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ABSTRACT

While many metaheuristic optimization algorithms strive to address optimization challenges, they often grapple
with the delicate balance between exploration and exploitation, leading to issues such as premature convergence,
sensitivity to parameter settings, and difficulty in maintaining population diversity. In response to these challenges,
this study introduces the Chase, Pounce, and Escape (CPE) algorithm, drawing inspiration from predator-prey
dynamics. Unlike traditional optimization approaches, the CPE algorithm divides the population into two groups,
each independently exploring the search space to efficiently navigate complex problem domains and avoid local
optima. By incorporating a unique search mechanism that integrates both the average of the best solution and the
current solution, the CPE algorithm demonstrates superior convergence properties. Additionally, the inclusion of a
pouncing process facilitates rapid movement towards optimal solutions. Through comprehensive evaluations across
various optimization scenarios, including standard test functions, Congress on Evolutionary Computation (CEC)-
2017 benchmarks, and real-world engineering challenges, the effectiveness of the CPE algorithm is demonstrated.
Results consistently highlight the algorithm’s performance, surpassing that of other well-known optimization
techniques, and achieving remarkable outcomes in terms of mean, best, and standard deviation values across
different problem domains, underscoring its robustness and versatility.
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1 Introduction

In many fields, including physics, biology, engineering, economics, and business, optimization
algorithms are the foundation of problem-solving efforts. They are primarily classified into two types:
deterministic and metaheuristic. The goal of optimization algorithms is to find the best possible
solution within given constraints [1]. Deterministic algorithms employ gradient-based methods and
are particularly effective for solving unimodal problems. In contrast, metaheuristic algorithms leverage
stochastic search strategies to navigate complex multi-dimensional landscapes in pursuit of global
optima. The richness of these optimization techniques is highlighted by their application to real-world
challenges, where factors like time, design specifications, and geometric complexities pose unique
hurdles to finding optimal solutions. To tackle this, several metaheuristic optimization algorithms
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have been developed, inspired by nature, such as physics-based algorithms, Swarm Intelligence (SI),
and Evolutionary Algorithms (EA). EA imitates organic evolution by using processes including
recombination, mutation, and selection [2], while SI algorithms, like Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO), are based on collective swarm behavior [3]. Recent years
have witnessed the proliferation of metaheuristic optimization algorithms, inspired by various phe-
nomena in nature including physics-based algorithms [4], animal behavior-based algorithms [5–9],
and human behavior-based algorithms [10–12]. Each of these paradigms has unique inspirations and
methodologies, developed with the goal of effectively balancing exploration and exploitation. Despite
these efforts, many existing algorithms still face significant challenges in achieving this balance.

Amidst recent algorithm proposals, a critical question arises: do we need more optimization
techniques? The No Free Lunch (NFL) theorem [13] indicates that no single algorithm can address all
problems effectively, as each excels only in specific cases. On average, optimization techniques perform
equally across all problems. The persistent challenge of balancing exploration and exploitation
continues to inspire innovative adaptations. These factors drive researchers to develop or enhance
algorithms tailored to specific subsets within various fields. our research introduces the Chase, Pounce,
and Escape (CPE) algorithm, a novel metaheuristic approach inspired by the hunting dynamics of
predators and prey. Unlike conventional optimization algorithms, the CPE algorithm partitions the
population into two distinct groups, each independently exploring the search space. This unique
approach facilitates efficient navigation through complex problem domains while mitigating the risk
of local optima.

The contributions of this paper include:

• Introduction of the CPE algorithm: We introduce a novel nature-inspired metaheuristic as a
competitive alternative to existing methods. This algorithm employs an innovative partitioning
strategy, dividing the population into two groups operating in different scenarios, thereby
enhancing both exploration and exploitation dynamics.

• Evaluation across various optimization scenarios: We conduct a comprehensive evaluation of
the CPE algorithm’s efficacy across a spectrum of optimization scenarios, encompassing 50
standard test functions and CEC-2017 benchmark functions.

• Application to real-world engineering challenges: The proposed CPE is applied and tested on
four prominent engineering problems, including the design of welded beams, speed reducers,
cantilever beams, and multi-plate disc clutch brakes.

To provide a comprehensive overview, we organize the remainder of the paper as follows: Section 2
reviews related work, focusing on the drawbacks identified in current literature. Section 3 delineates
the approach to cooperative hunting between predators, serving as the theoretical foundation for
the proposed CPE optimization algorithm. In Section 4, we elaborate on the intricacies of the CPE
algorithm, outlining its methodology and design principles. Section 5 presents experimental results,
showcasing the efficacy of the CPE algorithm across various optimization problems, including real-
world scenarios. Finally, Section 6 concludes the paper by summarizing key findings and suggesting
avenues for future research.

2 Related Work

With different motivations and approaches, many optimization algorithms have been created
with the goal of efficiently striking a balance between exploration and exploitation. But in this
aspect, a lot of the current algorithms face significant challenges. EAs, PSOs, and ACO are a few
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of the most well-known. EAs work by means of mechanisms including recombination, mutation, and
selection. They are inspired by the concepts of biological evolution. To produce excellent answers
for optimization issues, these algorithms mimic natural evolutionary processes. EAs are widely used
in many different areas, but they frequently encounter substantial obstacles, such as premature
convergence, which occurs when the algorithm becomes stuck in local optima, and maintaining an
effective balance between exploration and exploitation [14].

Fish schools and flocks of birds serve as models for PSO social dynamics. Potential solutions are
represented by a population of particles in PSO, which traverse the search space under the impact of
their own and neighboring experiences. Despite PSO’s effectiveness in resolving a variety of optimiza-
tion issues, it can have trouble preserving diversity within the swarm and is prone to early convergence.
In notably complex, multimodal landscapes, this may lead to inadequate investigation [15].

Ants foraging strategy served as the model for ACO. Ants leave behind pheromones on the paths
they travel, which direct other ants’ following motions. Finding the best routes to resources is made
easier by this cooperative process. However, if the pheromone update mechanism is too aggressive,
ACO algorithms may converge too quickly on paths that are not optimal. This can drastically diminish
the algorithm’s capacity for exploration, which will limit its ability to find global optima in intricate
problem spaces [16].

Recent developments in optimization algorithms have drawn inspiration from various domains,
including physics, animal behavior, and human behavior. Table 1 highlights some of the most popular
metaheuristic optimization algorithms from the past decade, detailing their inspirations, advantages,
and disadvantages.

Physics inspirations such as Gravitational Search Algorithm (GSA) [17] are based on the law of
gravity and mass interactions. While GSA is powerful, it often converges slowly, especially in high-
dimensional spaces, due to the gradual reduction in exploration capability.

Animal-inspired algorithms like the Cuckoo Search (CS) [18] and Grey Wolf Optimizer (GWO)
[19] draw inspiration from animal behavior. CS, inspired by the brood parasitism of cuckoos, and
GWO, mimicking the leadership hierarchy in grey wolf packs, both exhibit strong exploration
abilities initially. However, they can suffer from a rapid convergence phase, limiting their exploitation
capabilities in the later stages [20,21]. The Whale Optimization Algorithm (WOA) [5] and Salp Swarm
algorithm (SSA) [7], inspired by the social behavior of whales and salps respectively, show similar
trends where maintaining a balance between global search (exploration) and local search (exploitation)
remains challenging. Harris Hawk Optimization (HHO) [9], Emperor Penguins Colony (EPC) [22],
and Mayfly Optimization Algorithm (MA) [23] show promise in tackling specific problems but still
face the common issue of balancing exploration and exploitation. HHO, inspired by the cooperative
behavior of Harris hawks, and EPC, mimicking the huddling behavior of emperor penguins, often
require careful parameter adjustment to maintain this balance.

Human behavior-based inspirations, such as Political Optimizer (PO) [10] and Heap-Based
Optimizer (HBO) [11], Teaching-Learning Based Optimization (TLBO) [12] algorithms introduce
unique social and computational strategies but similarly struggle with premature convergence and
maintaining diversity in the solution space.

Overall, while these algorithms introduce various innovative strategies to address optimization
problems, they often struggle with the trade-off between exploration and exploitation. Premature
convergence, sensitivity to parameter settings, and difficulty in maintaining diversity within the popu-
lation are common challenges [24]. In addition, optimization algorithms assuming function continuity
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struggle when faced with non-smooth or discontinuous functions. Continuous functions, which
exhibit smooth behavior, enable seamless exploration. In contrast, non-smooth functions, featuring
abrupt changes or non-differentiable points, challenge traditional methods relying on smoothness and
differentiability. The need for adaptive, robust, and efficient optimization techniques continues to drive
research in this field, motivating the development of new algorithms such as the Chase, Pounce, and
Escape (CPE) algorithm proposed in this study. The CPE algorithm aims to address these challenges by
leveraging novel search strategies inspired by the hunting dynamics of predators and prey, offering a
competitive alternative to existing metaheuristic approaches. The CPE algorithm introduced in this
study innovatively balances exploration and exploitation through two distinct predator groups. In
the first group, predators employ a weighted combination of current, best, and average solutions to
approach and encircle prey, facilitating targeted exploration while maintaining diversity. The second
group utilizes random equation selection to update positions, mimicking the pouncing and escape
process of prey, promoting adaptive exploration.

Table 1: List of optimization methods along with domain and inspiration sources

References Year Algorithm
name

Domain Inspiration Advantage Disadvantage

[17] 2009 Gravitational
Search
Algorithm
(GSA)

Physics Gravitation law Simplicity, global
search capability.

Slow
convergence,
getting stuck in
local minima in
last iterations.

[18] 2010 Cuckoo
Search (CS)

Animals Brood parasite
of cuckoo and
Levy flight

Easier to
application, fewer
tuning parameters.

Easily fall into
local optimal,
slow rate of
convergence.

[12] 2011 Teaching-
Learning
Based
Optimization
(TLBO)

Human Teacher and
learner. The
learning is based
on two phases:
acquiring
knowledge from
instructors and
gaining insight
from fellow
students

Simplicity, no
tuning parameters.

Weak population
diversity, the
tendency to fall
into local
optima.

[19] 2014 Grey Wolf
Optimizer
(GWO)

Animals The leadership
hierarchy and
hunting style of
grey wolves in
nature

Ease of use, global
search capability,
and versatility.

Slow convergence
speed, low
solving accuracy,
limited scalability
for high
dimensions.

(Continued)
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Table 1 (continued)

References Year Algorithm
name

Domain Inspiration Advantage Disadvantage

[25] 2016 Sine Cosine
Algorithm
(SCA)

Physics Mathematical
model based on
sine and cosine
functions

Simple,
user-friendly, fast
due to its
straightforward
code, explores well
due to randomness.

Good for
continuous
problems only,
lacks memory, no
global optimality
guarantee, slow
in complex
problems.

[5] 2016 Whale
Optimization
Algorithm,
(WOA)

Animals Social behavior
of humpback
whales

Simple structure,
good in various
fields.

Slow convergence
speed, low
precision, falling
into local
optimal easily.

[6] 2017 Killer Whale
Algorithm
(KWA)

Animals Movement killer
whale in hunting
and social
structure

Global search
capability.

Complex, limited
scalability.

[7] 2017 Salp Swarm
Optimization
(SSA)

Animals Swarm
navigation and
foraging
behavior in
oceans

Offers global
search capability
and versatility.

Low search
accuracy. slow
convergence
speed, quickly
falls into the
local optimum.

[8] 2019 Butterfly
Optimization
Algorithm
(BOA)

Animals Butterflies
mating habits
and their quest
for food

Global search
capability.

Diminished
population
diversity,
tendency to get
trapped in local
optimum, slow
convergence.

[9] 2019 Harris Hawk
Optimization
(HHO)

Animals Cooperative
behavior and
chasing styles of
Harris hawks in
nature

Few parameters,
simplicity, quick
convergence,
strong local search
capability.

Easily fall into a
local optimum,
limited
exploration
capabilities.

(Continued)
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Table 1 (continued)

References Year Algorithm
name

Domain Inspiration Advantage Disadvantage

[22] 2019 Emperor
Penguins
Colony
(EPC)

Animals Regulation body
temperature
based on body
heat radiation
and spiral
movement in
penguin’s colony

Easy to
understand,
straightforward
implementation,
adaptable.

Limited to
single-objective
problems,
premature
convergence.

[23] 2020 Mayfly
Optimization
Algorithm
(MA)

Animals Flight and
mating behavior
of mayflies

Quick convergence,
effective
exploration.

Weak
exploration,
stagnation in
local optima, low
convergence
accuracy, lack of
proper balance
between
exploration and
exploitation.

[26] 2020 Tunicate
Swarm
Algorithm
(TSA)

Animals Swarm
behaviors of
tunicates during
the navigation
and foraging

Global search
capability, simple
structure, few
parameters, fast
iteration.

Easy to fall into a
local optimum.

[10] 2020 Political
Optimizer
(PO)

Human Human social
behavior in a
multi-party-
political
system

Convergence speed
and exploitation
capability.

Prematurely
converges for
complex
problems.

[11] 2020 Heap-Based
Optimizer
(HBO)

Human Interaction
between the
employees based
on the employee
hierarchy

Fewer parameters,
simple
configuration, ease
of implementation.

Local stagnation,
slow convergence
speed, lack of
detailed analysis
of optimal
solutions and a
comprehensive
search.

[27] 2020 Interactive
Autodidactic
school (IAS)

Human Interactions
between
students in an
autodidactic
school

Few parameters,
adaptable.

Complex,
sensitivity to
initial knowledge
distribution.

(Continued)
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Table 1 (continued)

References Year Algorithm
name

Domain Inspiration Advantage Disadvantage

[28] 2022 Trees Social
Relations
(TSR)

Plants Hierarchical and
collective life of
trees in the
jungle

Suitable for both
discrete and
continuous
problems,
adaptable,
convergence speed.

Complex
structure,
sensitivity to
initial knowledge.

[29] 2021 Golden
Eagle
Optimizer
(GEO)

Animals Golden eagles
hunting process

Global search
capability,
adaptability,
versatility.

Complex
implementation,
parameter
sensitivity,
stagnation in
local optima.

[30] 2021 COOT Animals Animals flock of
birds known as
Coots

Quick convergence,
global search
capability,
adaptability,
versatility.

Stuck in local
optima, complex.

3 Inspiration

In natural ecosystems, predators and prey exhibit behaviors that mirror the principles of explo-
ration and exploitation. Predators explore vast territories in search of prey. Once prey is located, preda-
tors engage in pursuit, exploiting their position to capture and consume their quarry. Conversely, prey
species employ evasive maneuvers to escape predation, contributing to the diversity and adaptability of
their movements within the environment. Chase and escaping are the two primary activities involved
in group hunting [31]. With the goal of trapping the flock of targets, the chasers’ band together and
form packs. A cooperative hunting approach is used by lions, which are an example of group chasing.
They surround the herd and cover it from all sides before attacking, then they pounce. After they get
closer, they pounce on the group. Typically, lions target weaker, older animals, and calves to increase
their chances of capturing them [32]. On the other hand, flight initiation distance is a measure of
the distance at which prey flee from predators. The distance at which prey flee from predators, on
the other hand, is measured by the flight initiation distance. Predator-prey distances come in three
varieties: start, alert, and flight initiation. The prey’s awareness of the predator is known as the alert
distance, the start distance occurs as the predator approaches, and the flight initiation distance occurs
when the prey takes flight [33].

Inspired by the division of roles between predators and prey, the CPE algorithm partitions the
population into two distinct groups. This approach balances exploration and exploitation. In the
first group, the algorithm employs the concept of approaching and encircling prey, which involves
identifying and narrowing down promising regions within the search space. In the second group,
the algorithm incorporates the concept of pouncing on prey and the prey’s escape process. This
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partitioning fosters a dynamic balance between exploration (via predator-like agents) and exploitation
(through prey-like solutions).

Emulating the pursuit tactics of predators, the algorithm guides predator agents towards promis-
ing solution regions within the search space. The movement of predators is influenced by factors
such as the proximity of prey and the overall distribution of the prey, facilitating comprehensive
exploration of the solution landscape. When a predatory agent closes in on a prey-like solution, it
executes a “pouncing” action akin to a focused local search. This mechanism enables the algorithm to
exploit promising solution regions efficiently, refining candidate solutions and enhancing convergence
towards optimal outcomes.

To prevent premature convergence and maintain solution diversity, prey-like solutions employ
adaptive escape mechanisms. These mechanisms ensure that solutions dynamically adjust their posi-
tions in response to predator movements, thereby preventing over-exploitation of specific solution
regions and encouraging continued exploration. This strategy not only enhances the diversity of the
solutions but also significantly improves the algorithm’s ability to find the global optimum.

Through the integration of these algorithmic strategies, the CPE algorithm achieves an effective
balance and synergy between exploration and exploitation. The chase dynamics drive thorough
exploration of the solution space, while the pounce mechanism facilitates efficient exploitation of
promising solution regions. Additionally, the adaptive escape behavior of prey-like solutions fosters
solution diversity, contributing to the algorithm’s robust performance across various optimization
scenarios.

4 Proposed Chase, Pounce, and Escape Optimization Algorithm

This section contains a thorough explanation of the suggested CPE method, which is based on
an image of a group of lions (L) chasing after a group of impalas (I). The three different processes
that make up the chase, pounce, and escape operations are approaching and encircling the prey,
pouncing the prey, and escaping. Sections 4.2–4.4, respectively, provide a mathematical definition of
these procedures.

4.1 Initialization

Initially, as per Eq. (1), a population P of N initial solutions is dispersed randomly across the
D-dimensional problem space.

Pj
i = r1 ∗ (UL − LL) + LL, i = 1, 2 . . . N, j = 1, 2 . . . D (1)

Here, UL and LL denote the upper and lower bounds of the problem domain, respectively. r1 is a
random number in the range (0, 1). Each individual in P corresponds to a group of Lions represented
as a D-dimensional vector, with an associated fitness value denoted by P[I ] = {{L1, L2, . . . , LD},
fitness}. The best-solution is kept in I , which stand for an Impalas (group of prey). To carry out the
hunting strategy, the population P is divided into two equal groups: The first group is responsible for
approaching and encircling the prey, while the second group focuses on attacking the prey. As for the
prey, a group of Impalas (I), they attempt to escape from danger by adjusting their positions.

4.2 Approaching and Encircling the Prey

In this procedure, each Lion (Lj) in the first part tries to encircle the prey and guess its Start-Point
(SP) using Eq. (2). Where SPj denotes the starting point of Lion j (Lj), and μI denotes the (mean)
center of the prey’s group (Impalas), which can be calculated using Eq. (3). In Eq. (3), D represents
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the problem dimensions and indicates the number of individuals in group I . Ij represents the position
value of each individual inside the group. Each lion utilizes the SP value and a randomly generated
number (r2) from the range (−1, 1) to adjust its position for encircling the prey from either the left or
right. This adjustment can be achieved using Eq. (4). Where L+

j in Eq. (4) represents the new position
of Lion j. Ij represents Impala j.

SPj =
(
μI + Lj

)

2
(2)

μI = 1
D

∗
D∑

j=1

Ij (3)

L+
j = (

SPj + Ij

) ∗ r2 (4)

to clarify the operation of this part of the population, the algorithm employs historical knowledge
stored in the current point L, while also taking into account the overall performance achieved by
the optimal point I . The introduction of the mean point μ acts as a balancing factor between
exploration and exploitation. The weights of 0.5 assigned to L and μ in Eq. (2) signify their moderate
significance, enabling controlled exploration around the current and mean points. In contrast, the
weight of 1.0 designated to I in Eq. (4) imparts a more pronounced exploitation element, steering
the algorithm towards promising regions within the search space. The inclusion of the random
value r2 enhances the algorithm’s adaptable nature, averting premature convergence and promoting
exploration of unexplored territories. This stochastic factor plays a pivotal role in breaking free from
local optima. Fig. 1 provides an overview of the interplay among the current point L, the mean point
μ, and the optimal point I . Meanwhile, Fig. 2 simulates and illustrates the potential movement of the
current point L under various scenarios. The X -axis represents dimension 1, and the Y -axis represents
dimension 2, with the problem domain ranging from −10 to 10.

Figure 1: Interaction between the current point L, the mean point μ, and the best point I

Figure 2: Potential trajectory of the current point L across various scenarios
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4.3 Pouncing Process

In this process, the Lions attempt to pounce the prey. Prioritizing the weakest targets. The process
for pouncing the weakest prey is defined in Eq. (5), while Eq. (6) defines the procedure for pouncing
any accessible prey.

L+
j = r3 ∗ (

Lj − Imin

) + Imin (5)

L+
j = r4 ∗ (

Lj − Ij

) + Ij (6)

where L+
j represents the new position of Lion j. Imin represents the position (minimum value) of the

weakest prey (Impala) in I . r3 and r4 are random numbers in the interval (0, 1). Ij represents the position
of Impala j. To switch between Eqs. (5) and (6), a random number is generated. If random (0, 1) ≤
then Eq. (5) is used; otherwise, Eq. (6) is used. Here, is a real number in the range (0, 1) determined
by the user. By offering two equations for position update, the algorithm introduces variability in the
lion’s movement strategy. This promotes exploration by allowing lions to choose between two different
directions for updating their positions based on the current context. The motivation behind this design
is to inject randomness into the movement of lions in the second group. This randomness encourages
exploration by ensuring that lions do not get stuck in local optima. The algorithm takes a cautious
approach Eq. (5) by emphasizing movement towards the minimum value among the best solutions, and
a more adventurous approach Eq. (3) by focusing on the current best solution. The random choice
of equations enables adaptive exploration based on the current context. Once the attacking process
begins, Impalas try to escape using the process described in the next section.

4.4 Escaping Process

Some Impalas evaluate the degree of risk in their surroundings throughout this process. if they
believe the danger to be minimal, they cautiously adjust their location within the area of the alert
zone, as defined in Eq. (7). On the other hand, if the danger is high, the Impalas instinctively flee from
the threat and escape randomly, as described in Eq. (8).

I+
x = r5 ∗ ((Ix + R) − (Ix − R)) + (Ix − R) (7)

I+
x = r6 ∗ (UL − LL) + LL (8)

Here, I+
x denotes the new position of Impala x. I x is random Impala selected from I . r5 and r6 are

two random numbers in the range (0, 1). UL and LL represent the upper and the lower boundaries of
the problem domain, respectively. R represents the radius of Impalas warning zone, and it is calculated
using Eq. (9).

R = (UL − LL)/k (9)

where k represents a constant value specified by the user, or it can be calculated dynamically based
on the value of iteration. For this work, we have set the value of k to 200. Offering two equations
for updating Impala positions introduces diversity in the movement of lions, further enhancing
exploration capabilities. The use of factor R adds controlled variability to the movement range. This
strategy allows lions to explore different modes of movement when updating their positions based on
Impala information. Eq. (7) involves a perturbation around the selected Impala’s position, mimicking
the idea of following a potential prey’s movements while maintaining a connection to the current best
solution. Eq. (8), on the other hand, allows for wilder exploration by randomly moving to different
areas within the solution space. This combination of strategies balances the benefits of exploiting
successful solutions while also exploring novel regions. The complete CPE algorithm is outlined in
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Algorithm 1, and Fig. 3 presents the Flowchart. The proposed CPE algorithm is available on GitHub
at: https://github.com/Adel-Sabry/CPE-optimization-algorithm.git (accessed on 6 April 2024).

Algorithm 1: CPE algorithm
Input: P[N] (population P of N solutions), UL (Upper Limit of the problem),

LL (Lower Limit of the problem), T (max iteration).
Output: Best solution (group of Impalas)
Method 1: /∗Initialization: Initialize P with random N solutions.

- foreach Pi ε P do
r1 ← random (0, 1)
Pi = initialize (UL, LL, r1) using Eq. (1).

endforeach
- Evaluate each solution in P and keep the best in I .
- R ← (UL - LL)/200 // R (Radius of alert zone for each impala).
- z ← N/2. // Divide the population into two groups.
- t ← 1 // initial iteration.

Method 2:
While t ≤ T do

/∗Process 1: approach and encircle the prey∗/
μI ← CalculateMeanOf_I(I) using Eq. (3)
for i ← 0 to z do

foreach Li,j ε Li do
SPj ← Claculate_SP (μI, Li,j) using Eq. (2)
/∗Update position∗/
r2 ← random (−1, 1)
L+

i,j ← Update_Position(I j, SPj,r2) using Eq. (4)
endforeach
if(L+

i is better than Li)
then Li ← L+

i

if(L+
i is better than I)

then I ← L+
i

endfor
/∗process 2: Pounce∗/
for i ← z to N do

foreach Li,j ε Li do
if (random (0, 1) ≥ 0.5 /∗ Pounce the weakest Impala

then
r3 ← random (0, 1)
L+

i,j ← Pounce (Li,j, Imin, r3)
else /∗ Pounce any Impala∗/

r4 ← random (0, 1)
L+

i,j ← Pounce (Li,j, I j, r4) using Eq. (6)
endforeach
if(L+

i is better than Li)
then Li ← L+

i

(Continued)

https://github.com/Adel-Sabry/CPE-optimization-algorithm.git
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Algorithm 1 (continued)
if(L+

i is better than I)
then I ← L+

i

/∗Process 3: Escape∗/
I x ← select randomly one Impala from I
danger ← random (0, 1)
if (danger ≤ 0.5) /∗update the position using R∗/

then
r5 ← random (0, 1)
I+ ← Update (I x, R,r5) using Eq. (7)

else
/∗Escape randomly∗/
r6 ← random (0, 1)
I+ ← Run (I x, UL, LL, r6) using Eq. (8)

if(I+ is better than I)
then I ← I+

endfor
endwhile

Figure 3: Flowchart diagram of the proposed CPE algorithm
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4.5 Time Complexity Analysis

The time complexity can generally be calculated using the formula O(NET), where N is the
population size, E is the time complexity of the evaluation function, and T is the number of iterations.
The suggested CPE algorithm divides the population size into two groups. The first group uses (4) to
operate one evaluation function every iteration; as a result, the time complexity of this group is O(NET

2
).

In contrast, the second group uses (7) and (8) to run two evaluation functions in each iteration of the
two processes (attack and escape). As a result, the time complexity of this group is determined to be
O

(
2NET

2

) = O(NET). The suggested CPE has an O(NET
2

+ NET) total time complexity.

5 Experimental Results
5.1 Experiment 1: Using 50 Test Functions

This experiment utilized 50 commonly used test functions to assess the performance of the
proposed algorithm. The characteristics of these functions are extensively described in Table A1
in Appendix A. Specifically, functions 1–25 are unimodal and lack local optima, making them
suitable for evaluating the algorithm’s exploitation ability. Meanwhile, functions 26–50 are multimodal
and have numerous local optima, enabling the evaluation of the algorithm’s exploration capability.
For more details about the mathematical formulas of these test functions, the reader can refer to
reference [10]. The performance of the proposed algorithm is compared to 11 well-known algorithms,
including WOA, SCA, GWO, Soccer League Competition (SLC), Krill Herd (KH), TLBO, GSA,
CS, Biogeography Based Optimizer (BBO), Differential Evolution (DE), and PSO. These algorithms
were selected because they represent a diverse range of nature-inspired metaheuristics that have been
widely used and validated in the field of optimization. Each algorithm is executed 25 times for each
test function, and Mean and Standard Deviation (SD) are recorded as metrics. Results with a value
lower than the specified tolerance, δ = E − 11, are considered to be 0 during the evaluation. To ensure
a fair comparison, the Number of Function Evaluations (NFEs) is set to 30,000 for all algorithms.
The names of the algorithms and their parameter settings are presented in Table 2.

Table 2: Optimization algorithms’ names and their parameters

Algorithm Parameters Algorithm Parameters

CPE p-size = 20, R = UP-LL/200, r2

range (−1, 1), danger condition ≤
0.5, r1, r3–r6 are random number
between (0, 1)

TLBO p-size = 50

WOA p-size = 30, b = 1, (a, C, l) from
corresponding equation

GSA p-size = 50, a = 20, G0 = 100, k (p-size
to 1),

SCA p-size = 50, a = 2, (l, r2, r3, r4) from
corresponding equation

CS nests = 20, pa = 0.25

GWO p-size = 50, {a, C} from
corresponding equation

BBO p-size = 50, hmp = 1, elit = 2, st-size =
1, mir = 1, mer = 1, mt ≥ 0.05

SLC n-teams = 5, n-fixed-player = 11,
n-substitute = 11

DE p-size = 20, CR = 0.5, F = 0.5

KH p-size = 50, vf = 0.02, Dmax = 0.005,
Nmax = 0.01, Sr = 0

PSO p-size = 50, c1 = 2, c2 = 2, w (0.2 to 0.9)
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The Mean and SD results for functions 1–25 in the exploitation test and functions 26–50
in the exploration test are shown in Tables 3 and 4, respectively. The best result is highlighted
in bold in the tables. Table 5 presents the performance ranks across a comprehensive set of 50
test functions. The evaluation employs Freidman mean rank values as a means to consolidate the
algorithmic performances, providing a collective perspective on their effectiveness across all functions.
Results indicate that the proposed CPE algorithm demonstrates superior performance on certain
test functions, obtaining the top rank (ranked first) in 9 out of the 50 functions, specifically F2,
F6, F13, F17, F26, F29, F33, F34, and F39. For the remaining 41 test functions, the proposed
CPE algorithm exhibits either superior or comparable performance in comparison to the other
algorithms, except for functions F20 and F25 where the proposed algorithm obtains ranks of 9 and
7, respectively. The strengths of the CPE algorithm lie in its innovative partitioning strategy, which
effectively enhances exploration and exploitation dynamics. This allows it to perform well on both
unimodal and multimodal functions. However, it faces challenges with certain functions (e.g., F20 and
F25), indicating areas where parameter tuning or additional mechanisms might be needed to improve
performance. Other algorithms, such as GWO and PSO, also demonstrated strong performance,
particularly in specific types of functions where their specialized strategies are highly effective. For
example, PSO excels in exploitation due to its velocity and position update mechanisms. However, these
algorithms may have limitations in maintaining diversity and avoiding local optima, which can impact
their performance on more complex multimodal functions. Furthermore, the mean rank analysis
reveals that the proposed CPE algorithm achieves better mean ranks of approximately 3.72 and 3.7
for the first and second sets of test functions, respectively. These results provide valuable insights into
the algorithm’s overall performance across the entire range of test functions. The CPE algorithm’s
strengths lie in its innovative partitioning strategy, which enhances both exploration and exploitation
dynamics. However, there is potential for improvement in fine-tuning the parameters or exploring
additional strategies to address functions where performance was less optimal.

Table 3: Results of the proposed CPE against other 11 algorithm using (F1–F25)

Fun. Index CPE WOA SCA GWO SLC KH TLBO GSA CS BBO DE PSO

F1 Mean 0.0E+00 0.0E+00 1.6E+02 0.0E+00 0.0E+00 1.3E+00 0.0E+00 6.6E−02 1.0E+02 1.1E+02 3.5E−10 9.7E−03
SD 0.0E+00 0.0E+00 1.8E+02 0.0E+00 0.0E+00 6.4E−01 0.0E+00 1.7E−01 2.6E+01 3.8E+01 3.1E−10 1.3E−02

F2 Mean 5.7E−05 1.8E−03 2.0E+00 1.5E−03 5.8E−04 1.3E−01 9.2E−04 8.1E−02 1.6E−01 3.9E−03 4.6E−02 2.2E+01
SD 7.1E−05 1.6E−03 2.3E+00 8.3E−04 3.7E−04 5.5E−02 2.9E−04 3.7E−02 5.21E−02 4.4E−03 1.2E−02 1.9E+01

F3 Mean 0.0E+00 0.0E+00 2.6E−03 0.0E+00 0.0E+00 2.1E−07 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.3E−07
SD 0.0E+00 0.0E+00 3.7E−03 0.0E+00 0.0E+00 2.8E−07 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.4E−07

F4 Mean 0.0E+00 0.0E+00 2.0E+00 0.0E+00 0.0E+00 5.3E+00 0.0E+00 1.5E+01 6.4E+01 4.1E+01 8.6E−06 2.5E−01
SD 0.0E+00 0.0E+00 1.7E+00 0.0E+00 0.0E+00 7.2E+00 0.0E+00 1.2E+01 6.2E+00 6.6E+00 3.6E−06 1.4E−01

F5 Mean 0.0E+00 7.5E+01 6.2E+01 1.6E−06 0.0E+00 5.1E+00 0.0E+00 7.4E+00 1.6E+01 5.3E+01 1.8E+01 2.3E+00
SD 0.0E+00 2.3E+01 8.8E+00 1.6E−06 0.0E+00 1.2E+00 0.0E+00 1.2E+00 1.6E+00 8.2E+00 4.4E+00 3.2E−01

F6 Mean 0.0E+00 4.2E−01 3.6E+02 1.7E+00 7.0E−02 1.4E+00 1.8E−05 8.3E−01 9.7E+01 1.0E+02 2.0E−10 9.0E−03
SD 0.0E+00 1.3E−01 3.5E+02 5.5E−01 5.7E−02 6.8E−01 5.3E−05 2.4E+00 2.3E+01 3.3E+01 1.5E−10 1.1E−02

F7 Mean −275.00 −275.00 −149.80 −219.12 −265.72 −79.52 −271.64 −180.40 −233.04 −257.64 −274.96 −199.76
SD 0.0E+00 0.00 8.09 9.36 14.88 9.38 4.32 5.64 5.91 3.38 0.20 20.99

F8 Mean 0.0E+00 1.3E+05 3.9E+04 3.1E−04 0.0E+00 3.7E+03 0.0E+00 1.5E+03 1.3E+04 3.6E+04 8.6E+04 7.9E+02
SD 0.0E+00 2.9E+04 1.3E+04 5.7E−04 0.0E+00 1.5E+03 0.0E+00 4.4E+02 3.2E+03 7.0E+03 8.3E+03 2.1E+02

F9 Mean 0.0E+00 0.0E+00 1.3E+00 0.0E+00 0.0E+00 3.5E+59 0.0E+00 2.7E+02 1.0E+10 3.6E+01 6.7E−05 2.6E+00
SD 0.0E+00 0.0E+00 1.5E+00 0.0E+00 0.0E+00 1.8E+60 0.0E+00 3.5E+01 0.0E+00 6.6E+00 8.2E−05 2.2E+00

F10 Mean 0.0E+00 0.0E+00 1.7E+08 0.0E+00 0.0E+00 5.8E−08 0.0E+00 3.5E−03 9.3E+02 1.2E−01 7.6E+03 7.8E−01
SD 0.0E+00 0.0E+00 3.5E+08 0.0E+00 0.0E+00 8.5E−08 0.0E+00 1.0E−02 1.5E+03 3.3E−01 3.8E+04 1.5E+00

F11 Mean 4.6E+01 4.8E+01 2.5E+06 4.7E+01 4.6E+01 2.5E+02 4.3E+01 1.3E+02 4.5E+03 4.3E+03 7.7E+01 3.1E+02
SD 0.14E−01 5.3E−01 3.1E+06 7.3E−01 5.5E−01 9.6E+01 6.3E−01 7.8E+01 1.6E+03 2.1E+03 4.5E+01 3.1E+02

F12 Mean 0.0E+00 0.0E+00 9.7E−02 0.0E+00 0.0E+00 2.0E+02 0.0E+00 5.5E+00 1.6E+00 0.0E+00 0.0E+00 1.8E+02

(Continued)
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Table 3 (continued)
Fun. Index CPE WOA SCA GWO SLC KH TLBO GSA CS BBO DE PSO

SD 0.0E+00 0.0E+00 1.5E−01 0.0E+00 0.0E+00 1.1E+02 0.0E+00 2.4E+00 9.8E−01 0.0E+00 0.0E+00 1.7E+02
F13 Mean 0.50 0.67 16298.56 0.67 0.67 9.92 0.67 4.21 67.82 237.28 2.34 7617.05

SD 2.0E−05 0.00 2.7E+04 0.00 0.0E+00 6.04 0.00 2.86 22.28 167.45 2.54 26953.37
F14 Mean 0.0E+00 0.0E+00 2.3E+02 1.7E−05 0.0E+00 2.8E+00 7.6E−08 3.1E+00 8.6E+00 4.5E+01 5.8E−01 3.4E+03

SD 0.0E+00 0.0E+00 2.1E+02 1.8E−05 0.0E+00 9.2E−01 2.5E−07 2.8E+00 2.7E+00 1.3E+01 9.1E−01 1.8E+03
F15 Mean 0.0E+00 9.3E+02 9.3E+01 2.2E−06 0.0E+00 4.0E+02 5.4E−03 1.2E+02 6.0E+02 2.9E+02 4.9E+02 6.9E+02

SD 0.0E+00 2.6E+02 3.7E+01 4.3E−06 0.0E+00 1.2E+02 8.2E−03 2.1E+01 7.4E+01 5.7E+01 6.6E+01 1.4E+02
F16 Mean 0.0E+00 −3.2E−01 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SD 0.0E+00 4.8E−01 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
F17 Mean 0.02 514.73 44.40 571.13 19.78 97.61 0.72 578.76 2.40 135.89 1.70 505.14

SD 0.02 585.33 29.43 1473.63 33.11 262.51 0.74 543.73 1.60 200.14 2.02 1746.47
F18 Mean 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.7E−11 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SD 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.5E−11 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
F19 Mean 0.0E+00 4.4E−11 1.2E−04 3.0E−02 0.0E+00 1.1E−10 0.0E+00 0.0E+00 0.0E+00 1.8E−01 0.0E+00 0.0E+00

SD 0.0E+00 1.4E−10 1.3E−04 1.5E−01 0.0E+00 9.6E−11 0.0E+00 0.0E+00 0.0E+00 2.2E−01 0.0E+00 0.0E+00
F20 Mean 1.7E−10 1.7E−04 6.0E−04 1.8E−07 0.0E+00 9.9E−11 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SD 3.0E−10 1.5E−04 5.9E−04 1.6E−07 0.0E+00 1.2E−10 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
F21 Mean 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.3E−04 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SD 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.7E−04 0.0E+00 0.0E+00 0.0E+00 0.0E+00
F22 Mean 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SD 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
F23 Mean 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.31 0.29 0.30 0.29 0.29

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
F24 Mean 19.11 19.11 19.13 19.11 19.11 19.11 19.11 19.11 19.11 20.44 19.11 19.11

SD 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
F25 Mean 2.4E−08 1.3E−05 2.1E−04 4.8E−07 0.0E+00 8.5E−03 0.0E+00 5.1E−03 0.0E+00 0.0E+00 0.0E+00 0.0E+00

SD 4.3E−08 1.9E−05 1.8E−04 5.8E−07 0.0E+00 9.5E−03 0.0E+00 6.0E−03 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 4: Results of the proposed CPE algorithm against other 11 algorithms using function F26 to
F50
Fun. Index CPE WOA SCA GWO SLC KH TLBO GSA CS BBO DE PSO
F26 Mean 4.5E−02 9.4E+01 3.2E+02 2.2E+02 2.0E+02 2.2E+02 1.9E+02 3.5E+02 1.7E+02 4.2E+00 2.0E+02 2.2E+02

Std 1.6E−02 5.4E+01 7.4E+00 1.7E+01 4.0E+01 2.4E+01 3.8E+01 1.1E+01 5.5E+00 1.2E+00 2.1E+01 4.4E+01
F27 Mean 0.0E+00 0.0E+00 7.8E+01 2.0E+00 0.0E+00 2.5E+01 9.8E+00 3.6E+01 2.1E+02 0.0E+00 3.0E+02 2.5E+02

Std 0.0E+00 0.0E+00 4.8E+01 3.1E+00 0.0E+00 1.2E+01 1.0E+01 8.5E+00 1.7E+01 0.0E+00 1.6E+01 4.6E+01
F28 Mean 9.0E−01 1.0E+00 1.1E+01 1.6E+00 1.7E+00 5.3E+00 5.6E+00 1.0E+00 2.5E+00 9.0E−01 9.4E+00 5.7E+00

Std 4.0E−02 2.4E−01 2.2E+00 3.4E−01 6.0E−01 4.6E+00 3.7E+00 5.4E−16 1.2E−01 2.0E−02 5.2E−01 1.9E+00
F29 Mean 0.6E+00 5.3E+03 2.1E+09 8.4E+03 3.0E+02 2.2E+03 2.8E+00 2.7E+08 1.0E+10 9.0E+05 1.5E+03 8.1E−01

Std 0.3E+00 2.3E+03 2.4E+09 2.3E+03 2.3E+02 9.3E+02 1.4E+01 1.2E+08 0.0E+00 5.0E+05 1.2E+03 1.2E+00
F30 Mean 0.0E+00 0.0E+00 5.4E+00 5.1E−04 0.0E+00 2.0E−01 0.0E+00 8.6E−03 2.5E+01 1.6E−02 3.3E−02 1.3E+00

Std 0.0E+00 0.0E+00 5.4E+00 9.4E−04 0.0E+00 4.4E−01 0.0E+00 1.0E−02 2.2E+00 5.4E−02 8.6E−03 2.3E+00
F31 Mean 2.1E−09 1.0E+04 4.2E+07 6.6E−23 8.0E−25 3.0E+13 0.0E+00 1.2E−01 1.0E+10 1.4E+15 2.3E+02 5.2E+15

Std 4.5E−09 5.2E+04 2.1E+08 3.3E−22 2.8E−24 1.2E+14 0.0E+00 1.8E−01 0.0E+00 6.9E+15 8.3E+02 1.7E+16
F32 Mean 0.0E+00 0.0E+00 1.8E+01 0.0E+00 0.0E+00 2.8E+00 0.0E+00 3.0E−02 1.0E+01 1.9E+00 3.8E−06 7.9E−01

Std 0.0E+00 0.0E+00 5.2E+00 0.0E+00 0.0E+00 7.1E−01 0.0E+00 1.0E−01 1.9E+00 2.8E−01 1.7E−06 6.7E−01
F33 Mean 2.9E+00 1.3E+02 1.0E+04 5.7E+01 9.8E+01 1.4E+02 3.0E+01 7.4E+04 3.3E+03 2.8E+03 1.5E+01 5.1E+01

Std 1.3E+00 3.4E+01 1.2E+04 1.0E+01 2.6E+01 4.1E+01 5.6E+00 1.0E+04 8.4E+02 7.4E+02 1.7E+01 1.4E+01
F34 Mean 9.6E−02 1.4E−01 2.5E+00 2.1E−01 1.0E−01 2.7E+00 1.6E−01 4.4E+00 4.7E+00 3.6E+00 5.2E−01 6.6E−01

Std 2.7E−02 5.7E−02 1.4E+00 2.8E−02 1.3E−07 4.5E−01 4.9E−02 5.2E−01 4.2E−01 4.2E−01 4.6E−02 5.8E−02
F35 Mean −2.0E+03 −1.9E+03 −8.9E+02 −1.4E+03 −1.7E+03 −1.6E+03 −1.7E+03 −1.8E+03 −1.6E+03 −2.0E+03 −1.9E+03 −1.7E+03

Std 2.5E−04 1.1E+02 7.4E+01 8.7E+01 4.5E+01 5.6E+01 5.7E+01 2.9E+01 2.2E+01 2.7E−01 2.1E+01 5.6E+01
F36 Mean 0.0E+00 8.8E−03 9.4E−01 1.6E−03 0.0E+00 1.8E−01 0.0E+00 5.3E−02 9.8E−01 1.0E+00 5.9E−04 5.2E−03

Std 0.0E+00 3.0E−02 2.3E−01 4.7E−03 0.0E+00 8.0E−02 0.0E+00 7.3E−02 4.4E−02 4.0E−02 2.0E−03 5.6E−03
F37 Mean 0.0E+00 −2.4E−01 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Std 0.0E+00 4.4E−01 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
F38 Mean 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 4.6E−08 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Std 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.3E−07 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
(Continued)
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Table 4 (continued)
Fun. Index CPE WOA SCA GWO SLC KH TLBO GSA CS BBO DE PSO
F39 Mean 3.8E−04 7.8E−01 1.6E+07 1.5E+00 1.9E+00 2.1E+01 9.0E−02 2.2E+01 3.1E+01 3.7E+00 1.7E−01 1.8E−02

Std 2.3E−04 3.7E−01 2.3E+07 4.0E−01 1.4E+00 1.3E+01 9.7E−02 5.8E+00 6.1E+00 9.1E−01 7.3E−01 1.6E−02
F40 Mean 1.3E−05 1.1E−02 4.3E+06 5.9E−02 1.6E−03 2.0E+00 1.4E−07 1.5E+00 5.0E+00 5.4E−01 1.1E−03 7.6E−03

Std 6.6E−06 6.4E−03 7.1E+06 2.0E−02 1.4E−03 8.1E−01 2.1E−07 5.4E−01 7.6E−01 1.7E−01 5.3E−03 2.1E−02
F41 Mean 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Std 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
F42 Mean −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −194.57 195.63 −195.63

Std −195.63 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 4.7E−01 0.0E+00 0.0E+00
F43 Mean −2.02 −2.02 −2.02 −2.02 −2.02 −2.02 −2.02 −2.02 −2.02 −2.01 −2.02 −2.02

Std 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.0E−02 0.0E+00 0.0E+00
F44 Mean −106.76 −106.76 −106.71 −105.99 −106.76 −105.99 −106.76 −106.47 −106.76 −100.41 106.76 −106.76

Std 0.0E+00 0.0E+00 5.0E−02 3.9E+00 0.0E+00 3.9E+00 0.0E+00 6.1E−01 0.0E+00 5.0E+00 0.0E+00 0.0E+00
F45 Mean −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −0.90 −1.03 −1.03

Std 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.5E−01 0.0E+00 0.0E+00
F46 Mean 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.47 0.40 0.40

Std 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 4.0E−02 0.0E+00 0.0E+00
F47 Mean −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.82 −3.86 −3.86

Std 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 6.0E−02 0.0E+00 0.0E+00
F48 Mean −3.31 −3.27 −2.95 −3.28 −3.28 −3.28 −3.32 −3.32 −3.32 −3.08 −3.28 −3.25

Std 3.9E−02 7.0E−02 2.8E−01 7.0E−02 6.0E−02 6.0E−02 0.0E+00 0.0E+00 0.0E+00 1.8E−01 6.0E−02 8.0E−02
F49 Mean −2.06 −2.06 −2.06 −2.06 −2.06 −2.06 −2.06 −2.06 −2.06 −2.05 −2.06 −2.06

Std 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.0E−02 0.0E+00 0.0E+00
F50 Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.19 1.00 1.00

Std 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 4.6E−01 0.0E+00 0.0E+00

Table 5: Rank of each algorithm in each test function and Freidman mean-rank

Fun. CPE WOA SCA GWO SLC KH TLBO GSA CS BBO DE PSO Fun. CPE WOA SCA GWO SLC KH TLBO GSA CS BBO DE PSO
F1 3 3 12 3 3 9 3 8 10 11 6 7 F26 1 3 11 9 6.5 9 5 12 4 2 6.5 9

F2 1 5 11 4 2 9 3 8 10 6 7 12 F27 2.5 2.5 9 5 2.5 7 6 8 10 2.5 12 11

F3 5 5 12 5 5 11 5 5 5 5 5 10 F28 1.5 3.5 12 5 6 8 9 3.5 7 1.5 11 10

F4 3 3 8 3 3 9 3 10 12 11 6 7 F29 1 7 11 8 4 6 3 10 12 9 5 2

F5 2 12 11 4 2 6 2 7 8 10 9 5 F30 2.5 2.5 11 5 2.5 9 2.5 6 12 7 8 10

F6 1 6 12 9 5 8 3 7 10 11 2 4 F31 4 7 8 3 2 10 1 5 9 11 6 12

F7 1.5 1.5 11 8 5 12 4 10 7 6 3 9 F32 3 3 12 3 3 10 3 7 11 9 6 8

F8 2 12 10 4 2 7 2 6 8 9 11 5 F33 1 7 11 5 6 8 3 12 10 9 2 4

F9 3 3 7 3 3 12 3 10 11 9 6 8 F34 1 3 8 5 2 9 4 11 12 10 6 7

F10 3 3 12 3 3 6 3 7 10 8 11 9 F35 1.5 3.5 12 11 7 9.5 7 5 9.5 1.5 3.5 7

F11 2.5 5 12 4 2.5 8 1 7 11 10 6 9 F36 2 7 10 5 2 9 2 8 11 12 4 6

F12 4 4 8 4 4 12 4 10 9 4 4 11 F37 7 1 7 7 7 7 7 7 7 7 7 7

F13 1 3.5 12 3.5 3.5 8 3.5 7 9 10 6 11 F38 6 6 6 6 6 12 6 6 6 6 6 6

F14 2 2 11 5 2 7 4 8 9 10 6 12 F39 1 5 12 6 7 9 3 10 11 8 4 2

F15 1.5 12 5 3 1.5 8 4 6 10 7 9 11 F40 2 6 12 7 4 10 1 9 11 8 3 5

F16 7 1 7 7 7 7 7 7 7 7 7 7 F41 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

F17 1 10 6 11 5 7 2 12 4 8 3 9 F42 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 11 12 5.5

F18 6 6 6 6 6 12 6 6 6 6 6 6 F43 6 6 6 6 6 6 6 6 6 12 6 6

F19 4 8 10 11 4 9 4 4 4 12 4 4 F44 3.5 3.5 7 9.5 3.5 9.5 3.5 8 3.5 11 12 3.5

F20 9 11 12 10 4 8 4 4 4 4 4 4 F45 6 6 6 6 6 6 6 6 6 12 6 6

F21 6 6 6 6 6 6 6 12 6 6 6 6 F46 6 6 6 6 6 6 6 6 6 12 6 6

F22 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 F47 6 6 6 6 6 6 6 6 6 12 6 6

F23 5.5 5.5 5.5 5.5 5.5 5.5 5.5 12 5.5 11 5.5 5.5 F48 4 9 12 6.5 6.5 6.5 2 2 2 11 6.5 10

F24 5.5 5.5 11 5.5 5.5 5.5 5.5 5.5 5.5 12 5.5 5.5 F49 6 6 6 6 6 6 6 6 6 12 6 6

F25 7 9 10 8 3.5 12 3.5 11 3.5 3.5 3.5 3.5 F50 6 6 6 6 6 6 6 6 6 12 6 6

Mean
rank

3.72 5.94 9.36 5.68 3.98 8.42 3.9 7.84 7.64 8.12 5.92 7.48 Mean
rank

3.7 5.1 8.76 6.16 5.02 7.86 4.64 7.1 7.84 8.6 6.52 6.7
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The convergence behaviour is another important feature of an optimization method. It involves
the movement of solutions along the search space towards the best answer. To observe the convergence
behaviour of the CPE algorithm, Fig. 4 illustrates the search history and trajectory of 12 agents. The
first column depicts the 2-D version of the function, the second column shows the search history and
trajectory of 12 agents, the third column displays the trajectory of a randomly selected agent in its first
dimension, and the fourth column represents the average convergence of all search agents. It is evident
that the CPE algorithm’s search history extensively explores promising regions of the search space,
avoiding local minima traps, and effectively exploiting the best solution. The trajectory of the first
dimension of the agent in column 3 shows that the variables lead to the best value in early iterations.
Furthermore, Fig. 5 displays the convergence curves of the CPE algorithm compared to other
algorithms, including DE, PSO, CS, GSA, GWO, and TLBO, for some unimodal and multimodal
benchmark functions. The curves are plotted against the number of iterations, with a maximum of
150. For unimodal functions (1–25), the curves indicate that the CPE algorithm outperformed all other
algorithms, highlighting its notable ability to rapidly explore and exploit promising areas. In the case of
multimodal functions (26–50) in Fig. 5, the experimental results demonstrate that the CPE algorithm
performs better than all other algorithms, except for GWO and PSO in the case of F26, and PSO in the
case of F41. Nevertheless, the CPE algorithm consistently exhibits a pronounced capacity to escape
local optima. These empirical observations underscore the algorithm’s adaptability, which enables
it to dynamically adjust its exploration strategies in accordance with the contextual requirements,
manifesting a multifaceted spectrum of exploration and exploitation techniques. The first group
within its methodology amalgamates lion positions, optimal solutions, and averaging techniques,
thereby achieving a judicious equilibrium between intensification and diversification. In contrast,
the second group introduces variance into lion movement patterns, thereby promoting exploratory
behaviours while effectively mitigating stagnation. The algorithm, fundamentally, optimizes solutions
through a synthesis of individual experiences, communal knowledge, and controlled stochasticity.
Consequently, we assert that the CPE algorithm excels in probing the search space, showcasing rapid
convergence toward optimal solutions, and possesses commendable exploration capabilities. These
attributes collectively empower it to adeptly circumvent local minima.

Figure 4: (Continued)
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Figure 4: Search history and trajectory of 12 agents, trajectory of the first dimension of one agent, and
the average convergence of all agents
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Figure 5: Comparisons of convergence curves for some benchmark functions

5.2 Experiment 2: Using CEC-2017 with 30 Dimensions

In this experiment, we utilized CEC-2017 benchmark functions with 30 dimensions, encompassing
30 test functions, which included unimodal, multimodal, hybrid, and composition functions. However,
function 2 was excluded from the analysis due to its instability. The performance of the proposed CPE
algorithm is compared against five well-known optimization algorithms, namely GSA, GWO, WOA,
SCA, and HHO. These algorithms were chosen because they are representative of powerful techniques
in the field of optimization each inspired with different domain and provide a robust benchmark for
evaluating the CPE performance. For all algorithms, NOFE is set to 60,000 function evaluations.
Table 6 presents the names of the algorithms and their parameter settings. Each algorithm is executed
30 times for each test function, and the Mean and SD are recorded. The best result is highlighted in
bold. Table 7 presents the Mean and SD results of the proposed algorithm against the other algorithms,
while Table 8 shows the rank of each algorithm in each test function. The last row in Table 8 presents
the Freidman mean rank test for each algorithm across all the 29 test functions. Analysing the results
from Tables 7 and 8, it is evident that the proposed CPE algorithm demonstrates superior performance
on certain test functions, obtaining the first rank in 15 out of the 29 functions. For the remaining 14 test
functions, the proposed CPE algorithm achieves the second rank in 10 test functions. The worst result
is obtained in only two functions (13 and 14). Overall, the performance of the proposed algorithm
either outperforms or is comparable to the other algorithms. The CPE strengths are again evident in
its strong performance across a diverse set of test functions, particularly in achieving the top rank in
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over half of the functions tested. This demonstrates its robustness and adaptability to different types of
optimization problems. However, its lower performance on functions 13 and 14 suggests areas where
the algorithm could be refined, potentially through parameter adjustments or hybridization with other
techniques. Among the alternative algorithms, GSA and GWO showed competitive performance,
particularly on specific function types. GSA strength in global search capabilities makes it effective
for complex landscapes, while GWO hierarchical structure aids in convergence. Nonetheless, these
algorithms may struggle with maintaining a balance between exploration and exploitation, which is
crucial for achieving consistent performance across varied functions. Furthermore, the mean rank
analysis reveals that the proposed CPE algorithm achieves better mean ranks, approximately 1.55.
These results provide valuable insights into the algorithm’s overall performance across the entire
range of test functions, suggesting that the proposed CPE algorithm possesses notable strengths and
competitiveness. However, areas for improvement include refining the algorithm to handle specific
functions where it showed relatively lower performance, potentially by adjusting parameter settings or
incorporating hybrid strategies.

Table 6: Optimization algorithms’ names and their parameters

Algorithm Parameters setting Algorithm Parameters setting

CPE p-size = 30, R = UP-LL/200, r2 range
(−1, 1), danger condition ≤ 0.5, r1, r3–r6

are random number between (0, 1)

WOA p-size = 30, b = 1, (a, C, l) from
corresponding equation

GSA p-size = 30, α = 20, G0 = 100, k =
[p-size → 1]

HHO p-size = 30

GWO p-size = 30, [a, C] from corresponding
equation

SCA p-size = 30, a = 2, [1, r2, r3, r4]
from corresponding equation

Table 7: Results of the proposed CPE against other 8 algorithm using CEC-2017 test functions with
30 dimensions
# Stats CPE GSA GWO WOA SCA HHO # Stats CPE GSA GWO WOA SCA HHO
F1 Mean 4.97E+05 7.46E+07 1.99E+09 1.08E+09 1.84E+10 3.17E+07 F17 Mean 2.30E+03 2.88E+03 2.07E+03 2.91E+03 2.64E+03 2.50E+03

SD 2.45E+05 1.57E+08 1.30E+09 3.15E+08 3.07E+09 7.47E+06 SD 2.31E+02 2.44E+02 2.00E+02 3.23E+02 2.88E+02 3.09E+02
F3 Mean 4.43E+04 9.62E+04 5.33E+04 2.95E+05 6.66E+04 3.99E+04 F18 Mean 7.88E+05 5.16E+05 2.43E+06 1.24E+07 9.49E+06 2.54E+06

SD 6.98E+03 1.10E+04 1.32E+04 7.46E+04 1.33E+04 6.79E+03 SD 6.21E+05 4.03E+05 5.15E+06 6.47E+06 4.99E+06 1.02E+06
F4 Mean 4.83E+02 6.54E+02 5.96E+02 8.74E+02 2.35E+03 5.55E+02 F19 Mean 8.08E+03 1.35E+05 3.06E+06 6.09E+06 7.10E+07 8.94E+05

SD 2.09E+01 1.25E+02 5.81E+01 4.64E+01 6.92E+02 1.46E+01 SD 3.27E+03 1.08E+05 8.77E+06 5.06E+06 4.12E+07 5.59E+05
F5 Mean 6.09E+02 7.39E+02 6.16E+02 8.58E+02 8.14E+02 7.40E+02 F20 Mean 2.50E+03 3.07E+03 2.45E+03 2.82E+03 2.90E+03 2.85E+03

SD 2.43E+01 2.43E+01 2.30E+01 5.22E+01 2.64E+01 4.90E+01 SD 1.61E+02 2.66E+02 1.73E+02 1.98E+02 1.43E+02 1.86E+02
F6 Mean 6.51E+02 6.58E+02 6.11E+02 6.91E+02 6.60E+02 6.73E+02 F21 Mean 2.42E+03 2.62E+03 2.40E+03 2.60E+03 2.59E+03 2.61E+03

SD 6.10E+00 3.99E+00 4.34E+00 1.52E+01 6.28E+00 9.36E+00 SD 4.63E+01 3.59E+01 2.46E+01 2.00E+01 2.62E+01 4.52E+01
F7 Mean 8.54E+02 9.62E+02 8.86E+02 1.29E+03 1.21E+03 1.30E+03 F22 Mean 3.01E+03 7.25E+03 4.99E+03 6.55E+03 9.01E+03 5.77E+03

SD 2.56E+01 5.50E+01 5.02E+01 5.18E+01 4.61E+01 5.43E+01 SD 1.44E+03 5.08E+02 1.84E+03 2.45E+03 2.49E+03 2.99E+03
F8 Mean 8.97E+02 9.63E+02 8.96E+02 1.07E+03 1.09E+03 9.68E+02 F23 Mean 2.75E+03 3.80E+03 2.80E+03 3.07E+03 3.05E+03 3.25E+03

SD 2.45E+01 1.64E+01 1.56E+01 4.81E+01 2.13E+01 3.46E+01 SD 3.35E+01 1.85E+02 6.09E+01 1.06E+02 2.96E+01 6.49E+01
F9 Mean 9.06E+02 4.17E+03 2.26E+03 1.16E+04 7.92E+03 7.55E+03 F24 Mean 2.95E+03 3.44E+03 2.94E+03 3.23E+03 3.24E+03 3.43E+03

SD 2.25E+00 4.17E+02 6.75E+02 5.87E+03 1.54E+03 1.90E+03 SD 3.00E+01 1.32E+02 5.36E+01 6.98E+01 3.01E+01 1.17E+02
F10 Mean 3.96E+03 5.39E+03 4.80E+03 6.73E+03 8.66E+03 6.14E+03 F25 Mean 2.90E+03 2.99E+03 3.01E+03 3.10E+03 3.48E+03 2.94E+03

SD 5.67E+02 4.92E+02 1.15E+03 9.07E+02 3.33E+02 3.57E+02 SD 2.44E+01 2.57E+01 4.51E+01 3.28E+01 1.43E+02 1.62E+01
F11 Mean 1.942E+03 3.97E+03 2.04E+03 6.90E+03 3.45E+03 1.29E+03 F26 Mean 3.97E+03 7.85E+03 4.90E+03 9.31E+03 7.60E+03 8.21E+03

SD 9.82E+02 1.12E+03 8.34E+02 3.18E+03 1.08E+03 3.41E+01 SD 1.25E+03 6.30E+02 3.12E+02 1.01E+03 3.93E+02 1.18E+03
F12 Mean 1.40E+07 1.25E+08 1.34E+08 3.17E+08 2.15E+09 3.69E+07 F27 Mean 3.25E+03 5.10E+03 3.25E+03 3.48E+03 3.51E+03 3.65E+03

SD 1.22E+07 1.29E+08 2.48E+08 1.29E+08 5.75E+08 2.63E+07 SD 1.30E+01 4.19E+02 1.78E+01 8.82E+01 4.41E+01 3.28E+02

(Continued)
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Table 7 (continued)
# Stats CPE GSA GWO WOA SCA HHO # Stats CPE GSA GWO WOA SCA HHO
F13 Mean 6.68E+05 3.40E+04 3.51E+05 1.21E+06 9.15E+08 6.68E+05 F28 Mean 3.23E+03 3.56E+03 3.51E+03 3.56E+03 4.23E+03 3.35E+03

SD 2.13E+06 9.35E+03 6.03E+05 3.84E+05 4.21E+08 4.26E+05 SD 2.36E+01 2.08E+02 1.98E+02 1.50E+02 2.36E+02 3.48E+01
F14 Mean 7.72E+05 1.03E+06 5.06E+05 3.17E+06 4.70E+05 4.12E+05 F29 Mean 3.71E+03 5.28E+03 3.95E+03 5.42E+03 5.05E+03 4.90E+03

SD 5.88E+05 3.52E+05 4.37E+05 2.59E+06 3.85E+05 2.54E+05 SD 1.93E+02 3.33E+02 1.80E+02 3.70E+02 1.93E+02 6.31E+02
F15 Mean 1.24E+04 1.78E+04 5.95E+05 2.27E+06 4.26E+07 1.11E+05 F30 Mean 2.07E+04 3.18E+06 9.29E+06 3.98E+07 1.41E+08 7.82E+06

SD 2.53E+02 5.93E+03 1.23E+06 3.67E+06 3.22E+07 1.13E+05 SD 8.88E+03 4.09E+06 8.10E+06 3.06E+07 4.86E+07 3.85E+06
F16 Mean 2.76E+03 3.47E+03 2.53E+03 4.06E+03 3.95E+03 3.23E+03

SD 2.53E+02 3.34E+02 2.52E+02 1.09E+03 2.38E+02 2.66E+02

Table 8: Rank of each algorithm in each test function in CEC-2017, Freidman mean-rank

# CPE GSA GWO WOA SCA HHO # CPE GSA GWO WOA SCA HHO

F1 1 3 5 4 6 2 F17 2 5 1 6 4 3
F3 2 5 3 6 4 1 F18 2 1 3 6 5 4
F4 1 4 3 5 6 2 F19 1 2 4 5 6 3
F5 1 3 2 6 5 4 F20 2 6 1 3 5 4
F6 2 3 1 6 4 5 F21 2 6 1 4 3 5
F7 1 3 2 5 4 6 F22 1 5 2 4 6 3
F8 2 3 1 5 6 4 F23 1 6 2 4 3 5
F9 1 3 2 6 5 4 F24 2 6 1 3 4 5
F10 1 3 2 5 6 4 F25 1 3 4 5 6 2
F11 2 5 3 6 4 1 F26 1 4 2 6 3 5
F12 1 3 4 5 6 2 F27 1.5 6 1.5 3 4 5
F13 3.5 1 2 5 6 3.5 F28 1 4.5 3 4.5 6 2
F14 4 5 3 6 2 1 F29 1 5 2 6 4 3
F15 1 2 4 5 6 3 F30 1 2 4 5 6 3
F16 2 4 1 6 5 3 Mean rank 1.55 3.84 2.40 5.02 4.83 3.36

5.3 Experiment 3: Applying CPE to Real Engineering Design Problems

In this study, we employed the proposed CPE algorithm to optimize four established engineering
design problems, namely Welded Beam Design (WBD), Speed Reducer Design (SRD), Cantilever
Beam Design (CBD), and Multi-plate Disc Clutch Brake Design (MDCBD) [34]. To gauge the
effectiveness of the CPE algorithm, we conducted a comparative analysis with other algorithms that
have also been utilized to optimize these problems, using only studies that employed the correct
mathematical equations. Notably, different solutions may arise due to differences in the problem
formulations [34]. Table 9 presents statistical results for the WBD problem, including Worst, Mean,
Best, SD, and Number of Function Evaluations (NFEs), comparing the performance of the proposed
CPE algorithm with other algorithms. The results indicate that the CPE algorithm outperforms all
other algorithms in terms of Mean, Best, and SD, except for the Dynamic Stochastic Selection-
Multimember Differential Evolution (DSS-MDE) method, which produces slightly better results but
requires significantly more NFEs (18,467 NFEs vs. 11,807 NFEs for the proposed CPE algorithm).
Similarly, Table 10 shows that the proposed CPE algorithm is superior to all other algorithms in all
terms for the SRD problem, with only 5000 NFEs. In contrast, Table 11 indicates that there are no
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appreciable variations in the algorithms for the CBD problem in terms of Worst, Mean, and Best.
However, on the positive side, the CPE algorithm requires only 173 NFEs. Lastly, Table 12 presents
the results for the MDCBD problem, indicating that there were no significant differences between
the algorithms’ performance in terms of Best. However, the proposed algorithm performs slightly
worse against other algorithms in terms of Mean and Worst, with a difference of about 0.02 and 0.1,
respectively. On the positive side, the CPE algorithm requires only 173 NFEs to achieve the same best
solution produced by the other algorithms, making it faster than all other algorithms.

Table 9: Statistical results of the proposed CPE vs. other algorithms for WBD problem

Algorithm Worst Mean Best SD NFEs

CPE 2.7375 2.47255 2.3811 7.3E–2 11,807
Society and Civilization (SC) [35] 6.39968 3.25514 2.38543 9.6E–01 33,095
Simulated Annealing (SA) 3.0521 2.8327 2.7290 7.9E–02 100,000
PSO 3.0369 2.8456 2.7289 1.0E–01 100,000
GA 2.9368 2.8439 2.7620 5.0E–02 100,000
Firefly Algorithm (FFA) 3.1223 2.8691 2.7251 1.1E–01 100,000
Evolutionary Strategy (ES) [36] 3.0373 2.8443 2.7245 1.0E–01 100,000
DSS-MDE [37] 2.38096 2.38096 2.38096 3.2E–10 24,000

Table 10: Statistical results of the proposed CPE vs. other algorithms for SRD problem

Algorithm Worst Mean Best SD NFEs

CPE 2994.35102 2994.341875 2994.337211 2.7E−03 5000
PO [10] 2994.47100 2994.471000 2994.471000 3.0−E05 5400
Grey Prediction Evolution
Algorithm-Accelerated Even Grey
(GPEAae) [38]

3028.22875 2995.144685 2994.468240 4.8E+00 19,980

SC [35] 3009.96474 3001.758264 2994.744241 4.0E+00 54,456
Modified Augmented
Lagrange-Differential Evolution
(MAL-DE) [39]

2994.47107 2994.471066 2994.471066 0.0E+00 120,000

DSS-MDE [37] 2994.47107 2994.471066 2994.471066 3.6E−12 30,000

Table 11: Statistical results of the proposed CPE vs. other algorithms for CBD problem

Algorithm Worst Mean Best SD NFEs

CPE 1.3485236 1.342234 1.340006 1.64E−03 10,000
Ecosystem-Based Optimization (AEO) [40] 1.3400890 1.339970 1.339965 8.25E−06 15,000
Social Network Search (SNS) [41] 1.3399576 1.339958 1.339958 1.11E−15 12,000

(Continued)
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Table 11 (continued)

Algorithm Worst Mean Best SD NFEs

Improved Multi-Objective Evolutionary
Algorithm (IMOEA) [42]

1.3458000 1.340907 1.339996 1.64E−03 12,000

Improved Pathfinder Algorithm (IMPFA)
[43]

1.3400000 1.340000 1.340000 1.28E−05 30,000

Table 12: Statistical results of the proposed CPE vs. other algorithms for MDCBD

Algorithm Worst Mean Best SD NFEs

CPE 0.442427 0.3462710 0.3136566 3.81E−02 173
Water Cycle Algorithm (WCA) [44] 0.313656 0.3136560 0.3136566 1.69E−16 500
AEO [40] 0.333260 0.3216842 0.3136566 8.15E−03 500
HBO2 [11] 0.313656 0.3136566 0.3136566 5.85E−17 970
Chaotic Multi-Verse Optimization
(CMVO) [45]

0.337450 0.3139440 0.3136566 2.54E−07 50,000

Interval Particle Swarm
Optimization ([I]PSO) [46]

0.313656 0.3136560 0.3136566 0.00E+00 20,000

The statistical results presented in the tables lead to the conclusion that the proposed CPE
algorithm outperforms other algorithms in the majority of the tested optimization problems, achieving
better Mean and Best values or similar results. Moreover, the CPE algorithm requires fewer function
evaluations, making it a faster optimization method. These findings suggest that the CPE algorithm
is a promising optimization method that can be applied to a wide range of problems, and it has the
potential to be a useful tool for researchers and practitioners in various fields.

6 Conclusions and Future Works

This study presents a novel optimization algorithm, called the CPE algorithm, which is inspired by
the hunting behavior of predators and prey. The proposed CPE algorithm utilizes a unique approach
that effectively combines multiple searches. By partitioning the population into two groups, each
tasked with independently exploring the search space, the algorithm can efficiently navigate through
the problem domain and avoid local optima. Moreover, the algorithm employs a distinct search
mechanism that incorporates the average of the best solution, and the current solution, facilitating
convergence to the optimal solution. Additionally, the use of the pouncing process enables faster
movement towards the best solution. The algorithm’s efficacy is demonstrated across 50 well-known
test functions, CEC-2017 benchmarks, and real-world engineering challenges, consistently surpass-
ing other algorithms. However, we acknowledge that the algorithm does have certain limitations.
Specifically, determining parameters such as the radius R, r2, and danger introduces challenges. The
calculation of these parameters is a complex task, with factors such as problem domain influencing
their values. For instance, the optimal value of R could be domain-dependent, potentially requiring
adaptation for different problem spaces. Similarly, the optimization of ranges for r2 and danger
remains an open question, with potential for improvements by adjusting these parameters. Future
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research can refine performance through parameter tuning, enhancing adaptability across varied
optimization scenarios. Expanding research prospects include fine-tuning parameters, broadening
application domains to feature selection and clustering, exploring multi-objective optimization, and
integrating parallel computing for enhanced performance.
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Appendix A

Table A1: Unimodal (F1–F25), and multimodal (F26–F50) test functions with their characteristics

Fun-name Domain Dim. Fun-type F-min Fun-name Domain Dim Fun-type F-min

F1-Sphere [−100, 100] 50 S, D, C, V 0 F26-Schwefels 2.26 [−500, 500] 50 S, D, C, V 0
F2-Quartic Noise [−1.28, 1.28] 50 S, D, C, V 0 F27-Rastrigin [−5.12, 5.12] 50 S, D, C, V 1
F3-Powell [−1, 1] 50 S, D, C, V 0 F28-Periodic [−10, 10] 50 S, D, C, V 0.9
F4-Schwefels 2.20 [−100, 100] 50 S, ND, C, V 0 F29-Qing [−500, 500] 50 S, D, C, V 0
F5-Schwefels 2.21 [−100, 100] 50 S, ND, C, V 0 F30-Alpine N. 1 [−10, 10] 50 S, ND, C, V 0
F6-Step 2 [−100, 100] 50 S, ND, DC, V 0 F31-Xin-She Yang [−5, 5] 50 S, ND, C, V 0
F7-Stepint [−5.12, 5.12] 50 S, ND, DC, V 25-6n F32-Ackley [−32, 32] 50 IS, D, C, V 0
F8-Schwefels 1.20 [−100, 100] 50 IS, D, C, V 0 F33-Trignometric 2 [−500, 500] 50 IS, D, C, V 1
F9-Schwefels 2.22 [−100, 100] 50 IS, D, C, V 0 F34-Salomon [−100, 100] 50 IS, D, C, V 0

(Continued)

https://doi.org/10.1109/TEVC.2003.814902
https://doi.org/10.1016/j.ins.2008.02.014
https://doi.org/10.1109/ACCESS.2020.3001194
https://doi.org/10.1016/j.cad.2013.07.007
https://doi.org/10.1007/s00521-019-04452-x
https://doi.org/10.1155/2021/8548639
https://doi.org/10.18400/tekderg.541640
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1080/0952813X.2018.1430858
https://doi.org/10.1016/j.asoc.2017.05.022


IASC, 2024, vol.39, no.4 723

Table A1 (continued)
Fun-name Domain Dim. Fun-type F-min Fun-name Domain Dim Fun-type F-min

F10-Schwefels
2.23

[−10, 10] 50 IS, D, C, V 0 F35-Styblinski–Tang [−5, 5] 50 IS, D, C, V -39.16599∗n

F11-Rosenbrock [−30, 30] 50 IS, D, C, V 0 F36-Griewank [−100, 100] 50 IS, D, C, V 0
F12-Brown [−1, 4] 50 IS, D, C, V 0 F37-Xin-She Yang N.4 [−10, 10] 50 IS, ND, C, V −1
F13-Dixon and
Price

[−10, 10] 50 IS, D, C, V 0 F38-Xin-She Yang N.3 [−2π , 2π ] 50 IS, ND, C, V 0

F14-Powell
Singular

[−4, 5] 50 IS, D, C, V 0 F39-Gen. Penalized [−50, 50] 50 IS, ND, C, V 0

F15-Zakharov [−5, 10] 50 IS, D, C, V 0 F40-Penalized [−50, 50] 50 IS, ND, C, V 0
F16-Xin-She
Yang

[−20, 20] 2 IS, D, C, V −1 F41-Egg crate [−5, 5] 2 S, D, C, F 0

F17-Perm 0, D,
Beta

[−di, di] 2 IS, D, C, F 0 F42-Ackley N.3 [−32, 32] 2 IS, D, C, F −195.61

F18-Three-Hump
Camel

[−5, 5] 2 IS, D, C, F 0 F43-Adjiman [−1, 2] 2 IS, D, C, F −2.02181

F19-Beale [−4.5, 4.5] 2 IS, D, C, F 0 F44-Bird [−2π , 2π ] 2 IS, D, C, F −106.7645
F20-Booth [−10, 10] 2 IS, D, C, F 0 F45-Camel Six Hump [−5, 5] 2 IS, D, C, F −1.0316
F21-Brent [−10, 10] 2 IS, D, C, F 0 F46-Branin RCOS [−5, 10] 2 IS, D, C,F 0.3978873
F22-Matyas [−10, 10] 2 IS, D, C, F 0 F47-Hartman 3 [0, 1] 2 IS, D, C, F −3.862782
F23-Schaffer N. 4 [−100, 100] 2 IS, D, C, F 0.29257 F48-Hartman 6 [0, 1] 6 IS, D, C, F −3.32237

F24-Wayburn
Seader 3

[−500, 500] 2 IS, D, C, F 19.106 F49-Cross-in-tray [−10, 10] 2 IS, ND, C, F −2.06261218

F25-Leon [−1.2, 1.2] 2 IS, D, C, F 0 F50-Bartels Conn [−500, 500] 2 IS, ND, C, F 1

Note: Characteristic (S, IS, D, ND, C, DC, F, V, and F-min) means: Separable, Inseparable, Differentiable, Non-differentiable, Continuous,
Discontinuous, Fixed dimensional, Variable dimensional and global optimum.
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