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ABSTRACT

Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.
The scene can change during the image sequence and plays a vital role in the localization performance of robotic
applications in terms of accuracy and speed. This research proposed a real-time indoor camera localization system
based on a recurrent neural network that detects scene change during the image sequence. An annotated image
dataset trains the proposed system and predicts the camera pose in real-time. The system mainly improved the
localization performance of indoor cameras by more accurately predicting the camera pose. It also recognizes
the scene changes during the sequence and evaluates the effects of these changes. This system achieved high
accuracy and real-time performance. The scene change detection process was performed using visual rhythm
and the proposed recurrent deep architecture, which performed camera pose prediction and scene change impact
evaluation. Overall, this study proposed a novel real-time localization system for indoor cameras that detects scene
changes and shows how they affect localization performance.

KEYWORDS
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1 Introduction

Indoor camera localization is pivotal in identifying a camera’s position and orientation within an
environment relative to a specific object. This domain is a foundational aspect of artificial intelligence
research, emphasizing indoor robot navigation. The primary objective here is to accurately determine
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the camera’s position, or its ‘pose’, within a physical space. Such localization techniques are crucial
for various robotic operations, including navigation, scene reconstruction, and object recognition.
Different methodologies have been employed in this field, including but not limited to direct, feature-
based, deep learning, and hybrid approaches. Particularly, deep learning techniques focus on matching
features from input imagery to predict the camera’s precise location and orientation. The use of
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are predominantly
observed, where CNNs are responsible for feature extraction from images, and RNNs are tasked
with predicting the camera’s pose. Recent advancements have notably enhanced the accuracy and
speed of indoor camera localization. Despite these advancements, applications like indoor robot
navigation and surveillance demand even more precise camera pose predictions. Achieving such
precision necessitates real-time localization systems that adapt to changes within the scene, improving
performance dynamically. Traditional systems typically localize within static environments and fall
short during dynamic scene transitions. It highlights the need for a real-time localization strategy
that accommodates scene variability, which is crucial for robotic guidance and mobile navigation
applications.

Several algorithms for camera localization utilize public indoor datasets to position cameras
accurately. PoseNet, notable for being the inaugural real-time method offering six degrees of freedom,
employs a single RGB image for prompt indoor camera position prediction [1]. It stands out for its
ability to localize cameras in real-time across diverse environments with six degrees of freedom (6-DoF)
despite requiring substantial computational resources. Following PoseNet, another method utilizing a
CNN detects scene shifts, facilitating feature extraction directly from imagery and negating the need for
manual feature identification [2]. However, this reliance on extensive labelled datasets poses challenges
in terms of cost and feasibility in industrial settings. Another approach leverages point cloud data for
camera positioning, while visual simultaneous localization and mapping (SLAM) account for dynamic
indoor elements [3]. Specifically, RGBD-SLAM [4] integrates semantic segmentation to support
augmented reality and autonomous robot deployment in real-time within dynamic environments,
underlining its relevance for augmented reality and robotic guidance [5]. Additionally, RSANets
enhance object recognition by combining residual elements with semantic attention, demonstrating
superior performance and accuracy [6]. In SLAM systems, precise real-time object detection is
paramount for effective localization and mapping.

Deep learning has largely driven recent advancements in indoor camera localization, showing
marked improvements in processing and application performance. However, certain robotic applica-
tions, like robot guidance, mobile robotics, and surveillance, require further refinement for enhanced
accuracy. It is crucial to acknowledge that real-time deep learning systems processing video input may
suffer accuracy degradation due to scene variations within the image sequences. Understanding the
impact of these changes on performance in real-time settings is essential. Consequently, there is a need
for a deep learning-based indoor camera localization system that evaluates performance fluctuations
resulting from scene changes in image sequences.

This research introduces a novel camera localization strategy employing recurrent neural networks
to surmount the limitations of current systems. This approach, integrating scene change detection with
real-time localization, is tested using the 7-Scenes dataset. The findings reveal that this method achieves
superior accuracy and robustness compared to previous studies. The contributions of this research are
summarized below:

1. Development of a recurrent neural network-based approach for recognizing scene changes
during image sequences.
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2. Proposed a novel recurrent neural network-based indoor camera localization approach that
performs real-time camera localization with superior accuracy compared to state-of-the-art
camera localization approaches.

3. Development of a real-time indoor camera localization system that integrates the proposed
recurrent neural network approach with a scene change detection approach.

4. Evaluate the performance of the recurrent neural network on a large indoor dataset that
provides real-time performance and excellent accuracy.

In summary, the proposed recurrent neural network-based approach shows improved accuracy
and robustness of indoor camera localization performance. This study contributes to the great role of
indoor camera localization systems, especially for indoor robot navigation and augmented reality.

2 Related Works

Indoor camera localization is essential for many machine vision applications, such as indoor
robot navigation. Recently, numerous deep learning-based camera localization algorithms have been
proposed, improving real-time camera localization performance but still losing performance due to
scene changes. Many approaches have been proposed for real-time camera localization, including
structure-based, feature-based, direct, indirect, and hybrid methods.

2.1 Structure-Based Method

A deep learning-based camera localization system, Faster-RCNN [7], has been proposed for object
recognition. It mainly works on semantic segmentation of multiscale targets based on object recog-
nition. Convolutional neural network-based deep learning systems detect scenes where images are
captured using mobile devices [8]. The system is designed for environments with weak or unavailable
GPS signals, such as indoors. RGB-D SLAM [9] is mapped to multi-level semantic information for
dynamic environments, which combines RGB and depth image information [10] and provides reliable
and robust localization. It is not easy to evaluate accurately as standard benchmarks are required.
An indoor localization system [11] has been used for service robots, integrating machine learning
and image processing techniques for object recognition. It dealt with a real-world application but
needed to provide a practical solution for object tracking. Another strategy for object detection
[12] is to improve indoor camera localization systems that use combined audio and video frequency
identification sensors to localize objects indoors. It focuses on multipath effects in indoor navigation
but could benefit from further analysis. A neural network-based continuous scene representation
method [13] uses raw sensor data to generate a constant scene representation. This research provides
a solution to current scene representation problems.

2.2 Feature-Based Method

Feature-based camera localization methods, such as SIFT [14] and ORB [15], are the main
approaches for camera localization, which detect and match features from the input images and
3D models of the scenes to predict the camera poses. The methods perform high accuracy and
robustness but degrade accuracy when the scene changes. ORB-SLAM [16] is a feature-based
method that predicts the camera trajectory using pose graph optimization. It performs real-time
localization for large indoor environments and minimizes loop closure; however, it requires significant
computational resources to avoid capturing the featureless region. Another feature-based system,
EfiLoc [17], efficiently correlates features and 3D points for large indoor environments and provides
potential performance improvement of indoor camera localization. Dynamic SLAM for mobile robot
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navigation systems uses onboard processors and RGBD cameras that handle dynamic objects in the
environment and predict high-performance real-time camera localization. The multi-sensor-based
SLAM [18] combines information from multiple sensors and creates an accurate environment map, a
promising solution for robust simultaneous localization and mapping.

2.3 Direct Methods

Direct monocular SLAM [19] predicts the camera trajectory by minimizing the photometric error,
thereby improving the camera localization performance to reduce computational complexity and
motion blur and overcome scene change problems. However, they are still sensitive to changes in light
brightness and significant camera movement [20]. RDMO-SLAM [21], a real-time visual SLAM, uses
optical flow to control dynamic object motion and predicts camera position; it improves real-time
performance in a moving object environment while maintaining computational complexity. Another
promising research [22] more accurately localizes a camera in known environments using learning maps
that better understand the environments, especially defensive structures, and related objects. A multi-
session real-time visual SLAM [23] controlled mapping in multiple sessions, where an indoor robot
mapped different sessions, and even the robot did not know its initial position. It integrates data from
large environments with multiple sensors, but the accurate localization of the large environment with
multiple sensors is more complicated. Real-time visual SLAM [24] performs partial dense mapping
with a single camera in different environments. Visual SLAM provides a real-time solution for more
accurate localization in dynamic environments but requires high hardware installation. Another real-
time visual SLAM [25] localized an indoor camera using cameras and depth sensors to monitor
the location of an emergency service worker in a building, which requires significant computational
resources, such as high-resolution images; otherwise, the performance is degraded.

2.4 Hybrid Methods

The hybrid method integrates direct and feature-based methods to utilize their influence and
reduce weaknesses. DSO [26] provides high localization performance for a large environment, con-
trolling scene changes and camera movements, but requires careful tuning of hyperparameters
when massive camera movements occur. DSO requires initial feature points for camera motion,
but accurately initializing this feature is more challenging. A geometry-constrained scale estimation
method [27] estimates the scale factor of camera motion in monocular visual odometry to ensure
optimal performance. Still, implementation requires expensive sensors such as LiIDAR and radar.
Other hybrid camera localization methods, PTAM [28] and ORB-SLAM [16], show high accuracy
and robustness. Integrating real-time deep learning algorithms into augmented reality systems offers
further advantages but requires high computational resources.

2.5 Deep Learning-Based Method

In recent years, deep learning-based indoor camera localization has attracted the attention
of researchers and industry for autonomous robot navigation systems. The most pioneering deep
learning-based real-time camera localization method is PoseNet [1]. The convolutional neural network
is used for feature extraction from the input images and predicts the 6-DoF camera poses in real
time. ViNet [29] introduces a new approach for visual-inertial odometry (VIO) that uses a recurrent
neural network [30,31] to determine the mapping between two consecutive images and the pose
changes between them. The ViNet is a sequence-to-sequence learning method that resulted in improved
performance. However, it led to higher computational complexity in VIO systems and made the
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technique less accessible for specific applications. An unsupervised convolutional neural network-
based learning method estimates the ego-motion and depth of video scenes without depending on the
ground truth [32]. Although highly dependent on training data, it performed less well than supervised
learning because it was an unsupervised learning model.

A deep learning [33] approach predicts the camera position using an RGB-D camera that
provides location information but requires comprehensive evaluation. A comprehensive evaluation
of deep learning camera localization shows visual SLAM’s recent developments and challenges.
DeepLab [34], an unsupervised learning method with residual components evaluated on different
datasets, shows improvements over existing approaches. The benchmark datasets showed outstanding
results for semantic segmentation tasks; however, architectural layout and hyperparameters can affect
performance. Another deep learning approach [35] describes the scene representation and improves
accuracy and robustness. Due to the availability of accurate labeling data, the model required less time
and resources. However, without labeling data, the model could achieve a different level of accuracy.

The weight-vision transformation model optimized computational complexity and achieved high
localization accuracy [36]. Only specific localization environments or data sets can fully exploit the
model’s efficiency. Matching captured images with database images localizes an indoor device [30].
It improved the indoor camera localization system using an efficient image retrieval technique, but
it needs to be validated more extensively under certain conditions in different indoor environments.
A deep learning approach based on modifying geometric loss functions improved the localization
performance [37]. It attracted the attention of researchers by introducing a novel technique for esti-
mating the relative camera pose estimation technique. It works incredibly well in a specific dataset but
cannot be generalized to unknown data or real-world environments. The indoor camera localization
approach has improved localization performance and significantly advanced indoor navigation [38].
Deep attention needs to be fine-tuned with this deep learning approach, which can be challenging. The
geometric Clifford algebra-based regression technique for camera position improves the localization
performance of the camera [39]. It provides a theoretical basis for camera pose regression using
conformal geometric algebra, although it must be empirically validated in real-world datasets or
scenarios. A deep learning approach estimates the camera poses using the constraint of Epipolar
geometry [40]. The camera localization results improved by using the Epipolar constraints to reduce
the search space because noise and outliers in the input data can affect Epipolar approaches.

3 Methodology
3.1 Introduction

This section describes a detailed mechanism for detecting scene changes in image sequences and
measuring the impact on the real-time localization performance of indoor cameras. The complete
system includes a recurrent neural network-based architecture, detection of scene changes by visual
rhythms, and evaluate the effects of scene changes in image sequences. The primary intent of scene
change detection is to improve the accuracy and robustness of the localization of indoor cameras.

3.2 Scene Change Detection Using Visual Rhythm

The proposed approach describes the detecting scene changes process using a visual rhythm algo-
rithm [41], as shown in Fig. 1. The following is the scene change detection process and the importance
of capturing temporal dependencies in image sequences to identify scene changes accurately. Visual
rhythm examines temporal changes in short video sequences and identifies temporal dependencies
when scene changes occur. This section explains the scene change detection method in detail.
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Figure 1: Scene change detection system through visual rhythm

First, short videos (V) are converted into independent images and undergo image preprocessing,
such as scaling, converting RGB to grayscale, and enhancing contrast to improve image quality.
Extracted visual features from each image and the changes over time are recorded in a short video. The
standard method calculates the image difference, which is the difference between two adjacent images,
and determines the absolute difference between two consecutive images. Calculate the temporal
dependence of video using the extracted features in the rhythm analysis phase. Create a time series by
adding the intensity of the pixels corresponding to the image or calculating statistical measures. The
low-pass filtering technique is used for temporal smoothing or noise reduction and draws attention to
the overall rhythm [42]. The mathematical representation of the visual rhythm is as follows:

V={f &0}, x,yte{0,1,2..]} (N

V is the input video, ¢ is the time, (x, y) is the pixel location, and f, (x, y, ?) is the pixel value. V',
is the spatially reduced video can be represented as:

Vei={fr(x,y,0}, x,y,te€{0,1,2...} 2)

fr (x,y, 1) is the reduced video pixel location value (x, y). The relationship between the original
video and the reduced video can be represented as:

fT(xayat) :f;(rx-i_kxary-i_kyat) xﬂyvte{05152"'}70§kx5ky§r_1 (3)

where k, and k, are the offsets of the pixel unit, and r is the unit factor. The most crucial phase of visual
rhythm detection is detecting scene changes. When a significant scene change occurs, a threshold is set
using an adaptive method. An abrupt drop spike is detected when a scene transition occurs, indicating a
potential scene change has occurred [41]. The visual rhythm ( V'R) of the video (V) can be represented
as follows:

VR = {fvx (z, )} = {fr (x(2), ¥(2), D)} “4)

where x(z) and y(z) are the functions of the independent variable z, the detection of scene changes
is shown in Fig. 2. Post-processing is another step that refines the detection of scene changes through
additional strategies such as edge detection, histogram analysis, or frame difference. This strategy can
support validating and eliminating false alarms and can detect accurate or minimal scene changes.
The performance of the scene change detection method is evaluated by comparing the detected scene
changes with the ground truth values. Revising the process and testing different feature extraction
approaches, thresholds, and post-processing strategies can improve the accuracy and speed of scene
change detection.
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Figure 2: Visual rhythm scene change detection process

It should be noted that scene change detection is still an important area of research in video
analytics and that many algorithms exist for scene change detection. A particular implementation
specification may differ by the degree of difficulty of the video data and the application requirements.

3.3 Recurrent Deep Architecture for Camera Localization

This section describes a camera localization approach that integrates an indoor camera localiza-
tion system based on a recurrent neural network with a scene change detection system and explains
how to effectively detect scene changes and incorporate them into a localization system to improve the
process of camera localization, as shown in Fig. 3. Create fourteen input short videos, including seven
with scene changes and seven without, using the visual rhythm algorithm to determine whether there
is a scene change in the input image sequence. Next, develop a recurrent neural network architecture
for camera pose estimation, which defines various error distributions such as MAE, MSE, RMSE,
positional error, and orientational error for each scene. CNN extracts image features from the input
image sequence, and LSTM detects pose loss. Refer to one type of RNN as Long-Short-Term Memory
(LSTM), which prevents the disappearance of gradients. LSTMs using a technique known as gates
can learn long-term dependencies. Several advanced, recurrent architectures, including LSTM [43]
and GRU, have addressed the RNN mentioned above. LSTMs are effective in solving sequence-based
problems with long-term constraints.

Scene changes detection |
=2 —> using visual rhythm 4
A d algorithm

o)

Input short video scene change detection predict camera pose camera pose
L Evaluate the
<+— — <+
Update Hyperparameter effect of
Hyperparameter optimization scene change

Figure 3: Indoor camera localization process for the proposed approach

Indoor camera localization describes several phases to accurately predict the camera pose from
image sequences or videos. First, a short video is provided as input, and the visual rhythm algorithm
analyzes the change in the scene. This algorithm successfully identifies the shift from one scene to
another, making it easier to perform further analysis. Subsequently, a recurrent neural network (RNN)
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predicts the camera pose using information extracted from the input video. Next, it investigated
the influence of scene changes on the accuracy and speed of camera localization. The evaluation
process helps to improve the functionality of the overall camera localization system. A hyperparameter
optimization technique was applied to improve system performance and ensure optimal results. By
repeatedly updating the hyperparameters, the camera localization process continuously enhances and
increases the ability to predict the camera pose more accurately in different environments.

Here, the measurement technique for localization accuracy is discussed, which mainly uses the
Euclidean distance to calculate the pose error (X, Y°) of the proposed camera localization system.
The defined thresholds of the three groups, such as best, average, and worst pose error, are (0.25 m, 2°),
(0.5m, 5°), and (0.5 cm, 10°), respectively [44]. The absolute difference between the predicted position,
the orientation value, and the actual position and orientation values measures the accuracy of the pose
estimation. The position error is calculated based on the Euclidean distance between the expected and
the exact original values of the camera. The value for the position error is:

Perrur = |[Cest — Cgt ”2 (5)
C., 1s the estimated value of the camera pose error, and C,, is the actual camera value of the origin
[44]. The orientation error || is measured by convention:

2cos |a| = trace(R ' R.,) (6)

Here, |«| is the smallest rotation angle required to align the estimated rotation matrix R,, with
the ground truth value of the rotation R,,. The deep learning-based pose estimation technique is
a classification that only estimates the pose of the images [1]. They represent the camera pose
mathematically as:
G- -L

lqll
where [x, ¢] is the ground truth pose and 8 is the hyperparameter that determines the relative weight
of the orientation and position errors that depend on the training dataset.

loss(l) = | X — x|, + B8 (7)

2

3.4 Datasets

This section describes the data set used for the indoor camera localization system and validates the
model. Explain the recorded image sequence or short video with and without scene changes in indoor
environments. The Microsoft 7-Scenes dataset [45,46] was used to evaluate the proposed recurrent
neural network architecture for indoor camera localization. This dataset is commonly used for RGBD
analysis and consists of seven different indoor scenes; example images are shown in Fig. 4. The images
were captured with a wearable Kinect camera; the image resolution was 460 x 480 pixels. The Kinect
fusion technique was used to predict the camera poses more accurately and to establish a link to
the ground truth. Each scene consists of multiple sequences, and each image contains three different
files, e.g., RGB, depth, and text files, with a 4 x 4 matrix consisting of intrinsic and extrinsic camera
parameters. The dataset is challenging because it has some difficulties, such as motion blur, a texture-
less surface, and a repetitive structure.

3.5 Image Pre-Processing and Hyperparameter Setup

The proposed deep architecture based on a recurrent neural network is trained with the Microsoft
7-Scenes dataset. Each image in the dataset was resized to 256 x 256 pixels using a combination
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of random and centralized cropping methods, and the image intensity was set between —1 and +1.
Some components are trained on the ImageNet [47] dataset to use a modified ResNet34 model for the
proposed model. The augmentation process is applied to improve the model’s accuracy and speed to
generalize for different indoor environments. Python 3.10 programming tools and PyTorch 1.2 [48,49]
framework is used in developing the experimental process. The Adam optimization method [50] with
a learning rate 5 x 107 is used. The model was trained with some hyperparameters on a system, such
as epoch is 20, the batch size is 64, training dropout is 0.5, the test dropout rate is 0.0, validation
frequency is 5, weight dropout is 0.00, the model learning rate is 10 x 5e™*, weight initialization value
B1s 0.9 and y is 0.3.

Office Pumpkin Redkitchen

NS

Figure 4: Example images of the dataset

3.6 Evolution Metrics

Evaluate the impact of scene changes on localization performance using more appropriate
evaluation metrics about the regression problem. Various error calculation metrics such as mean
absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) are the most
common metrics. The mathematical equation of the three different error metrics is shown below:

3.6.1 Mean Absolute Error (MAE)

1 n
MAE = - X 8
=2 lvi—xi (®)

i=1

where X; is the calculated value, and y; is the mean value.
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3.6.2 Mean Square Error (MSE)
1 n
MSE = — L —X;)’ 9
- Z(y x,) ©)
where x; is the calculated value, and y; is the mean value.

3.6.3 Root Mean Square Error (RMSE)

(10)

where Xx; is the calculated value, and y;, is the mean value.

4 Results
4.1 Introduction

This section describes the quantitative analysis of the experiments based on the results obtained.
Evaluate the performance of the scene change detection experiments and assessment of the impact on
the localization performance of the camera.

4.2 Scene Changes Detection

Determining whether there are scene changes in the input image sequence is very important,
as this can affect the performance of camera localization. Here is the visual rhythm algorithm that
determines if there is a scene change in an input image sequence and how many scene changes there
are; a straightforward “hard cut” is displayed at each scene change. Create a forty-second video with
960 frames for each scene of the seven scenes in the 7-Scenes dataset. Input short video into the visual
rhythm algorithm results in a continuous or “hard cut” output. If there is a scene change, a “hard
cut” is shown for each scene, and if there is no scene change, the continuous production is shown.
When analyzing the given video scene, scene changes were detected in the scenes “Chess”, “Heads”,
“Pumpkin” and “RedKitchen”, while no scene changes were detected in the scenes “Fire”, “Office”
and “Stairs”. One scene change was found in the “Chess” scene, three in the “Heads” scene, four in the
“Red Kitchen” scene, and five in the “Pumpkin” scene. The scene transition is characterized by a “hard
cut”, as shown in Fig. 5. Finally, the visual rhythm algorithm successfully identified scene transitions
in the input sequence or video, mainly four scenes: “Chess”, “Heads”, “Pumpkin” and “RedKitchen”.

Fig. 5 shows that some scenes have some “hard cut”, and some scenes have no “hard cut”. A “hard
cut” means a scene change has occurred, and no “hard cut” means no scene has been changed. There
is no “hard cut” in “Fire”, “Office” and “Stairs”. On the other hand, there is one in “Chess”, three in
“Heads”, four in “RedKitchen” and five “hard cut” in the “Pumpkin” scene. It means that the image
sequence “Fire”, “Office” and “Stairs” did not change any scene; on the other hand, there is one cut in
“Chess”, three in “Heads”, four in “Red Kitchen” and five in the “Pumpkin” scene. Now, let us see if
the scene changes affect the localization performance. Therefore, train the recurrent deep architecture
with two types of datasets: Scene change and without scene change. For “Chess”, the combined error
for one scene change is 0.0237 and the combined error without scene changes is 0.0253. For “Heads”,
the combined error for three scene changes is 0.0325 and the combined error without scene changes
is 0.0271. For “RedKitchen”, the combined error for four scene changes is 0.0309, and the combined
error without scene changes is 0.0250. For “Pumpkin”, the combined error is 0.0330 for five scene
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changes and 0.0250 without scene changes. It shows that the more often the scene is changed, the
more significant the difference in error. The scene changes of “Chess”, “Heads”, “Red Kitchen”, and
“Pumpkin” are one, three, four, and five, respectively, and the error difference is 0.0016, 0.0054, 0.0058,
and 0.0080, respectively. The above data shows that the more frequently the scene changes, the higher
the error, which affects the camera’s localization performance. Table 1 shows the number of scene
changes from Fig. 5 and their effect on localization performance. Table 1 also shows that as the scene
changes, the localization error increases, which is evident from the difference in error.

Fire:
0 scene
changes

Chess:

1 scene
changes

Head:

3 scene
changes

RedKitchen
4 scene

changes g /
- Y aw

Pumpkin:
S scene
changes

Figure 5: Scene change identification from dataset
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Table 1: The scene changes impact camera localization errors

Scenes No. of scene Combined error Combined error without  Error difference
change with scene change scene change

Chess 1 0.0253 0.0237 0.0016

Heads 3 0.0325 0.0271 0.0054

RedKitchen 4 0.0309 0.0250 0.0058

Pumpkin 5 0.0330 0.0250 0.0080

4.3 Analyze the Effect of Scene Changes

Here, use seven forty-second short videos with scene changes and seven forty-second short videos
of seven scenes without scene changes as input. Seven forty-second videos with and without scene
changes should be used to evaluate the proposed scene change detection approach, where each forty-
second short video consists of 960 frames of the dataset. The results obtained were evaluated in two
different ways. The first option is training using a data set. It involves comparing the seven scenes in
a data set with and without scene changes. Another evaluation process result is the calculation of the
average position and orientation errors with and without scene changes.

In the first method, train the deep learning approach with each scene input with and without
scene change and determine each scene’s AME, MSE, and RMSE. When the scene does not change,
the error distribution is shown in Fig. 6, and when the scene changes, express the error distribution in
Fig. 7. Then, calculate a combined distribution by the AME, MSE, and RMSE standard deviation.
Fig. 8 shows the results with and without scene change. From Fig. 8, it is easy to see how much a scene
change in the image sequence affects the performance.

Error Distribution with Scene Changes
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Figure 6: Error distribution of with scene changes
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Error distribution of without scene changes
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Figure 8: Combined error distribution comparison of scene changes and without scene changes

The result analysis in Fig. 6 shows that the error rate varies between the scenes. Among the
seven scenes, the “Stairs” scene has the lowest error with an MAE of 0.0521, an MSE of 0.0056,
and an RMSE of 0.0751. The two scenes, “Fire” and “Chess,” have comparatively lower error values.
“Pumpkin” shows the maximum error distribution with an MAE of 0.0689, an MSE of 0.0067, and an
RMSE of 0.0809. The other scenes, such as “Heads”, “Office”, and “RedKitchen”, show comparable

error values.

Fig. 7 compares the different error distributions for the various scenes using the 7-Scenes data set.
The scenes “Fire” and “Stairs” have relatively low errors, while “RedKitchen” has a higher error than
the other scenes. The “Fire” scene has the lowest MAE error at 0.0432, while the MAE error of the
“Stairs” scene (0.0429) is very close. The highest MAE error is recorded for the “Pumpkin” scene with
an error of 0.0548. “RedKitchen” has the highest MSE error at 0.0057, while “Fire” has the lowest
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MSE error at 0.0037. The “Fire” scene has the lowest RMSE error at 0.0595, while “RedKitchen” has
the highest RMSE error at 0.0769.

Fig. 8 shows the combined error distribution for the seven scenes and compares the errors for
both cases with and without scene changes. For example, in the scene “Chess”, the combined error
distribution with scene change is 0.0309, and without scene change is a lower error of 0.02505. It
shows that the transition to the scene “Chess” from the previous scene affects the overall error of
“Chess”. Similarly, Fig. 8 shows errors in other scenes, such as “Fire”, “Heads”, “Office”, “Pumpkin”,
“RedKitchen” and “Stairs”, both with and without scene changes. Fig. § clearly shows that the
combined error values with and without scene change are very different for each of the six scenes.
Only in the “Stairs” scene is the difference in error marginal. When the input image sequence changes,
it affects the localization performance of the camera and degrades the localization accuracy.

Now shown in a second way how changes in the image sequences affect localization performance.
Train a camera localization model with fourteen input videos, seven with and seven without scene
changes. Obtain position and orientation error values from the localization model as output. The
position error values obtained in both cases are shown in Fig. 9, and the orientation error values in
Fig. 10.

Comparison of Positional Error with and without Scene Changes
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Figure 9: Positional error comparison of with and without scene changes

The positional error obtained by training the recurrent neural network model with scene-changed
and without scene-changed datasets is shown in Fig. 9. In case of scene change, the positional error is
between 0.18 and 0.21 m. In this case, the minimum positional error is 0.18 m for the “Head” scene, and
the positional maximum error is 0.21 m for the “Stairs” scene. The positional errors of the other five
scenes are pretty close to each other. On the other hand, the positional error for the scene without scene
change is between 0.15 and 0.19 m. In this case, the lowest positional error is 0.15 m for the “Chess”
scene, and the highest is 0.19 m for the “Stairs” scene. The positional errors of the other five scenes
are pretty close to each other. Fig. 9 clearly shows that the positional error is comparatively lower for
each scene, which is relatively minor if the scenes in the input image sequences do not change.
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Comparison of Orientational Error with and without Scene Changes
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Figure 10: Orientational error comparison of with and without scene changes

The orientational error obtained by training the recurrent neural network model with scene change
and without scene change is shown in Fig. 10. The orientational error with scene change is between
5.61° and 10.11°. In this case, the lowest orientational error is 5.61° for the “Chess” scene, and the
highest is 10.11° for the “Head” scene. On the other hand, the orientational error in the case without
scene change is between 4.01° and 10.15°. In this case, the minimum orientation error is 4.01° for the
“Pumpkin” scene, and the positional maximum error is 10.15° for the “Fire” scene. In the case of six
scenes, the orientation error is lower if the scene does not change within the image sequences; the “Fire”
scene is an exception. For the “Fire” scenes, the orientational error is 9.27° if the scene is changed and
10.15° if the scene is not changed; such deviations can sometimes occur if the input image contains
motion blur, light changes, viewing angles, and other errors.

According to the above discussion in Figs. 9 and 10, it can be seen that the pose error increases as
the scene changes within the input image sequences. The more frequently the scene changes within an
image sequence, the greater the pose loss, resulting in a higher error and, therefore, lower performance.

4.4 Compare with Existing Researches

Table 2 compares the results of the proposed recurrent deep architecture with state-of-the-art
research. It shows seven scenes’ individual and average pose errors from the proposed study and
state-of-the-art research using the 7-Scenes dataset. Recent research results include PoseNet, LSTM-
PoseNet, MapNet, AtLoc, EpiLoc, and CGAPoseNet. First, examine the effects of camera pose error
in scene changes on simulation results and compare the results obtained with deep architecture with
those of existing state-of-the-art research.
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Table 2: Pose errors in existing research and proposed architecture

Researches ~ Chess Fire Head Office Pumpkin RedKitchen Stairs Average pose
error
PoseNet [I]  0.32 m, 4.06° 0.47 m, 7.33° 0.29 m, 12.00 0.48 m, 6.00° 0.47m,4.219 0.59m, 4.320 0.47 m, 6.93° 0.45m, 9.840

LSTM- 0.24 m, 5.77° 0.34m, 11.9° 0.21 m, 13.7° 0.31 m, 8.07° 0.33m,7.0° 0.37m,8.820 0.41m, 13.70 0.31'm, 9.85°
PoseNet [51]

MapNet [22] 0.08 m, 3.25° 0.27 m, 11.69° 0.18 m, 13.259 0.17m, 5.15° 0.22m, 4.020 0.23m,4.93% 0.30 m, 12.08° 0.21 m, 7.78%
AtLoc[52]  0.10 m, 4.07° 0.25m, 11.49 0.16m, 11.8° 0.17 m, 5.349 0.21m, 4.37° 0.23m, 5420 0.26 m, 10.59 0.20 m, 7.56°
EpiLoc[40]  0.07m,2.71° 0.24m, 9.18° 0.14m, 12.6° 0.18 m, 4.45° 0.18m, 3.22° 0.23m,4.60° 0.24m, 11.0° 0.18 m, 6.82°
CGAPoseNet 0.26 m, 6.34° 0.28 m, 10.3° 0.17 m, 7.98° 0.26 m, 7.23° 0.22m, 5.18° 0.55m,16.7° 0.17 m, 12.0° 0.27 m, 9.39°

[39]

Proposed 0.19m, 5.61° 0.20 m, 9.27° 0.18 m, 10.119 0.19 m, 7.05° 0.19m,5.19% 0.20m, 5.62° 0.21 m, 9.210 0.19 m, 7.430
(Scene

changes)

Proposed 0.15m, 4.46° 0.18 m, 10.15° 0.17 m, 9.75% 0.16 m, 5.33° 0.17m,4.019 0.18 m, 4.04° 0.19 m, 9.07° 0.17 m, 6.68°
(Without

scene

changes)

Train the recurrent deep architecture twice, once when the scene changes in the image sequences
and the other time when the scene does not change in the image sequences. [t can be seen that the pose
error increases when the scene changes in an image sequence. Here, it can be seen that the positional
error is 0.19 m when the scene changes and the average positional error is 0.17 m when the scene
does not change. The positional error decreases when the scene does not change. Again, the average
orientation error is 7.73° when the scene changes in the image sequences and 6.68" when the scene does
not change. The orientational error is also relatively high here when the scene changes. The difference
between a scene change in an image sequence and no scene change is (0.02 m, 1.05°); from this result,
it can be concluded that a scene change in an image sequence affects the localization performance of
the camera and degrades the performance.

Table 2 shows that the average positional error in the available tests is between 0.18 and 45 m;
the highest average positional error is 0.45 m for PoseNet, and the lowest average positional error is
0.18 m for EpiLoc. The average positional error achieved in our test is 0.17 m, lower than in all
the studies listed in the table. Regarding orientational error, the highest average among the existing
researchers is 9.85° degrees for LSTM-PoseNet, and the lowest is 6.82° degrees for EpiLoc. However,
the average orientational error obtained in our experiment without scene change is 6.68" degrees, which
is lower than the error of EpilLoc. From the discussion of the above results, it can be seen that the results
of our recurrent deep architecture (0.17 m, 6.68") without scene change in the image sequence have the
lowest pose error, which is very important for applying more accurate camera localization.

The 7-Scenes datasets used to determine the localization of indoor cameras have many complex
problems, such as motion blur, illumination variations, viewing angles, and so on. Image sequences
with more of these problems have higher pose errors. It can be seen from Table 2 that the orientation
error for “Head” (9.75%), “Fire” (10.15%), and “Stairs” (9.07°) is much higher than other scenes.

5 Discussion

This research study proposes a new recurrent deep architecture for an indoor camera localization
system that performs camera localization in real time and evaluates the effects of scene changes during
image sequences. The proposed system is trained with an annotated image dataset with corresponding
baseline values. The recurrent deep architecture achieves high pose accuracy even if the scene changes
during the sequence. The predicted position error is less than 0.20 m, and the orientation error is
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less than 7.0°; analyzed the effects of scene changes and found that small scene changes, such as
moving objects, can cover the system. However, more significant changes in the scene, such as lighting
conditions and points, affect the localization performance. The results showed the effectiveness of the
proposed system, which performs real-time camera localization and handles scene changes during the
sequence. The proposed recurrent deep architecture is essential for various applications, such as indoor
robot navigation, augmented reality, and autonomous driving.

6 Conclusion

In summary, the recurrent neural deep architecture for a real-time indoor camera localization
system evaluates the impact of detecting scene changes during image sequences. Microsoft 7-Senses
dataset is used to create customized input datasets for two cases with and without scene changes
to train and evaluate the approach. The proposed approach performed well and can accurately
determine the impact of scene changes in the input image sequence on performance. It also ensured
the flexibility and reliability of the system by implementing it on devices and evaluating it in real-
life situations. Overall, the proposed RNN-based camera localization system is helpful for various
robotics applications, such as indoor robot navigation, augmented reality, and indoor surveillance
systems. Future work could investigate the integration of multiple cameras into an indoor localization
system. The proposed recurrent deep architecture provides a real-time camera localization system
that continuously improves performance and minimizes computational costs. Future work could
investigate how to optimize the localization performance, e.g., through hardware improvements,
enhanced feature extractions, etc. Future directions could explore the application of real-world
environments, such as indoor robotic navigation systems, augmented reality, and self-driving cars.
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