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ABSTRACT

Mathematical named entity recognition (MNER) is one of the fundamental tasks in the analysis of mathematical
texts. To solve the existing problems of the current neural network that has local instability, fuzzy entity boundary,
and long-distance dependence between entities in Chinese mathematical entity recognition task, we propose a
series of optimization processing methods and constructed an Adversarial Training and Bidirectional long short-
term memory-Selfattention Conditional random field (AT-BSAC) model. In our model, the mathematical text was
vectorized by the word embedding technique, and small perturbations were added to the word vector to generate
adversarial samples, while local features were extracted by Bi-directional Long Short-Term Memory (BiLSTM). The
self-attentive mechanism was incorporated to extract more dependent features between entities. The experimental
results demonstrated that the AT-BSAC model achieved a precision (P) of 93.88%, a recall (R) of 93.84%, and
an F1-score of 93.74%, respectively, which is 8.73% higher than the F1-score of the previous Bi-directional Long
Short-Term Memory Conditional Random Field (BiLSTM-CRF) model. The effectiveness of the proposed model
in mathematical named entity recognition.
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1 Introduction

With the rapid development of big data and artificial intelligence, it is significant to promote
intelligent education in mathematics subjects, by using computers to process mathematical knowledge
and develop applications such as knowledge recommendation, machine problem solving, intelligent
education, and intelligent computing informally and intelligently [1]. The basic tasks of NLP include
word division, part-of-speech (POS) tagging, Named Entity Recognition (NER), and syntactic
analysis [2]. Mathematical Named Entity Recognition (MNER) aims to extract specific entities (such
as mathematical proper names, alphabets, special symbols, and formulas, etc.) from mathematical texts
and annotate them with symbols. Different from English mathematics texts, Chinese mathematics
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has no obvious word boundary and has a complex structure of Chinese characters, numbers, English
letters, special mathematical symbols, formulas, and images, such as “�ABC”, “X”, “ (circle)”, etc.
In particular, there are long and rare mathematical proper nouns, which have different meanings when
processing different participles at the word level. Furthermore, the field of mathematical research has
not yet matured, with few opening mathematics data sets. Therefore, it is a great challenge to accurately
identify mathematical entities from Chinese mathematical texts.

With the development of deep learning, the research of NER has gradually shifted to neural
networks. The most representative neural networks were convolutional neural networks (CNN) [3]
and recurrent neural networks (RNN) [4]. In recent years, natural language processing (NLP) has
made great progress in the field of mathematics, especially in the recognition of handwritten or printed
symbols in English mathematics. Vanetik et al. [5] studied the problem of automatic detection of single-
sentence definitions in mathematical texts, applying deep learning methods such as CNN and RNN
to recognize mathematical definitions. Experiments proved the merits of combining CNN and RNN
in syntactic-rich input representation. Wang et al. [6] proposed a deep neural solver that automatically
solved mathematical word problems, They used RNN to transform mathematical word problems
into equation templates and reduced complex engineering compared to traditional methods. POS
tagging [7] was introduced in mathematical text processing and transformed mathematical formulas
into character sequences to improve the accuracy of extracting mathematical entities. Ferreira et al. [8]
proposed a method to extract mathematical theorems, axioms, and definitions using CNN, and the
experimental results showed that the F1-score was 41 higher than BERT. For Chinese mathematics,
from traditional methods to deep learning methods, researchers replaced mathematical formulas in
Chinese mathematical texts with special symbols and used neural network models to learn and extract
features. The model that integrated word embedding, speech (POS) tag embedding, BiLSTM, and
attention, and the experiments achieved good results in different language datasets [9]. However, there
was a problem with the fuzzy entity boundary. Zhang et al. [10] proposed a method that is used for
identifying primary mathematical named entities based on the BERT-BiLSTM-IDCNN-CRF. The
results of the F1-score reached 93.91%. Although the processing of mathematical texts in the above
studies has achieved promising successes, there are still dependency problems among long-distance
mathematical entities.

In the NER task, only short-range dependencies can be established due to the capacity of informa-
tion transmission and the vanishing of the gradient in RNN. Although the number of network layers
can be increased or the fully connected network can be used to establish long-distance dependencies
between entities, longer sequential tasks cannot be processed. To address this problem, it is effective to
dynamically generate weights for different connections to obtain more relevant semantic information
by introducing a self-attention model. For example, Lin et al. [11] realized that self-attention had no
dependency on the downstream task, and used self-attention for sentence embedding to enhance the
semantic relationships of sentences. Li et al. [12] introduced a self-attention mechanism in their study of
NER for network security. Moreover, The self-attention and neural network model for NER to extract
relevant semantic information from characters of different granularity and obtain the correlation
between characters in the sequence [13]. Self-attention was used to establish a direct connection
between each character to learn long sequence dependencies and complete the identification and
naming of entities in electronic medical records [14]. We find that if the self-attention mechanism is
implemented in the task of MNER, it can dynamically learn inter-character features and obtain better
features, and can solve the long-distance semantic problem of mathematical entities.
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Additionally, improving the stability and robustness of NER models is also important in MNER.
There are some rare proper nouns and a large number of fuzzy entity boundaries in mathematical texts
that inevitably lead to the existence of local instability using the current network model.

A lot of work on adversarial training targets the issue of NER model robustness and entity bound-
ary ambiguity. To solve the problem of irregular entity representation and insignificant boundary,
a method of adverse drug reaction entity identification based on adversarial transfer learning was
proposed, their F1 value reached 91.35% [15]. For the problem of inaccurate semantic and entity
boundaries, an industrial person entity recognition model based on word fusion and adversarial
training was proposed. Added perturbation to generate adversarial samples after fusing word features
to improve the effect of entity recognition [16]. Dong et al. [17] adopted a food domain NER
method based on BERT and adversarial training, which used the shared information of Chinese word
segmentation and NER to improve the accuracy of the entity boundary.

To solve the above problems in MNER, we propose an AT-BSAC model that integrates Adversar-
ial Training [18], a self-attention mechanism [19], and BiLSTM-CRF [20]. This method takes BiLSTM-
CRF as the basic model and adds adversarial training in the embedding layer to improve the robustness
of the model to small perturbations. Then, a self-attention mechanism is introduced after the BiLSTM
[21] layer to give different weights to features and learn features with stronger local correlation, to
identify mathematical entities more accurately and achieve a better MNER effect.

The primary contributions of this study are outlined as follows:

1. Considering the unpublished Chinese mathematics domain data sets, this study self-constructs
Chinese mathematics data sets and proposes an MNER method with prior knowledge and a few
annotated data sets. The method extracts features through model training and adds disturbance to
the model to optimize the model, which in turn compensates to a certain extent for the problem of
entity boundary ambiguity and improves the accuracy of model identification.

2. The Adversarial Training-BiLSTM-Selfattention-CRF (AT-BSAC) model is used in this paper
to dynamically extract the features and capture the long-distance dependency features within longer
Chinese mathematical entities.

3. A series of experiments on a manually labeled dataset received an F1-score of 93.74%. The
results show that the proposed method performs better than other methods in identifying Chinese
mathematical entities.

2 Related Work
2.1 Named Entity Recognition

Named entity recognition (NER) methods mainly include rule-based, based on statistical machine
learning, and based on deep learning. The method based on rule requires experts to make rules and
dictionaries manually, which has high labor costs, strong subjectivity, and poor portability [22]. With
the emergence of machine learning, researchers treat NER as a sequential labeling problem. Many
achievements have been made on the model Maxim Entropy (ME), Hidden Markov Models (HMM),
and Conditional Random Field (CRF) [23]. Although the method built upon statistical machine
learning does not require manual construction of rules and templates, tedious feature engineering
also requires a lot of manpower. Compared with traditional methods, the methods based on deep
learning reduce the tedious feature engineering and also have strong generalization ability. Especially,
the BiLSTM-CRF model, coupled with an attention mechanism, is widely used in research on named
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entity recognition across various fields. For example, Liu et al. [24] introduced the BERT-BiLSTM-
CRF model, which exhibits enhanced accuracy and efficiency in extracting entities from vast historical
and cultural information datasets. Huang et al. [25] studied the recognition of Chinese-named entities
in the judicial field, and proposed a model that used character vectors, and sentence vectors trained by
distributed memory model of paragraph vectors (PV-DM). Liu et al. [26] used a two-stage fine-tuning
method to accurately identify entities in geographic texts, and accomplished the task of geological
naming entity recognition (Geo-NER). Ma et al. [27] employed two weakly supervised learning
techniques, namely sampling-based active learning and parameter-based transfer learning, in order
to address a specific research challenge or objective, the experimental results show that the model
obtained an F1-score of 89.21%.

Compared with English mathematical entities, Chinese mathematical entities have no obvious
entity boundary, and different participles have different meanings. In addition, there are many kinds
of entities in mathematical texts and their structures are complex. The mathematical language is
professional and rigorous. There are often entity nesting, semantic ambiguity, and unknown entity
reference problems in MNER tasks through literature analysis. Therefore, this paper takes BiLSTM-
CRF as the basic model to introduce a self-attention mechanism to improve the accuracy rate of
mathematical entity recognition.

2.2 Adversarial Training

Adversarial training originally appeared in the realm of computer vision. Generative Adversarial
Networks (GAN) [28] enhance the robustness of the model through adversarial attacks and generative
defense of the model. Later, it was widely used in the field of NLP. Adversarial training generates
adversarial samples by introducing noise [29], and after training and learning, it identify adversarial
samples. As a regularization method, adversarial training improves the generalization ability and
robustness of the model. The Fast Gradient Method (FGM) and Projected Gradient Descent (PGD)
are two common methods to calculate the perturbation value. They are obtained by calculating
the gradient of the word vector after the embedding and then standardizing the gradient. FGM
only needs to calculate the perturbation value once, while PGD calculates the perturbation value
through multi-step iteration. So PGD requires more computing resources. Li et al. [30] proposed
Metabdry, a novel domain generalization approach for entity boundary detection without requiring
any access to target domain information, and adopted adversarial learning to encourage domain-
invariant representations. Finally, good experimental results were obtained. Wang et al. [31] introduced
perturbations to network variables during training as a means to diversify these variables, ultimately
enhancing the model’s generalization capabilities and robustness. An Adversarial Trained LSTM-
CNN (ASTRAL) system and a specific adversarial training method were proposed. Yu et al. [32]
proposed the GAN-bidirectional long short-term memory conditional random field (GANBiLSTM-
CRF) and the GAN-based bidirectional encoder representations from transformers-conditional
random field (GAN-BERT-CRF) models, aiming to tackle the issue of annotation inconsistency in
the biomedical annotation field.

Adversarial training can add small perturbations to the model, which can represent rare proper
nouns and fuzzy boundary entities in mathematical texts. The perturbations and the original word
vector can be trained together in the model to make the model have the ability to identify them, and
thus enhance the robustness and robustness of the model.

In the MNER task, there are many uncommon mathematical entities in the data set, and the
amount of data is limited. Using the multi-layer deep neural network model, it is easy to have the
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problem of overfitting. Therefore, to solve problems such as robustness and entity boundary ambiguity
of the model, adversarial training is introduced in this paper. Small perturbations are added to the word
vector to generate adversarial samples to train model learning and improve the generalization ability
and robustness of the model.

2.3 Self-Attention Mechanisms

The fundamental idea behind attention mechanisms is to allocate varying degrees of significance
to input items, selecting the most crucial information from input sequences for the current task. The
objective is to prioritize relevant segments of the input data while disregarding irrelevant portions,
ultimately enriching the extracted feature set. Initially, attention mechanisms were integrated with
neural networks to address image classification tasks, enabling their application in the field of visual
imagery. Subsequently, researchers extended attention mechanisms to natural language processing,
significantly enhancing the accuracy of text translation. In recent years, with the widespread adoption
of pre-trained BERT models, numerous improved models have emerged, many of which rely on
Transformer models based on self-attention mechanisms, making attention mechanisms a current
research hotspot. Currently, self-attention mechanisms have been successfully applied in various fields
such as medical electronic records, agriculture, law, and military weaponry to address long-distance
semantic issues among entities.

Self-attention mechanisms represent a variant form of attention mechanisms, where the basic idea
is to assign weights to input items based on their relationships, allowing each input item’s weight to
depend on the relationships between input items. In natural language processing tasks, input sequences
of varying lengths exhibit different connection weightings, in such cases, self-attention models can
dynamically generate different connection weights, reducing reliance on external dependency infor-
mation and improving their ability to capture semantic information within sentences.

3 Model Design

As depicted in Fig. 1, the AT-BSAC model comprises an Input, an Embedding layer, a BiLSTM
layer, a Self-attention layer, a CRF layer, and an Output. The overall workflow is as follows: in Fig. 1,
the initial conversion of the input sequence into a vectorized representation, yielding the set v =
{v1, v2, ..., v6}, is performed by the Embedding layer. Adversarial training is then added to generate
adversarial samples with small perturbations for iterative training. Secondly, the output word vectors
of the embedding layer are fed into the BiLSTM layer along with the adversarial samples, and the bi-
directional LSTM globally extracted features. Then a self-attentive mechanism layer is introduced after
the BiLSTM layer to learn and acquire better features. Finally, the CRF layer learns the conditions of
the label constraints to get the correct sequence labels.

3.1 Embedding Layer

The mathematical text is preprocessed to get, word vectors by using embedding mapping in
PyTorch. To improve the accuracy, adversarial training is introduced after the word vectors are
generated so that the multilayer neural network can optimize the parameters in the model training
to improve the recognition performance of the model. Adversarial Training (AT) can generate
adversarial samples by introducing small perturbations into the word vectors of embedded layers in
the recognition task.
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Figure 1: AT-BSAC model structure

In this paper, based on the core idea of adversarial training in the above literature, we use a gradient
ascent on the input to find the perturbation values and another gradient descent on the parameters to
find the parameters of the model. After the word vectors are generated by embedding, the forward loss
corresponding to each vector is first calculated according to the word vectors, the labels corresponding
to the word vectors, and the model parameters. After that, the corresponding gradients are obtained
according to the backpropagation. And finally, the perturbation values are integrated and calculated.
The perturbation values and word vectors are summed to obtain the adversarial samples, which
are then fed into the neural network together with the original word vectors to update the model
parameters. The mathematical equation is shown below:

min E (x, y) ∼ D
⌊

max
�x∈�

L (x + r, y; θ)

⌋
(1)

where x is the input, y is the label, D is the training set, r is the perturbation value, ω is the perturbation
space, �x is the perturbation added to the input, and θ is the model parameter.

The procedure for calculating the perturbation value r is shown below:

r = ε · g
‖g‖2

(2)
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g = ∇xL (xt, y, θ) (3)

x ← x + r (4)

where ε is the scaling factor, L is the loss function, and g is the partial derivative of the loss function
concerning for to x, i.e., the gradient. To find a better adversarial sample, we use the idea of “small
steps, more steps” to get the optimal point. The term “small steps, more steps” refers to the strategy
of employing smaller step sizes but conducting a greater number of iterations during the optimization
process.

xt+1 =
∏
x+s

(
xt + α

g (xt)

‖g (xt)‖2

)
(5)

g (xt) = ∇xL (xt, y, θ) (6)

α is the step size xt, xt+1 is the vector of the previous and the next time, and s = r ∈ rd : ‖ r ‖2< ε

is the perturbation constraint space, which aims to limit the magnitude of adversarial perturbations
to ensure that the generated adversarial samples fall within a certain range, thereby avoiding excessive
interference with the original input.

3.2 Bilstm Layere

LSTM improves on the RNN model, it calculates the forgetting gate, input gate, current moment
cell state, output gate, and hidden layer state in turn, and the formula is as Eqs. (7)–(9). x and y are the
hidden layer state value and cell state value at time t−1, respectively. By adding input gates, forgetting
gates, output gates, and a cell state to solve the gradient vanishing or exploding problem of RNN. It
can control the degree to which information is forgotten or retained, as well as preserve information
about the state from the beginning of the sequence to the current moment. BiLSTM is composed of a
bi-directional Long Short Memory Network (LSTM), as shown in Fig. 2.

Figure 2: BiLSTM model structure

Long-distance dependencies often occur in Chinese mathematical texts, and it is not accurate
enough to identify entities by word-level information only. As a result, we use BiLSTM to extract
features and capture sentence-level information, we splice the adversarial samples and the obtained
word vectors and feed them into BiLSTM to capture contextual information with two feature vectors
→
ht,

←
ht, the vector

→
ht is the forward vector, while

←
ht is the backward vector. Finally, we splice these two
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vectors as ht =
→
ht ⊕

←
ht into the lower layer model.⎡

⎢⎢⎣
ft

it

ot
∼
ct

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σ

σ

σ

tan h

⎤
⎥⎥⎦

(
W

[
xt

ht−1

]
+ b

)
(7)

ct = ft ∗ ct−1 + it ∗ ∼
ct (8)

ht = ot ∗ tan h (ct) (9)

where xt is the input at moment t, ht−1, ct−1 are the hidden layer state values, cell state values at moment
t−1, respectively, W and b are trainable parameters, ft, it,

∼
ct, ct, ot, ht are the forgetting gate, input gate,

temporary cell state, cell state, output gate, and hidden layer state, respectively, σ is sigmoid function
and tanh is hyperbolic tangent function.

Although BiLSTM can extract contextual information, it cannot fully express the potential
semantic correlation between current information and contextual information. Therefore, the Self-
attention layer is added after the BiLSTM layer.

3.3 Selfattention Layer

The BiLSTM layer extracts global features and then adds a self-attentive mechanism layer, which
can dynamically learn the dependency between any two characters in a sentence and can compensate
for the shortage of BiLSTM to extract local features. For example, in the sentence “ , 60

, (In a triangle, if there is an isosceles triangle with an angle of 60 degrees,
it is an equilateral triangle)”, “ (it)” might refer to “ (triangle)”, “ (angle)”, or “
(isosceles triangle)”, where the process of entity identification will have semantic ambiguity. The
selfattentive mechanism model focuses on the important features in the sentence according to the
relevance of “ (it)” to each word and thus enhances the precision of recognition. The obtained feature
vectors will be fed into the CRF layer for label prediction.

The essence of the self-attention mechanism is weight allocation. By calculating the similarity
between words in a sentence, different weights are given to feature vectors to obtain the potential
semantic information of the text. The calculation process of the self-attention mechanism is shown in
Fig. 3. When output H = [h1, h2, . . . , hn] ∈ RDh×n, the self-attentive mechanism model maps it to three
different spaces, the query vector qi ∈ RDk , key vector ki ∈ RDk , value vector vi ∈ RDv are obtained,
respectively:

Q = WqH (10)

K = WkH (11)

V = WvH (12)

where Wq ∈ RDk×Dh , Wk ∈ RDk×Dh , Wv ∈ RDv×Dh are the linear mapping matrices, Q = [q1, q2, . . . , qn] ∈
RDk×n, K = [k1, k2, . . . , kn] ∈ RDk×n, V = [v1, v2, . . . , vn] ∈ RDv×n are Query matrix, Key matrix, and
Value matrix, respectively. We use a scaled dot product model to calculate the attention scores, which
can avoid the variance of the model being too large when the dimensionality of the input vectors is too
high and the gradient of the function softmax is too small:

score (Q, K) = soft max
(

QKT

√
Dk

)
(13)
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where Dk for K dimension. The result of the softmax activation function is dotted with V and then
summed to obtain the output sequence Z = [z1, z2, . . . , zn] ∈ RDv×n.

Z = soft max
(

QKT

√
Dk

)
V (14)

Figure 3: Flow chart of the calculation of the self-attentive mechanism

3.4 CRF Layer

Considering the dependency problem between continuous tags in Chinese mathematical texts,
this paper selects CRF to learn the relationship between tags for sequence annotation. For an input
sequence x = {x1 , x2, . . . , xn}, the prediction sequence obtained in the named entity identification task
is y = {y1 , y2, . . . , yn}, define as the predictive score function S as follows:

S (x, y) =
n∑

i=0

Ay1, yi+1
+

n∑
i=1

pi, yi (15)

where pi,yi represents the probability that the character xi is marked as xi, Ay1, yi+1
represents the

probability that xi+1 is labeled as yi+1 when xi is tagged as yi.

For each training sample x, the fraction S of the labeled sequence y representing each possibility
is found, and the probability distribution about the output sequence y is obtained by normalizing all
sequence paths, as shown in Eq. (16).

p (y |x) = eS
(

x,
∼
y
)

∑
∼
y∈YX

eS
(

x,
∼
y
) (16)

where
∼
y denotes the set of all tags, YX denotes the sequence of all occurrences of tags, and S

(
x,

∼
y
)

denotes the score of the correct tag.
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According to the principle of maximum likelihood estimation, the likelihood function is obtained
by the logarithm of the predicted sequence y.

Loss = log

⎛
⎝∑

∼
y∈YX

eS
(

x,
∼
y
)
⎞
⎠ − S (x, y) (17)

Finally this paper we use the Viterbi algorithm [33] in decoding to find the highest-scoring tag
sequence y∗ to obtain the optimal labeling result, which is calculated as follows:

y∗ = arg
∼
y∈YX

max S
(

x,
∼
y
)

(18)

4 Experimental Results and Analysis
4.1 Datasets and Annotation Strategies

The public mathematical data on Wikipedia, Baidu Baike, and mathematical websites were
used, including some mathematical theorems, definitions, formulas, exercises, etc. The data were pre-
processed to create a usable dataset by removing irrelative information text, special symbols, and
formulas, and splitting based on punctuation. 35,485 words of data text were obtained and annotated.

Based on the Mathematics Handbook [34], the classification of mathematical knowledge is
described, the corresponding annotation symbols are defined, and the descriptions and examples of
some mathematical entities are shown in Table 1.

Table 1: Example of mathematical entities

Basic entity General entities attributed to basic entities Marking symbols

(Function) (function of real variable),
(sign)...

Function

(Equation) (linear equation), (parametric
equation)...

Equation

(Line) (Straight line), (diagonal),
(diameter), (median)...

Line

(Set) (subset), (empty set), (the set of
real number)...

Set

(Field) (domain of definition), (range),
(number field)...

Field

(Angle) (acute angle), (obtuse angle),
(positive angle)...

Angle

(isosceles triangle), (right
triangle)...

Triangle
(Triangle)

(parallelogram), (square),
(rhombus)...

Quadrilateral
(Quadrilateral)
(Circle) (semicircle), (unit circle),

(circumcircle)...
Circle
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In this paper, we use the BIO tag schema to annotate the data. Examples of mathematical entity
annotation are shown in Table 2. 3947 mathematical entities were marked in the experiment. And the
data set was sorted, and each type of entity was divided into the training set, test set, and verification
set according to 6:2:2.

Table 2: Example of mathematical entity labeling

B-Line I-Line O O O B-Angle I-Angle I-Angle O B-Angle I-Angle O

4.2 Experimental Environment and Parameter Settings

Our experimental configuration is outlined as: the operating system is Debian, the CPU is intel
Zhiqiang, the memory is 32 G, and the programming languages Python3.9, and Pytorch1.10.1. The
parameters are shown in Table 3.

Table 3: Parameter settings

Experimental parameters Parameter value

Dropout 0.5
Batch size 1
Initial learning rate 0.01
Lstm dim 768
Attention size 12
Transformer layers 12
Epoch 30
Vector dim 768

4.3 Evaluation Metrics

We leverage precision (P), recall (R), and the F1-score as metrics to assess the performance of our
model on the test data set. We can calculate them as follows:

P = TP
TP + FP

× 100% (19)

R = TP
TP + FN

× 100% (20)

F1 = 2PR
P + R

× 100% (21)

where TP represents the true positive, FP represents the false positive, and FN represents the false
negative.
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4.4 Analysis of Experimental Results

To validate the effectiveness of introducing adversarial training and self-attentive mechanism
models in MNER tasks, three groups of experiments were carried out on the same mathematical
data set. The first group analyzed the effectiveness of the adversarial training model, the second
group analyzed the effectiveness of the self-attention mechanism, and the third group analyzed the
effectiveness of both the adversarial training and the self-attention mechanism model. The analysis of
the results from the three sets of experiments is presented separately in Sections 4.4.1 and 4.4.2. The
experiment results are shown in Table 4, Figs. 4, and 5.

Table 4: Parameter settings

Models P/% R/% F1/%

BiLSTM-CRF 84.54 86.36 85.01
FGM-BiLSTM-CRF 93.58 93.93 93.49
PGD-BiLSTM-CRF 93.49 93.81 93.44
BiLSTM-Selfattention-CRF 93.22 93.50 93.20
PGD-BiLSTM-Selfattention-CRF 93.37 93.77 93.34
AT-BSAC 93.88 93.84 93.74

Figure 4: Comparison of loss analysis among different models

Figure 5: Compared P, R, and F1-score of different models
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4.4.1 Experimental Analysis of BiLSTM-CRF Introduced into the Adversarial Training Model

Table 4 presents the P, R, and F1-scores of different models. After introducing the Fast Gradient
Method (FGM) and Projected Gradient Descent (PGD) models into the BiLSTM-CRF benchmark
model, all three scores of the model have improved, indicating an enhancement in the model’s
recognition effect and recognition accuracy. Fig. 4 depicts the loss of the model after introducing FGM
or PGD, it can be observed that the loss decreases rapidly upon the introduction of FGM or PGD.
The main reason is that adversarial training can generate adversarial samples against model attacks.
After learning and training, the robustness of the model can be improved when getting adversarial
samples. However, the experiment results of different adversarial training models were different, and
the P, R, and F1-score with FGM were slightly higher than those with PGD. The P, R, and F1-score
of FGM reached 93.58%, 93.93%, and 93.49%. It shows that different perturbation values of the
adversarial samples will influence the results. FGM has better recognition performance and robustness
for mathematical entities in this experiment.

4.4.2 Experimental Analysis of BiLSTM-CRF Introducing Self-Attention Mechanism Model

As shown in Table 4 and Fig. 5, based on the BiLSTM-CRF model, the presence of a self-attention
mechanism has a significant impact on the results. BiLSTM-Selfattention-CRF has a higher P, R, and
F1score than the BiLSTM-CRF model. In particular, the F1-score of the BiLSTM-Selfattention-CRF
model reaches 93.20%, which is 8.19% higher than that of BiLSTM-CRF. This is mainly because the
presence of the self-attentive mechanism can dynamically and globally acquire features and solve the
long-range semantic problem, and thus improve the results of MNER. Also, the results show that
the adoption of scaled dot product calculation methods in the self-attention mechanism can increase
accuracy.

4.4.3 Experimental Analysis of BiLSTM-CRF with Simultaneous Introduction of Adversarial Training
and Self-Attention Mechanism Models

We further verify the effectiveness of the AT-BSAC model for named entity recognition in
mathematics. Based on the results in experiments 1 and 2, introducing the adversarial training and
self-attention mechanism models separately has already increased the P, R, and F1-score. As a
result, we introduce both the adversarial training and self-attention mechanism models to compare
the experimental results of BiLSTM-Selfattention-CRF, FGM-BiLSTM-CRF, PGD-BiLSTM-CRF,
FGM-BiLSTM-Self-attentionCRF (AT-BSAC), and PGD-BiLSTM-Selfattention-CRF models in a
mathematical named entity recognition task. As shown in Fig. 5, the F1-score of model AT-BSAC
is about 93.74%, and is higher than all other models including BiLSTM-Selfattention-CRF, FGM-
BiLSTM-CRF, PGD-BiLSTM-CRF, and PGDBiLSTM-Self-attention-CRF, specifically respectively
improved by about 0.54%, 0.25%, 0.30%, and 0.40%. This indicates that the FGM and self-attention
mechanism model should be integrated into the basic model BiLSTM-CRF at the same time, rather
than separately. This is mainly because the AT-BSAC model can not only enhance the robustness
of neural networks but also dynamically capture features in sentences to improve the performance of
local instability of models and long-distance dependence among mathematical entities in mathematical
named entity recognition tasks.

5 Conclusions

In this paper, the AT-BSAC model is constructed by introducing adversarial training and self-
attention mechanisms to address the problems of model local instability, entity boundary ambiguity,
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and long-distance dependence among entities in the study of named entity recognition of mathematical
text. The experimental results show that the AT-BSAC model in this paper achieves better results in
terms of P, R, and F1-score compared with other comparative models, with the F1-score improving by
8.73% compared with the base model. The word vector is obtained by Pytorch, and after embedding,
adversarial training is introduced to generate adversarial samples. The samples are fed into the
BiLSTM model together with the word vector to extract local features. At the same time, the self-
attentive mechanism model is introduced to obtain global features further and solve the problems of
entity boundary ambiguity and long-distance dependence between entities to a certain extent. The
accuracy of mathematical entity recognition has been improved. And our work can have a significant
influence on mathematical formula text recognition.
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