evaluated with TON_IoT [9], but it achieved lower accuracy,
recall, precision, and F1-score. LSTM was again proposed by [14] for intrusion detection, and achieved
a lower performance metrics score than our proposed DSNN model. Oseni et al. [15] proposed the DL
model, but it achieved better performing results on TON_IoT.
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5 Conclusion and Future Work

This paper addresses the problem of improved network IDS for threat mitigation in a smart
industrial environment. We investigated the performance of the DSNN model which is ensemble
stacking of CNN models and XGB. The proposed model has achieved higher performance results
than baseline models. This research study improves the impact of network IDS and ensemble stacking
techniques with CNN models, which strengthens industries to deploy such systems to mitigate their
networks. CNN as a base learner has increased model accuracy and predicted attacks with a lower
FPR than individual DL and ML models. DSNN-based Network IDS can be used inline to detect
emerging attacks and reduce threat risks in real-world smart industrial environments. In a real-world
smart industrial environment, DSNN-based network IDS can be deployed and trained with real-time
data to improve its performance for threat mitigation. There may be challenges such as underfitting
and overfitting in real-time implementation of DSNN; however, DSNN provides the opportunity for
hyperparameter optimization of CNN base learners, such as adding or removing various layers.

The limitations and future work directions are highlighted in our work. Our proposed zero drop
technique is not useful for those datasets that do not contain huge numbers of zero values, so only
individual IG techniques can be used for feature selections. DSNN is proposed to detect intrusions
at the network level; however, there are also challenges to developing IDS for hosts. The generalized
model can be developed with ensemble methods for threat mitigation at both host and network stages.
The proposed ensemble feature selection method can be compared with existing feature selection
methods on IoT datasets for a comparative evaluation of model performance. The transfer learning
method can be used with the individual and ensemble models to further extend our work. Furthermore,
graph-based deep learning models, such as graph convolutional and graph attention networks, can be
used as a third-base learner to develop IDS. Graph neural networks-based ensemble learning can
be used to improve attack detection performance. A federated learning-based approach can be used
to develop a more robust ensemble stacking-based IDS. DSNN may not be able to detect a zero-
day attack, or most advanced attacks, such as advanced persistent attacks, spyware, or polymorphic
attacks, so further datasets can be used to train models for the detection of the most advanced cyber-
attacks.
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