
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2024.060390

ARTICLE

Internet of Things Software Engineering Model Validation Using
Knowledge-Based Semantic Learning

Mahmood Alsaadi, Mohammed E. Seno* and Mohammed I. Khalaf

Department of Computer Sciences, College of Sciences, University of Al Maarif, Al Anbar, 31001, Iraq
*Corresponding Author: Mohammed E. Seno. Email: Mohammed.E.Seno@uoa.edu.iq
Received: 31 October 2024 Accepted: 12 December 2024 Published: 10 January 2025

ABSTRACT

The agility of Internet of Things (IoT) software engineering is benchmarked based on its systematic insights for
wide application support infrastructure developments. Such developments are focused on reducing the interfacing
complexity with heterogeneous devices through applications. To handle the interfacing complexity problem, this
article introduces a Semantic Interfacing Obscuration Model (SIOM) for IoT software-engineered platforms. The
interfacing obscuration between heterogeneous devices and application interfaces from the testing to real-time
validations is accounted for in this model. Based on the level of obscuration between the infrastructure hardware
to the end-user software, the modifications through device replacement, capacity amendments, or interface bug
fixes are performed. These modifications are based on the level of semantic obscurations observed during the
application service intervals. The obscuration level is determined using knowledge learning as a progression
from hardware to software semantics. The results reported were computed using specific metrics obtained from
these experimental evaluations: an 8.94% reduction in interfacing complexity and a 15.04% improvement in
integration progression. The knowledge of obscurations maps the modifications appropriately to reinstate the agility
testing of the hardware/software integrations. This modification-based semantics is verified using semantics error,
modification time, and complexity.

KEYWORDS
Interfacing complexity; IoT; semantics assessment; software engineering

1 Introduction

In the Internet of Things (IoT) software engineering, creating robust models is crucial for
navigating the intricacies inherent in IoT infrastructure. These models act as guiding frameworks,
aiding the seamless integration and management of diverse devices and application interfaces [1,2].
They streamline development and boost system flexibility by offering systematic insights and method-
ologies. Key focuses involve tackling interfacing hurdles, optimizing communication protocols, and
ensuring scalability across various IoT ecosystems [3]. Through continual refinement and adaptation,
these models enable ongoing enhancement and innovation in IoT software engineering practices [4].
Evaluation criteria like performance, scalability, and interoperability serve as yardsticks for gauging

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2024.060390
https://www.techscience.com/doi/10.32604/iasc.2024.060390
mailto:Mohammed.E.Seno@uoa.edu.iq


30 IASC, 2025, vol.40

the efficacy of these models. Ultimately, their successful implementation propels the progress and
evolution of IoT technologies, ushering in a new era of interconnected and intelligent systems [5,6].

In the intricate domain of IoT software engineering, application interfaces are crucial as con-
duits, enabling seamless interaction among various heterogeneous devices and end-users. These are
essential for orchestrating intuitive control, monitoring, and data exchange within expansive IoT
ecosystems [7,8]. Through meticulous design and optimization, application interfaces cater to diverse
user preferences and device functionalities, enhancing the overall user experience [9]. Adaptability
is paramount, with interfaces continuously evolving to meet the dynamic demands of the ever-
expanding IoT landscape and its myriad use cases [10]. Ensuring robust security measures within
application interfaces is crucial, safeguarding sensitive data and preventing potential cyber threats. As
the IoT ecosystem grows, the significance of user-friendly and secure application interfaces becomes
increasingly evident, driving ongoing innovation within software engineering practices [11,12].

In IoT software engineering, optimization methods are pivotal for enhancing system performance
and efficiency. These encompass a range of techniques targeting resource utilization, communication
protocols, and data processing algorithms [13]. Common approaches include algorithmic optimiza-
tion, compression algorithms, and parallel processing to improve efficiency [14]. Energy-efficient
design strategies are also employed to extend device battery life. Real-time optimization algorithms
allow dynamic adjustments based on changing conditions. Continuous monitoring and feedback
mechanisms ensure ongoing optimization to adapt to evolving requirements [15]. This provides the
resilience and effectiveness of IoT solutions in a rapidly changing technological landscape. Further-
more, optimization methods often involve fine-tuning parameters and configurations to optimize
system performance. Machine learning algorithms are increasingly important in this optimization
process, allowing systems to adapt and improve based on historical data and real-time feedback [16,17].
As a continuity of the above discussion, this article discusses the integration issues and complexity-
causing factors through the Semantic Interfacing Obscuration (SIO) model. Thus, a short introduction
to the article’s contribution is presented below:

This article introduces a semantic interfacing obscuration model to aid testing and validation
support for IoT-based hardware and software. The proposed model uses a knowledge-learning
paradigm to identify the progression and complexities in different service intervals. It is evaluated
using an experimental analysis presenting the metrics as a comparative analysis.

In the study, “obscuration”refers to the semantic mismatch or inconsistency arising in interactions
between heterogeneous IoT devices, applications, and interfaces. It involves errors, delays, and ineffi-
ciencies brought about by differences in protocols, data formats, or device capabilities that prevent
seamless integration.

The term “obscuration” has been a deliberate choice because of its relevance to such challenges,
extending beyond the mechanical connotation that would be implied by terms such as “interfacing
complexity” or “integration challenge”. While those other options significantly emphasize structural
or technical hurdles, “obscuration” greatly emphasizes semantic and operational barriers and thus
would imply adaptive resolution mechanisms to restore the state of transparency in interactions.

2 Related Works

Cao et al. [18] developed a software-based remote attestation scheme for Class-1 IoT devices.
The scheme includes mechanisms like delayed observation and memory filling to enhance efficiency.



IASC, 2025, vol.40 31

The aim is to optimize attestation processes and withstand proxy attacks. Testing on a UNO-R3
development board demonstrated its practicality and effectiveness.

Herrera et al. [19] proposed enhancing response time in a software-defined network (SDN)-
Fog environment for time-sensitive IoT applications. The approach identified optimal deployments
for distributed applications, improving the Quality of Service. Utilizing the DADO framework,
optimization of computational elements and SDN controller placements was achieved. Scalable
deployments reduced response times by up to 37.89% compared to alternatives and up to 15.42%
compared to benchmarks.

Zhu et al. [20] introduced a deep reinforcement learning-based algorithm for edge computing
offloading in software-defined IoT. The goal was to optimize task offloading from IoT devices to
edge servers, achieving global optimization. This is implemented as a software-defined edge computing
architecture and an edge computing offloading algorithm based on deep reinforcement learning. The
algorithm sped up tasks, saved energy, and improved balancing and finishing tasks.

Alulema et al. [21] developed SI4IoT, a method for integrating IoT systems. SI4IoT simplifies IoT
system development using Model-Driven Engineering, aiding developers in navigating the complex
IoT environment. The method enables users to access home information on television through tailored
REST services for IoT nodes, enhancing user engagement. SI4IoT combines models and services to
offer developers a versatile tool for managing diverse IoT environments efficiently.

Zhou et al. [22] introduced a smart library architecture that merges IoT and SDN. The method
utilizes SDN to cut costs and enhance network management. Passive Radio Frequency Identification
(RFID) tags are used for efficient book and library property management. The method’s performance
is assessed through both real-world deployment and computer simulations.

Zafar et al. [23] introduced PBCLR to reduce the control-plane load in a software-defined IoT
network. Dynamic switch migration is proposed to handle the load, addressing inefficiencies during
controller overload. The method proactively migrates switches with anticipated high traffic to an
alternative control. Learning techniques and time-series analysis predict future workload based on
historical data to inform migration decisions.

Moin et al. [24] created ML-Quadrat, a model-driven approach for IoT machine learning and
software modelling. SE models plan architecture at different levels, dealing with concerns throughout
software development. AI models enable smart capabilities such as prediction and decision-making,
particularly in Machine Learning (ML). ML-Quadrat is implemented based on ThingML and
validated through a case study from the IoT domain and empirical user evaluation.

Bou Ghantous et al. [25] introduced evaluating the DevOps reference architecture (DRA) for
multi-cloud IoT applications. Originating from agile development, DevOps targets continuous soft-
ware deployment in small releases. The DRA enables architects to design complex models for
automated software development. Software engineers can deploy intricate IoT applications in multi-
cloud environments using DRA models within existing organizational parameters.

Chen et al. [26] devised user integration using the evaluation grid method in two IoT sustainable
services. The method offers a systematic framework to identify user desires from diverse stakeholders,
guiding technological development. Through in-depth interviews, the evaluation grid method explores
users’ desires, visualizing them as a hierarchical evaluation map of attraction. An IoT prototype is
constructed to gather insightful feedback, adhering to minimum viable product design principles.

Gaglianese et al. [27] suggested assessing and improving a Cloud-IoT monitoring service across
federated testbeds. The evaluation spanned 20 to 40 nodes across two Fed4Fire+ federation testbeds.



32 IASC, 2025, vol.40

Following the assessment, FogMon was upgraded to FogMon2, achieving TRL5 and improving
monitoring accuracy and fault resiliency. The findings revealed that FogMon2 handles infrastructure
failures well, with just a 10% measurement error and minimal impact on hardware and network
resources.

Ali et al. [28] introduced a controller placement method for SD-IoT utilizing the Analytical
Network Process (ANP). Their approach exceeded the performance of the standard k-means method.
The technique effectively reduced delays and communication overhead. It also ensured fair switch
allocation and minimized controller-to-controller delays.

Zhang et al. [29] developed human body IoT systems utilizing the triboelectrification effect.
Their method relies on improved TENG designs and materials for flexibility and stability. TENG-
based systems are proposed for monitoring human motion and physical status, utilizing wearable
and implantable sensors. The method offers promising avenues for health monitoring and wearable
technology.

Işıkdağ et al. [30] introduced IoT architecture to integrate geoinformation efficiently. Their
approach prioritizes integration to manage and transfer Geoinformation in diverse IoT environments.
The method tries various technologies and integration methods using an IoT Integration Testbed
Architecture with inexpensive hardware, graph databases, and standard IoT protocols. Results show
that handling multi-source Geoinformation in IoT environments is feasible, providing a basis for
future development.

Deng et al. [31] introduced FogBus2, a lightweight and distributed container-based framework
for integrating IoT-enabled systems. FogBus2 schedules heterogeneous IoT applications with various
policies and uses an optimized genetic algorithm for fast convergence. The method ensures scalability
for efficient responsiveness as the number of IoT devices increases. FogBus2 enhances IoT app
response time by 53% and cuts queuing waiting time by up to 48%.

Villegas-Ch et al. [32] proposed integrating IoT and Blockchain in university campus processes to
enhance sustainability. This concept improves decision-making and ensures the security and efficiency
of processes and data. Blockchain technology is analyzed to create a new layer within university
architecture, prioritizing data privacy. Integration verifies processes and enhances security within the
university environment.

The SIO model is designed to improve the software engineering model validation of hardware
devices based on application and user interfaces. The application interfaces are obtained from the
IoT platform (i.e., the level of obscuration observed in random time intervals for accurate software
validation). This proposed modelling aims to reduce the problem of interfacing complexity in
identifying capacity changes. The challenging task is device replacement and bug fixes based on the
obscuration level with the previous software engineering model.

Table 1 focuses on some critical recent advances concerning IoT, manufacturing, and software
engineering, comparing innovative frameworks and algorithms, techniques achieved, and limitations
to pave the way for future research.



IASC, 2025, vol.40 33

Table 1: Comparison of proposed frameworks and techniques across IoT, manufacturing, and software
engineering domains

Author name Proposed name Technique used Results Limitations

Lee et al.
(2023) [33]

SEIF:
Semantic-enabled
IoT service
framework

Utilizes semantic
knowledge graphs
and data
ontologies to
enable
interoperable data
and knowledge
retrieval for IoT
systems.

Improved IoT
service
interoperability
with precise
semantic
mappings; reduced
data retrieval
errors.

High
computational
requirements
for semantic
reasoning;
limited
scalability for
enormous
datasets.

Su et al.
(2024) [34]

Knowledge-based
digital twin system

A
knowledge-driven
approach
combining digital
twins with
manufacturing
process modelling
for dynamic and
intelligent updates.

Enhanced
manufacturing
process modelling
accuracy; faster
dynamic
reconfigurations
and optimizations.

Implementation
complexity in
diverse
manufacturing
environments
requires robust
and precise data
input.

Pandit et al.
(2022) [35]

DePaaS: AI-based
software defect
prediction
framework

Uses AI algorithms
like deep learning
and statistical
analysis for global
defect prediction
across software
systems.

Achieved high
defect prediction
accuracy across
various datasets;
improved software
reliability.

Limited
performance on
smaller or
highly
imbalanced
datasets
requires
extensive
labelled data.

Kukkar et al.
(2023) [36]

ProRE:
ACO-based
programmer
recommendation
model

Applies ant colony
optimization
(ACO) for
recommending
programmers to
resolve software
bugs effectively.

Increased bug
resolution
efficiency; reduced
allocation
mismatches in
software debugging
processes.

It relies on
historical data,
which can limit
adaptability to
new
programming
paradigms or

Current Models and Their Limitations

Interfacing complexity arises in IoT systems because of diverse communication protocols, hard-
ware specifications, and software APIs on heterogeneous devices. Real-world examples include
protocol mismatches, such as Zigbee-based thermostats and Wi-Fi-enabled security cameras, which
result in delay and compatibility issues. Besides, error propagation due to interface bugs, scalability
challenges when new or replacement devices are introduced, and high maintenance overheads further



34 IASC, 2025, vol.40

worsen the problem. Traditional models usually cannot dynamically cope with these based on static
integration logic, limited semantic awareness, and manual validation processes, which are inefficient
for real-time adjustments or ensuring smooth scalability.

The Semantic Interfacing Obscuration Model, presented in this paper, tries to overcome these
shortcomings given the following:

The proposed SIOM has used knowledge-based learning to predict and resolve such semantic
inconsistencies in real-time. Hardware-software mappings are adjusted to enable seamless device
replacements, capacity amendments, and bug fixes with minimal downtime. Progressive adjustments
consider only the most critical obscuration points, while automated semantic assessments address
interdependencies and minimize computational overheads. SIOM focuses on low-resource adaptive
operations while efficiently ensuring real-time validation and integration, overcoming the limitation
of static models, and providing scalable and flexible IoT ecosystems.

3 Semantic Interfacing Obscuration Model (SIOM) for Software Engineering Model Validation

The proposed model aims to reduce the obscuration between heterogeneous devices and applica-
tion interfaces by reducing interfacing complexity in different service intervals. The hardware/software
integrations are controlled using knowledge learning for appropriate device replacement and bug fixes
that are suppressed to reduce complexity.

To deal with the interfacing complexity of IoT, a fully integrated heterogeneous device and
software component has evolved. Current methods have numerous deficiencies regarding semantic
inconsistencies, device adaptability, and real-time validation in a dynamic environment. The Semantic
Interfacing Obscuration model is proposed to reduce semantic errors, enhance the rate of improvement
of the integration process, and facilitate adaptive modifications on various IoT platforms by proposing
a new approach to tending a knowledge-learning Semantic assessment model for IoT systems’ ability
to interface challenges.

3.1 IoT Setup with SIOM

The proposed model can test and validate all software/hardware in all IoT devices. The level of
obscuration between the infrastructure hardware and the end-user software is addressed to perform
accurate modifications through device replacement, capacity amendments, or interface bug fixes. This
modification through IoT prevents complexity problems from interfacing to improve the performance
of IoT devices. Fig. 1 presents a schematic illustration of the SIOM in IoT.

Figure 1: Schematic illustration of SIOM functions in IoT



IASC, 2025, vol.40 35

The IoT technology consists of two types of terminals, such as applications and user interfaces.
The application terminal collects input data, whereas the user interface terminal is responsible for
sequential data processing and other interfacing complexity problems. Both the applications and user
interfaces are used for performing accurate test validation processes (Fig. 1). The IoT software and
hardware devices communicate with a set of applications A(N) = {1, 2, . . . , A(n)} and set of user
interfaces UI(N) = {1, 2, . . . , UI(n)}; these IoT-associated devices can identify interfacing complexity
problems at the time of testing and validation process. The application processing is performed for
different types of user information in random time intervals T = {1, 2, . . . , i}. Let us assume � is the
number of interfacing complexity occurrences in the IoT network. Based on the instance, the number
of testing and validation processes performed per unit of time is φ, and from which the interfacing
complexity (ηc) is estimated as

ηc = {A (N) + UI(N) × φ × i∀A (N) + UI(N) : : T , ∀� = 0 Obscφ × A (n) + UI(n) − �

A (N) + UI(N)

× i∀ (A (N) + UI (N), �) : : T , ∀� �= 0 (1)

A (N) + UI(N) : : T =
∑UI(N)

i=1
φT (2a)

(A (N) + UI (N), �) : : T =
∑UI(n)

i=1
φT − Obscφ

∑�

i=1
φi (2b)

where,

Obscφ = ∃r

∃r + T
(3)

In the above equations, the variables Obscφ and ∃r signify the obscuration occurrence rate and
testing validation error rate in random time intervals. In the above equation A (N) + UI(N) : : T
and (A (N) + UI (N), �) : : T symbolizes the mapping of user interfaces and interfacing complexity
occurring applications in different time intervals T . The obscuration in the IoT network is identified
in two levels: testing and validation without integration loss. In the testing and validation process,
the gathered data sequence and ηc are the added-up metrics for ensuring that each service satisfies
the obscuration occurrence for the mapped time interval. For the collected information, the testing
and validation process provides device replacement and bug fixes for each service. The obscuration
estimation is described in Algorithm 1.

Algorithm 1: Obscuration estimation description
Input: A(N), T
Step 1: Initialize A (N) and UI for T

Step 2: Perform mapping as : : π =
UI(N)∑

i=1

φT

Step 3: if maping is not done, then
Step 4: No integration is made; [A (N) − UI (N)] = �

Step 5: Udpate T = T − 1

Step 6: ηc = A (n) + UI (n) − �

A (N) + UI(N)
Step 7: else if mapping is done, then

(Continued)



36 IASC, 2025, vol.40

Algorithm 1 (continued)
Step 8: π = [A (N) + UI (N)] − φ is the update

Step 9: Compute obscφ = ∃r

∃r + T
Step 10: Repeat from Step 3 ∀ � = 0 is achieved
Step 11: End
Output: Obscφ

The device replacement between A (n) + UI(n) ∈ A (N) + UI(N) and � are processed based on
identifying capacity changes and time mapping. In above Eq. (1), the condition of � > A (n) + UI(n)

generates integrity loss from the hardware devices. The time-mapping for all the software/hardware
devices and the sequential ηc based on (A (n) + UI(n) × φ) are the testing and validation process
conditions for precise obscuration identification

�map =
∑UI(n)

i=1

�asmt

Ti

(4)

and,

�ηc = ηc

(UI(n) − �)
− (�asmt − ∃r) (5)

In the above equation, Δmap and �ηc is the time mapping and routine test validation processing
instance for IoT software-engineered platforms. The variable �asmt signifies conditional assessment. In
Table 2, the conditional assessment-based Δmap is presented with the different combinations of A (n)+
UI(n).

Table 2: Δmap assessment based on different conditional combinations

Condition A (N) UI (N) : : T Obscφ Δmap

� = 0 0 0 Low 0.25 0.6
0 1 Low 0.28 0.74
1 0 High 0.08 0.98
1 1 High 0.095 0.99

� �= 0 0 0 Low 0.15 0.72
0 1 Low 0.21 0.78
1 0 Low 0.15 0.81
1 1 High 0.098 0.978

In Table 2 above, the � = 0 and � �= 0 are the conditions analyzed for the integration
components: A (N) and UI(N). If A (N) = 1 and UI (N) = 1, then the application and its interface
merge to ensure φ for different T . Based on the mapping defined in Algorithm 1, the T is defined using
−φ instances for reducing ∃r. The obscφ is defined for the unmapped π such that � = 0 is achieved
at any testing instances. Therefore as obscφ is low, the mapping between interface and application
is achieved to maximize the integration semantics. The interfacing complexity/obscuration between
application interfaces and heterogeneous devices from the testing to real-time validations is detected in
this proposed model. From Eqs. (1) to (5), the accurate and appropriate test validation of the hardware



IASC, 2025, vol.40 37

α(TestV) is estimated for each service in different time intervals. This validation is performed to identify
the conditions of � �= 0 and � = 0 based on the level of obscurations in all the hardware/devices
through device replacement and bug fixes. The level of obscurations between infrastructure hardware
and the end-user software modifications for capacity amendments, device replacement, or interface
bug fixes. The service intervals are dependent on validation sequences of Δmap and �ηc from which
α(TestV) is determined in all the mediate layer outputs (MO) for integrity loss detection. The linear
output of �ηc in Δmap is the validating instance for maximizing (A (n)+ UI(n)×φ) condition. The MO

and knowledge learning output (KLO) is difficult to determine α(TestV). The input validation of ηc for
both A (N) + UI(N) : : T and (A (N) + UI (N), �) : : T mappings are to identify obscurations in any
hardware/devices. The different test validation-based complexity assessment is presented in Table 3
with the Obsc∅ rate.

Table 3: Complexity assessment for different test validations

Test Obscφ rate α (TestV) �asmt (%) ηc∀� = 0 ηc∀� �= 0

Hardware 0.1 1 39.28 0.0282 0.131
0.2 0 41.21 0.0321 0.127
0.3 0 65.1 0.041 0.085

Software 0.1 1 42.56 0.0298 0.095
0.2 1 52.36 0.0321 0.087
0.3 0 74.1 0.0451 0.071

Interface 0.1 1 0.51.25 0.051 0.103
0.2 1 58.69 0.032 0.098
0.3 0 65.21 0.041 0.085

Bug fixes 0.1 1 55.36 0.048 0.112
0.2 0 62.21 0.044 0.089
0.3 0 71.24 0.054 0.074

Communication 0.1 1 59.36 0.0325 0.116
0.2 0 66.321 0.0489 0.102
0.3 0 74.21 0.0531 0.089

The testing is considered for hardware (device, functioning), Software (installation and usage),
interface (access and response), bugfixes (errors), and communication (connectivity). Each test is
unique and is validated by a obscφ rate ranging between 0.1 and 0.3. The α (TestV) = 1 (high) for
low Obscφ rate that influences Casmt. If the test is low (0), then conditional assessment increases for the
chances of � = 0 are less than � �= 0. Therefore, the number of audit chances for validation is high
to ensure a low ηc. Thus, both cases are utilized eventually to maximize the assessments over test cases
(Table 3).

3.2 Knowledge Learning Process

The knowledge learning implemented for both the applications and user interfaces is different for
the conditions � �= 0, �ηc = (A (n) + UI(n) − �)ηc and �asmt. If the hardware devices available in the
mapped timing are accounted for integrity level verification, it is output as 1 or 0. The MO in the first
mapping of A (N) + UI (N) : : T provides a linear finite outcome, whereas (A (N) + UI (N), �) : : T



38 IASC, 2025, vol.40

extracts output of A (n)+UI (n) from A (N)+UI (N) with � �= 0. In Eqs. (6) and (7), the two outputs
for A (N) + UI (N) : : T is estimated. The test validation is performed for the identification of Obscφ

and ∃r and the conditional assessment of �asmt = 0 or �asmt = 1 in different time intervals. Therefore,
the output is obtained from all the hardware/devices in validation time interval T . In the above test
validation process, � serves as an input to the knowledge learning after the identification of Obscφ in
A (N) + UI (N) : : T condition

MO1
= �ηc1

∗ i1 + φ1�asmt1
MO2

= �ηc2
∗ i2 − ∃r1

+ φ2�asmt2
MO3

= �ηc3
∗ i3 − ∃r2

+ φ3�asmt3

... MOT
= �ηcT

∗ iT − ∃rT−1
+ φT�asmtT

} (6)

KLO1
= MO1

− φ1 KLO2
= MO2

− Obscφ1
φ2 KLO3

= MO3
− Obscφ2

φ3

... KLOT
= MOT

− ObscφT
φT−1|

KLO1
= �ηc1

∗ i1 + �asmt1
− Obscφ1

KLO2
= �ηc2

∗ i2 − ∃r1
+ φ1�asmt2

− Obscφ2
φ1 KLO3

= �ηc3
∗ i3

− ∃r2
+ φ2�asmt3

− Obscφ3
φ2

... KLOT
= �ηcT

∗ iT−1 − ∃rT
+ φT�asmtT−1

− ObscφT−1
φT} (7)

In the above equations, the linear output of the testing and validation process is expressed as
KLOT

= �ηcT
∗ iT−1 − ∃rT

+ φT�asmtT−1
− ObscφT−1

φT with � = 0, �asmt = 1 and �ηcT
= A (N) + UI .

Hence, the optimal output with α(TestV) = 1 for identifying integration loss. Therefore, such software
and hardware testing is validated as 1 to identify knowledge-based semantic obscurations. The learning
representation for α(TestV) = 1 is illustrated in Fig. 2.

Figure 2: Learning model representation for α(TestV) = 1

The learning model considers �ηc, �asmt, and ∃r inputs for π intervals for MOT
intermediates.

The intermediates are segregated as = 0 or �= 0 based on � and its corresponding �map factor. If
MOT

= 0 progressive knowledge is experienced failing, which requires modifications. Based on the
recommended modifications, the complexity of the previous MOT

instances are computed. As the
complexity is high, the modifications for A(N) and UI(N) are initialized. Thus both α (TestV) = 1
outcomes are used to train the input metrics with updates (Fig. 2). The IoT stores (α(TestV), UI (N))

for each T , the service interval determines the testing for wide application support infrastructure
developments. Instead, (A (N) + UI (N), �) : : T based on MO and KLO are estimated as in Eqs. (8)



IASC, 2025, vol.40 39

and (9), respectively.

MO1
= ηc1

MO2
= ηc2

+ �asmt ∗ Obscφ1
− ∃r1

φMO3
= ηc3

+ �asmt ∗ Obscφ2
− ∃r2

φ
...

MOT
= ηcT

+ �asmt ∗ ObscφT−1
− ∃rT

φ} (8)

KLO1
= MO1

= ηc1
KLO2

= MO2
+ �map1

− �ηc1
= ηc2

− �asmt ∗ Obscφ1
− ∃r1

φ1 + �map1

KLO3
= MO3

+ �map2
− �ηc2

= ηc3
− �asmt ∗ Obscφ1

− ∃r2
φ2 + �map2

... KLOT
= MOT

+ �mapT

− �ηcT
= ηcT

− �asmt ∗ ObscφT
− ∃rT

φT + �mapT−1
} (9)

As per the Eqs. (8) and (9), the level of obscurations is obtained by testing validation conditions of
�ηc = (A (n) + UI (n) − �) and �asmt = 1 or �asmt = 0 in by one manner for identifying modifications.
If �asmt = 0 then KLO = MOT

+ ΔmapT
− �ηcT

= ηcT
is verified at the end of all services, and if

�asmt = 1 then ∃r = 0, and hence, the last output is KLO = α(TestV − ηc. Therefore, the condition of
(A (N) + UI (N), �) : : T is the precise output for identifying integrity levels and thereby finding out

modifications for this output, α(TestV) =
(

�asmt−∃r×Obscφ
A(n)+UI(n)

)
the semantic assessment output is modified

with all the mediate layer outputs and knowledge learning outputs as in above Eqs. (8) and (9). This
condition is not applicable for the first semantic assessment as in Eqs. (6) and (7). Because the above
condition relies on all mapped applications and user interfaces at different time intervals. Therefore,
the α(TestV) along with Δmap and �ηc is validated by the IoT. The Obsc∅ level variations for the
α(TestV) = 0 is described in Algorithm 2.

Algorithm 2: Obsc∅ level variations for α(TestV) = 0
Input: MOT

, φ

Step 1: Initialize (T , I , A (N))

Step 2: Compute MO for all the T Intervals
Step 3: if I is active for all A (N) under � = 0 then
Step 4: ηc = 0; �asmt = 0; increment A (N) with �map

Step 5: Update α (TestV) = 1 ∀ I and A(N)

Step 6: else if I is active for all A (N) under � �= 0 then

Step 7: compute ∃r

Obscφ − �

T
for the remaining integrations

Step 8: KLO = MO + �map − �ηc − �asmt∀Obscφ∀�asmt �= 0

Step 9: MO = ηc + �asmt − ∃r.φ
T

Step 10: End if
Step 11: Repeat from Step 3 until A (N) + I = UI (N) ∀ � = 0
Step 12: ∃rφ = MO − ηc

T
is the final update

Step 13: End
Output: ∃rT

φT

Hence, the semantic interfacing obscuration remains unchanged. From the instance, the following
sequence of testing and validation process, α(TestV) on its previous time interval determines the level
of obscuration between acquiring application interfaces. If the sequence is required from the condition
� > A (n)+UI (n), then the software/hardware testing validation is halted to prevent obscuration. The



40 IASC, 2025, vol.40

proposed model focuses on reducing the interfacing complexity problem in IoT software-engineered
platforms to ensure appropriate real-time validations to address the obscuration. The application
support in the IoT software engineering model relies on semantic assessment. This prevents interfacing
complexity problems and testing errors by modifying service intervals for device replacement or bug
fixes. Hence, the integrity loss is high. The controlled semantic interfacing obscuration ensures less
integration loss within the IoT platform. However, the chances for application interface modification
in the IoT platform are high.

3.3 Semantic Integration Assessment

In the semantic assessment, the modification based on the level of obscuration at the time of
application service intervals follows the complexity of application and user interfaces. The application
interfaces from the testing relay on (α(TestV), A (N), UI (N)) for identifying changes in capacity.
Through obscuration level-based software engineering, model validation is administered based on
α(TestV), modifying levels through infrastructure hardware and end-user software is still vulnerable
in real-time validations. This concerns semantic assessment for application interfaces in an end-to-
end manner to mitigate complex interfacing problems. This semantic integration is administered
concurrently based on the device replacement and bug fixes. In this condition, the second level of
the integration process is administered to detect the level of obscuration between the infrastructure
hardware and the end-user software. In this semantic assessment, the obscuration level in testing is
exchanged between the application interfaces.

The agility of IoT software engineering is observed through knowledge learning. The observations
are classified as testing and validation. Device replacement and bug fixes reduce the chance of
interfacing complexity by causing testing or validation errors. The testing errors are observed as
instances of misdetection of capacity changes. The proposed model focuses on such testing errors
through knowledge learning and mediate layer output. Initial proposed Modeling of application in
Let SAI(T) denote the sequence of software engineering models observed in different time intervals
such that the semantic integration N (I) is given as

N (I) = SAI(T) − ∃r × Obscφ such that arg
∑

∃r (I)∀ SAI(T)} (10)

In Eq. (10), the testing and validation error and the objective of minimizing semantic interfacing
obscurations for all SAI(T) ∈ N (I) is defined as addressing the level of obscuration. The N (I)
feasibility and its related complexity based on two conditions for different tests are presented in
Table 4.

Table 4: N (I) feasibility and complexity analysis

Conditions MOT Hardware Software Interface Bug fixes Communication

Feasibility N (I) (%) Feasibility N (I) (%) Feasibility N (I) (%) Feasibility N (I) (%) Feasibility N (I) (%)

� = 0 0.2 0.65 65.2 0.74 75.21 0.79 0.77 0.8 0.75 0.78 0.74
0.4 0.58 62.36 0.71 73.52 0.75 0.75 0.59 0.74 0.75 0.65
0.6 0.55 64.21 0.52 70.12 0.62 0.65 0.58 0.73 0.65 0.68
0.8 0.52 62.3 0.65 65.21 0.52 0.58 0.45 0.67 0.55 0.59
1 0.48 61.2 0.62 65.2 0.48 0.45 0.42 0.65 0.45 0.55

� �= 0 0.2 0.45 65.14 0.52 45.21 0.65 0.52 0.52 0.37 0.52 0.52
0.4 0.52 66.34 0.55 52.14 0.71 0.58 0.65 0.45 0.47 0.63
0.6 0.52 74.1 0.63 48.25 0.85 0.62 0.74 0.56 0.51 0.52

(Continued)



IASC, 2025, vol.40 41

Table 4 (continued)
Conditions MOT Hardware Software Interface Bug fixes Communication

Feasibility N (I) (%) Feasibility N (I) (%) Feasibility N (I) (%) Feasibility N (I) (%) Feasibility N (I) (%)

0.8 0.46 72.3 0.52 52.1 0.65 0.71 0.71 0.61 0.48 0.58
1 0.52 74.3 0.45 58.2 0.55 0.65 0.75 0.48 0.52 0.47

Table 4 data presents the feasibility and N(I) values for � = 0 and � �= 0 under MOT
variants (0.2,

0.4, 0.6, 0.8, and 1.0). This is not unanimous for different test cases and validations as the progressive
varies differently for Mo∀ test cases. Therefore, the knowledge of progression/complexity is estimated
across multiple T . This is obvious for the � = 0 where ηc ∈ �asmt = 0 and ηc ∈ �asmt �= 0 until maximum
feasibility is achieved. For the � �= 0 condition, ηc is the observed complexity under either of the
below case such that α (testv) = 0 is the failed output. Depending on the A (N) + UI (N) ∀Δmap, the
successive validations are made, provided the ∃r is confined. Assume the condition Capchanges(x) for
application interface and Capchanges(y) for user interface and the changes in SAI(T) in random time
interval is obtained and ∃r is identified in all application interfaces such that

Capchanges (x) = A (n) + UI (n) x : SAI (T), ∀∃r = 0 (11)

and,

Capchanges(y) = ∃r × Obscφ

A (n) + UI (n)
y : � ∗ SAI (T), ∀∃r �= 0 (12)

As presented in Eqs. (11) and (12), the obscuration level is identified in the A (n) + UI (n) x and
∃r × Obscφ

A (n) + UI (n)
y are mapped with SAI (T) for reducing complexity. Now, based on the level as in

Eqs. (11) and (12), Eq. (10) is re-written as

N (I) = {Capchanges (x) = A (n) + UI (n) x : SAI (T), if ∃r = 0 Capchanges (x) − Capchanges(y)

= Obscφ

A (n) + UI (n)
y : SAI (T) − ∃r

A (n) + UI (n)
y : SAI (T), ∀∃r �= 0 (13)

This is computed to identify obscuration levels based on integration semantics using knowledge
learning. The correlating service interval through the available dataset is performed using knowledge
learning. Based on the knowledge of obscurations maps used to appropriately modify the agility testing
of the hardware/software integrations for reducing semantic errors. The consecutive hardware and
software semantic modification helps to identify the error in testing between hardware/software inte-
grations. Semantic obscurations are observed at different application service intervals. The Capchanges

for the x and y is analyzed in Fig. 3.

The Capchanges for x and y for MOT
ranges are analyzed in the above Fig. 3. The proposed SIO

model identifies Obscφ in various [A (N) + UI (N) : : T ] and [A (N) + UI (N), �] mapping instances.
The knowledge learning classifies α (TestV) = 1 and α (TestV) = 0 for progression and complexity-
based modifications. In this case, two Mo are identified from Eqs. (6) and (8), respectively, for : : T and
�. Such identification eases the x and y Capchanges indifferent intervals (service). Based on the x and y
analysis, the N(I) progression is analyzed in Fig. 4.



42 IASC, 2025, vol.40

Figure 3: Capchanges for x and y

The N(I) progression is estimated for ∃r �= 0 and ∃r = 0 for various x and y ranges. Depending
on the α (TestV) = 1 or α (TestV) = 0 case differentiations, the KLo is validated to ensure maximum
integration feasibility. Based on A(N) mapping for UI(N), the �asmt is utilized for multiple �ηc for
maximum semantics validation. Such a verification process leverages the modifications required in
handling device integrations (Fig. 4). This reduces ∃r for different training iterations, maximizing
semantics. The analysis of the same is presented in Fig. 5.

Figure 4: N(I) progression analyses

For the varying iterations and conditions, the N (I) and ∃r the analysis is presented in Fig. 5. As
the iterations increase, the progression and complexity for MOT

= 0 and �= 0 are analyzed recurrently
to update the knowledge. The knowledge update is pursued for � = 0 and � �= 0 conditions to ensure
maximum A (N)+ I = UI(N) interfaces with KLO or modifications. Therefore, the � = 0 case is used
to train the N (I) factor in maximizing the semantics under fewer ηc.



IASC, 2025, vol.40 43

Figure 5: ∃r and N (I) analysis

The SIO model generally deals with interfacing complexity issues in IoT systems, relying on the
power of knowledge-based learning. It considers necessary steps, such as a) detecting obscuration
levels across service intervals, b) adapting changes due to device replacement or bug fixing, and c)
assessing using semantics for reducing errors and enhancing integration progress. These elements will
orchestrate coherently to ensure smooth interaction among heterogeneous devices and applications,
thereby enhancing the agility and reliability of IoT platforms.

4 Results and Discussion

The results and discussion are obtained from a simulation experiment using the Contiki Cooja
simulator [37]. This tool uses IoT device interconnection to deploy 8 user interfaces for keying, voice,
photo capture, etc. This simulation is modelled to encourage application-specific device support and
complexity analysis. The complexity is estimated as the maximum wait time observed after the request
generation. The experimental setup is presented in Table 5.

Table 5: Experimental setup

Setting Value

Devices 240
Service intervals 14
Interval time 30 s minimum and 420 s maximum
Servers 4
Communication bandwidth 1 gbps
Connecting devices 11
Application size 200 to 400 mb

(Continued)



44 IASC, 2025, vol.40

Table 5 (continued)

Setting Value

Application requests 5/min
Service timeout 15 s

The metrics semantics error, modification time, interfacing complexity, integration progression,
and integration semantics are comparatively analyzed using this simulation setup. The integration
progression is analyzed using maximum device assimilations to support a single application for a
prolonged service interval. The semantics factor is estimated based on the maximum sharing interval
provided to a single user. With this information, the existing FogBus2 [31], ECO-SDIoT [20], and
FogMon [27] methods discussed in the related works section are used in this comparative analysis.

The word testing implies applying a series of planned activities, usually on hardware or software,
to determine the correct implementation of specified requirements. Testing detects possible faults or
errors in system behaviour. Validation proves the system works in real-world operating conditions,
fulfilling its purpose dependably and consistently to meet users’ needs. Bug Fixes refer to actions taken
to correct defects or errors found in the system while it is under test or in actual operation.

4.1 Semantics Error

The application and user interface-based information from the IoT devices is obtained and pro-
cessed through software engineering models. The validation for improving the integration progression
achieves fewer semantics errors (as in Fig. 6). In the hardware/devices obscuration identification, the
interfacing complexity problem takes place due to application interfaces and heterogeneous devices
at different time intervals for performing better test validation. This article detects the variation
in capacity measures due to integration loss between the infrastructure hardware using knowledge
learning. The capacity changes are addressed based on obscuration level using the conditions of
A (n) + UI(n) ∈ A (N) + UI(N) and � to reduce interface bugs. The high or low-capacity changes
are detected through semantic learning to satisfy all the modifications through device replacement
and bug fixes. The testing and validation process jointly provides the output of high, medium, or low
integrity levels at the least possible level of obscuration to improve device capacity with less integration
loss. Therefore, the optimal condition here is the IoT software-engineered platform with less semantic
error.



IASC, 2025, vol.40 45

Figure 6: Discussion on semantics error

4.2 Modification Time

The interfacing obscuration includes selective application interfaces from the testing to real-
time validations. The complexity problem is addressed to reduce modification time. Hence, device
replacement, capacity, and bug fixes are pursued based on the level of obscuration and identification,
which is constant at the time of modifications. In this case, the capacity change from the testing to
validation is identified to achieve less modification time. The SIOM is designed to achieve high inte-
gration progression and semantics for device replacement and bug fixes in an IoT software-engineered
platform. Hence, high integration semantics is achievable. Based on the level of obscuration, accurate
modification is made using knowledge learning. From the instance, the available possibilities for
capacity changes are identified to satisfy the sequential ηc based on (A (n) + UI(n) × φ) for reducing
sintegration loss and semantic errors. The obscuration in the IoT network is identified from the testing
to validation without integration loss. In this scenario, the gathered data from IoT hardware/devices
are analyzed to ensure the obscuration occurrence identification in the mapped time interval at each
service. The identification of capacity changes and time mapping with less modification time and error
is represented in Fig. 7.

Figure 7: Discussion on modification time



46 IASC, 2025, vol.40

4.3 Interfacing Complexity

The SIOM achieves less interfacing complexity for different service intervals through knowledge
learning. The learning eases the identification of the obscuration level in hardware/devices. The
interfacing obscuration is identified to merge all the service intervals observed from the testing
process for accurate device replacement and capacity amendments. However, the obscuration levels are
initially filtered to mitigate interfacing complexity through knowledge learning. Therefore, additional
validations are performed to address interfacing complexity problems in the hardware/devices to
increase integration progression. To prevent semantic errors, the learning is implemented to identify
obscurations in each service to stop interfacing obscuration between the infrastructure hardware and
the end-user software. The least integration loss possibilities are detected from the recurrent test
validation process through the proposed model and learning. Therefore, the high changes identified
service intervals are independently segregated with obscuration levels, leading to less interfacing
complexity, as illustrated in Fig. 8.

Figure 8: Discussion on interfacing complexity

4.4 Integration Progression

The proposed SIOM improves integration progression for the testing validation process between
heterogeneous device and application interfaces (Refer to Fig. 9). The accurate obscuration level
identification with fewer semantic errors and modification time is the optimal condition. The condition
assessment uses trained inputs and service intervals to provide wide application support with fewer
semantic errors. This proposed model identifies the interfacing complexity problem for obscuration
levels through knowledge learning. The interfacing complexity/obscuration between application
interfaces and heterogeneous devices is identified from the testing to real-time validations for each
service to prevent interfacing complexity. Detecting which is constant in a particular service interval is
identified for wide application support. The application interfaces observed from the hardware/devices
are analyzed at different intervals to prevent interfacing complexity. The interfacing obscurations are
identified with previous information using knowledge learning to reduce modification time. Hence,
high integration progression is achieved.



IASC, 2025, vol.40 47

Figure 9: Discussion on integration progression

4.5 Integration Semantics

The application interfaces and heterogeneous device integrations are analyzed for obscurations
from the testing to validation based on systematic insights to reduce semantic errors. The high
integration semantics are achieved through device replacement, interface bug fixes, or capacity
amendments based on capacity changes through mediate layer output and knowledge learning output.
The interfacing complexity and semantic errors present in IoT software engineering model validation
are reduced using the condition A (N) + UI(N) : : T and (A (N) + UI (N), �) : : T . In this article,
the knowledge learning process initially halted the changes identified capacity hardware and thereby
reduced semantic error and modification time. The capacity changes are identified and segregated from
the instance through knowledge learning output with less integration loss. The acquired knowledge
from the testing to the validation process is taken to perform accurate modifications using the proposed
model, resulting in high integration semantics with less modification time. Hence, the condition-
succeeding features are recurrently analyzed using filtering conditions to satisfy high precision
(Fig. 10). From the above discussion, and the summary is presented below:

• The proposed model reduced the semantics error by 8.33%, modification time by 13.59%, and
interfacing complexity by 8.94%. This model improved the integration progression by 15.04%
and integration semantics by 14.36%. This is under the maximum device count.

• The proposed model reduced the semantics error by 9.83%, modification time by 11.06%, and
interfacing complexity by 8.45%. This model improved the integration progression by 14.03%
and integration semantics by 11.46%. This is under the maximum service interval time.

4.6 Threats to Validity

Threats to validity were thoroughly discussed to enhance the reliability of the research. The
internal validity threats were reduced by standardizing the experimental settings, and the external
validity was considered by planning real-world validations. Construct validity was ensured by clearly
defining metrics based on prior research. Finally, using multiple performance metrics and cross-
verifying results mitigated risks to conclusion validity, ensuring data-driven findings. This holistic
approach also increases the confidence in the results of this research and follows best practice
guidelines for experimentation in software engineering.



48 IASC, 2025, vol.40

Figure 10: Discussion on integration semantics

Table 6 systematically outlines critical threats to validity and mitigation strategies to ensure
rigour in the research. The risks to internal validity were minimized using standardized sets, while
external validity was catered for by planning the validations. The construct validity was enhanced by
basing the metrics on established literature, and their definitions were outlined. Finally, in conclusion,
validity risks were mitigated through multiple metrics and cross-verification of results. This structured
approach gives assurance of credible, generalizable, and analytically robust findings for the SIO model.

Table 6: Threats to validity in the SIO model research

Threat type Description Mitigation strategies

Internal validity Potential bias in defining
experimental parameters and
configurations.

Standardized setups with
documented procedures ensured
consistency across all simulation
environments.

External validity Limited generalizability due to the
controlled nature of simulation
environments.

Future validation in real-world IoT
deployments to ensure applicability
across diverse, unpredictable
conditions.

Construct validity Ambiguity in metrics like
interfacing complexity, semantic
errors, and integration progression.

Metrics were selected based on
established literature and explicitly
defined in Section 4 to ensure
clarity.

Conclusion validity Risk of unsupported conclusions
due to statistical or analytical
errors.

Multiple metrics were used for
comparisons with existing
methods, with results cross-verified
for robustness.



IASC, 2025, vol.40 49

4.7 Summary of This Section

The results reported were computed using specific metrics obtained from these experimental
evaluations: an 8.94% reduction in interfacing complexity and a 15.04% improvement in integration
progression. To this purpose, interfacing complexity has been quantified by the frequency and severity
of semantic errors, obscuration levels, and integration delays in testing and validation processes. The
integration progress was measured regarding the number of successful interactions between devices
and applications, as well as the consistency of service delivery across different time intervals and device
loads.

Experimental Setup:

The study conducted experiments using the Contiki Cooja simulator, which is used for IoT
device intercommunication. The simulation environment used was based on 240 devices, with service
intervals of 14 random time intervals ranging from 30 to 420 s and a controlled bandwidth of
1 Gbps. The application requests, including voice, photo capture, and so on, were processed to
evaluate the obscuration level and the modification efficiency across hardware-software interfaces. Key
performance indicators monitored include semantic error rates, modification times, and integration
semantics.

Comparative Analysis:

SIOM was compared to established methods, such as FogBus2, ECO-SDIoT, and FogMon,
mentioned in related works. These models focus on resource optimization and integration but lack
SIOM’s knowledge-based semantic learning and adaptive adjustments. The results proved that SIOM
consistently outperformed those approaches with higher integration progressions and lower semantic
errors, underlining its efficiency in reducing interfacing complexity and enhancing real-time IoT
integration.

5 Conclusions

This article proposes the semantic interfacing obscuration model to verify and validate the
integration progression of IoT hardware and software. This proposed model addressed the integration
complexity problem through testing and validation for real-time application support. The obscuration
level and its impact on hardware and device integration are computed using knowledge learning. This
is monotonous for different service intervals requiring different device integrations. The proposed
model is validated using hardware, software, interface, and communication and bug fixes testing
that demands irregular device and interface integrations. Based on the knowledge of the previous
integration intervals, the obscuration level is identified for suitable testing and progression. This
identification uses maximum integration semantics for different devices and service intervals. The
complexity is reduced by recommending device replacements, bug fixes, and capacity changes for real-
time scenarios. The proposed model reduced the interfacing complexity by 8.94% and improved the
integration progression by 15.04% for the maximum device count.

Further, SIOM can be developed in its ability to adapt and become intelligent for problem-solving
issues that may arise. The study can include enabling dynamic device reconfiguration according to
the dynamic change in situations, supporting heterogeneous networks through cross-protocol inter-
operability, and adapting edge computing using lightweight knowledge-based learning optimization
for real-time decisions over resource-constrained edges. Integrating AI-based techniques, such as
reinforcement learning, could predict obscurations and automatically make the necessary changes in
the system. Further, embedding secure interfacing protocols and exploring federated learning would



50 IASC, 2025, vol.40

address cybersecurity and privacy concerns, thus ensuring collaborative knowledge updates while
safeguarding sensitive data in increasingly complex IoT environments.

Acknowledgement: This work was supported by University of Al Maarif.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm their contributions to the paper: study conception and
design: Mohammed E. Seno; data collection: Mahmood Alsaadi; analysis and interpretation of results:
Mohammed I. Khalaf; draft manuscript preparation: Mohammed E. Seno. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, Mohammed E. Seno, upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] W. Rafique, A. S. Hafid, and S. Cherkaoui, “Complementing IoT services using software-defined informa-

tion centric networks: A comprehensive survey,” IEEE Internet Things J., vol. 9, no. 23, pp. 23545–23569,
Dec. 2022. doi: 10.1109/JIOT.2022.3206146.

[2] A. Tibazarwa, “Strategic integration for hardware and software convergence complexity,” IEEE Eng.
Manag. Rev., vol. 49, no. 3, pp. 92–102, Sep. 2021. doi: 10.1109/EMR.2021.3089475.

[3] R. C. Motta, K. M. de Oliveira, and G. H. Travassos, “An evidence-based roadmap for IoT software systems
engineering,” J. Syst. Softw., vol. 201, no. 8, 2023, Art. no. 111680. doi: 10.1016/j.jss.2023.111680.

[4] N. Gavrilović and A. Mishra, “Software architecture of the internet of things (IoT) for smart city, healthcare
and agriculture: Analysis and improvement directions,” J. Ambient Intell. Humaniz. Comput., vol. 12, no.
1, pp. 1315–1336, Jun. 2020. doi: 10.1007/s12652-020-02197-3.

[5] B. M. M. El-Basioni and S. M. Abd El-Kader, “Designing and modeling an IoT-based software system for
land suitability assessment use case,” Environ. Monit. Assess., vol. 196, no. 4, Mar. 2024, Art. no. 380. doi:
10.1007/s10661-024-12483-8.

[6] I. Ungurean and N. C. Gaitan, “A software architecture for the industrial internet of things—A conceptual
model,” Sensors, vol. 20, no. 19, Sep. 2020, Art. no. 5603. doi: 10.3390/s20195603.

[7] Z. G. Imran, A. Alshahrani, M. Fayaz, A. M. Alghamdi, and J. Gwak, “A topical review on machine
learning, software defined networking, internet of things applications: Research limitations and challenges,”
Electronics, vol. 10, no. 8, Apr. 2021, Art. no. 880. doi: 10.3390/electronics10080880.

[8] M. Qasaimeh, R. S. Al-Qassas, and M. Ababneh, “Software design and experimental evaluation of
a reduced AES for IoT applications,” Future Internet, vol. 13, no. 11, Oct. 2021, Art. no. 273. doi:
10.3390/fi13110273.

[9] E. Ahmad, “Model-based system engineering of the internet of things: A bibliometric literature analysis,”
IEEE Access, vol. 11, pp. 50642–50658, 2023. doi: 10.1109/ACCESS.2023.3277429.

[10] S. Zhu, S. Yang, X. Gou, Y. Xu, T. Zhang and Y. Wan, “Survey of testing methods and testbed development
concerning internet of things,” Wirel. Pers. Commun., vol. 123, no. 1, pp. 165–194, Sep. 2021. doi:
10.1007/s11277-021-09124-5.

[11] S. Shadroo and A. M. Rahmani, “Systematic survey of big data and data mining in internet of things,”
Comput. Netw., vol. 139, no. 15, pp. 19–47, Jul. 2018. doi: 10.1016/j.comnet.2018.04.001.

https://doi.org/10.1109/JIOT.2022.3206146
https://doi.org/10.1109/EMR.2021.3089475
https://doi.org/10.1016/j.jss.2023.111680
https://doi.org/10.1007/s12652-020-02197-3
https://doi.org/10.1007/s10661-024-12483-8
https://doi.org/10.3390/s20195603
https://doi.org/10.3390/electronics10080880
https://doi.org/10.3390/fi13110273
https://doi.org/10.1109/ACCESS.2023.3277429
https://doi.org/10.1007/s11277-021-09124-5
https://doi.org/10.1016/j.comnet.2018.04.001


IASC, 2025, vol.40 51

[12] A. A. Helal, R. S. Villaça, C. A. S. Santos, and R. Colistete, “An integrated solution of software and
hardware for environmental monitoring,” Internet Things, vol. 19, no. 2, Aug. 2022, Art. no. 100518. doi:
10.1016/j.iot.2022.100518.

[13] H. Poveda, K. Navarro, F. Merchan, E. Ramos, and D. G. González, “A software defined radio-based
prototype for wireless metrics studies in IoT applications,” Wirel. Pers. Commun., vol. 120, no. 3, pp. 2291–
2306, Feb. 2021. doi: 10.1007/s11277-021-08281-x.

[14] A. Amjad, F. Azam, M. W. Anwar, and W. H. Butt, “A systematic review on the data interoperability
of application layer protocols in industrial IoT,” IEEE Access, vol. 9, pp. 96528–96545, 2021. doi:
10.1109/ACCESS.2021.3094763.

[15] A. Brunete, E. Gambao, M. Hernando, and R. Cedazo, “Smart assistive architecture for the integration of
IoT devices, robotic systems, and multimodal interfaces in healthcare environments,” Sensors, vol. 21, no.
6, Mar. 2021, Art. no. 2212. doi: 10.3390/s21062212.

[16] A. Sevin and A. A. O. Mohammed, “A survey on software implementation of lightweight block ciphers
for IoT devices,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 3, pp. 1801–1815, Jul. 2021. doi:
10.1007/s12652-021-03395-3.

[17] R. Seiger, R. Kühn, M. Korzetz, and U. Aßmann, “HoloFlows: Modelling of processes for the inter-
net of things in mixed reality,” Softw. Syst. Model., vol. 20, no. 5, pp. 1465–1489, Jan. 2021. doi:
10.1007/s10270-020-00859-6.

[18] J. Cao, T. Zhu, R. Ma, Z. Guo, Y. Zhang and H. Li, “A software-based remote attestation scheme for
internet of things devices,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 2, pp. 1422–1434, Mar.
2023. doi: 10.1109/TDSC.2022.3154887.

[19] J. L. Herrera, J. Galán-Jiménez, J. Berrocal, and J. M. Murillo, “Optimizing the response time in SDN-fog
environments for time-strict IoT applications,” IEEE Internet Things J., vol. 8, no. 23, pp. 17172–17185,
Dec. 2021. doi: 10.1109/JIOT.2021.3077992.

[20] X. Zhu, T. Zhang, J. Zhang, B. Zhao, S. Zhang and C. Wu, “Deep reinforcement learning-based edge
computing offloading algorithm for software-defined IoT,” Comput. Netw., vol. 235, no. 2, Nov. 2023,
Art. no. 110006. doi: 10.1016/j.comnet.2023.110006.

[21] D. Alulema, J. Criado, L. Iribarne, A. J. Fernández-García, and R. Ayala, “SI4IoT: A methodology based
on models and services for the integration of IoT systems,” Future Gener. Comput. Syst., vol. 143, no. 1, pp.
132–151, Jun. 2023. doi: 10.1016/j.future.2023.01.023.

[22] Q. Zhou, “Smart library architecture based on internet of things (IoT) and software defined networking
(SDN),” Heliyon, vol. 10, no. 3, Feb. 2024, Art. no. e25375. doi: 10.1016/j.heliyon.2024.e25375.

[23] S. Zafar, B. Zafar, X. Hu, N. H. Zaydi, M. Ibrar and A. Erbad, “PBCLR: Prediction-based control-plane
load reduction in a software-defined IoT network,” Internet Things, vol. 24, no. 11, Dec. 2023, Art. no.
100934. doi: 10.1016/j.iot.2023.100934.

[24] A. Moin, M. Challenger, A. Badii, and S. Günnemann, “A model-driven approach to machine learning
and software modeling for the IoT,” Softw. Syst. Model., vol. 21, no. 3, pp. 987–1014, Jan. 2022. doi:
10.1007/s10270-021-00967-x.

[25] G. B. Ghantous and A. Q. Gill, “Evaluating the DevOps reference architecture for multi-cloud IoT-
applications,” SN Comput. Sci., vol. 2, no. 2, Mar. 2021, Art. no. 123. doi: 10.1007/s42979-021-00519-6.

[26] J. -C. Chen, C. -C. Chen, C. -H. Shen, and H. -W. Chen, “User integration in two IoT sustainable
services by evaluation grid method,” IEEE Internet Things J., vol. 9, no. 3, pp. 2242–2252, Feb. 2022. doi:
10.1109/JIOT.2021.3091688.

[27] M. Gaglianese, S. Forti, F. Paganelli, and A. Brogi, “Assessing and enhancing a cloud-IoT monitoring
service over federated testbeds,” SSRN Electron. J., 2022. doi: 10.2139/ssrn.4241469.

[28] J. Ali and B. Roh, “An effective approach for controller placement in software-defined internet-of-things
(SD-IoT),” Sensors, vol. 22, no. 8, Apr. 2022, Art. no. 2992. doi: 10.3390/s22082992.

[29] Q. Zhang et al., “Human body IoT systems based on the triboelectrification effect: Energy harvesting,
sensing, interfacing and communication,” Energy Environ. Sci., vol. 15, no. 9, pp. 3688–3721, 2022. doi:
10.1039/D2EE01590K.

https://doi.org/10.1016/j.iot.2022.100518
https://doi.org/10.1007/s11277-021-08281-x
https://doi.org/10.1109/ACCESS.2021.3094763
https://doi.org/10.3390/s21062212
https://doi.org/10.1007/s12652-021-03395-3
https://doi.org/10.1007/s10270-020-00859-6
https://doi.org/10.1109/TDSC.2022.3154887
https://doi.org/10.1109/JIOT.2021.3077992
https://doi.org/10.1016/j.comnet.2023.110006
https://doi.org/10.1016/j.future.2023.01.023
https://doi.org/10.1016/j.heliyon.2024.e25375
https://doi.org/10.1016/j.iot.2023.100934
https://doi.org/10.1007/s10270-021-00967-x
https://doi.org/10.1007/s42979-021-00519-6
https://doi.org/10.1109/JIOT.2021.3091688
https://doi.org/10.2139/ssrn.4241469
https://doi.org/10.3390/s22082992
https://doi.org/10.1039/D2EE01590K


52 IASC, 2025, vol.40

[30] Ü. Işikdağ, “An IoT architecture for facilitating integration of geoinformation,” Int. J. Eng. Geosci., vol. 5,
no. 1, pp. 15–25, Feb. 2020. doi: 10.26833/ijeg.587023.

[31] M. Mouine and M. A. Saied, “Event-driven approach for monitoring and orchestration of cloud and edge-
enabled IoT systems,” in 2022 IEEE 15th Int. Conf. Cloud Comput. (CLOUD), Jul. 2022, pp. 273–282. doi:
10.1109/cloud55607.2022.00049.

[32] W. Villegas-Ch, X. Palacios-Pacheco, and M. Román-Cañizares, “Integration of IoT and blockchain to
in the processes of a university campus,” Sustainability, vol. 12, no. 12, Jun. 2020, Art. no. 4970. doi:
10.3390/su12124970.

[33] J. Lee, K. Gilani, N. Khatoon, S. Jeong, and J. Song, “SEIF: A semantic-enabled IoT service framework
for realizing interoperable data and knowledge retrieval,” IEIE Trans. Smart Process. Comput., vol. 12, no.
1, pp. 9–22, Feb. 2023. doi: 10.5573/IEIESPC.2023.12.1.9.

[34] C. Su, Y. Han, X. Tang, Q. Jiang, T. Wang and Q. He, “Knowledge-based digital twin system: Using a
knowlege-driven approach for manufacturing process modeling,” Comput. Ind., vol. 159–160, no. 6, Aug.
2024, Art. no. 104101. doi: 10.1016/j.compind.2024.104101.

[35] M. Pandit et al., “Towards design and feasibility analysis of DePaaS: AI based global unified software
defect prediction framework,” Appl. Sci., vol. 12, no. 1, Jan. 2022, Art. no. 493. doi: 10.3390/app12010493.

[36] A. Kukkar et al., “ProRE: An ACO-based programmer recommendation model to precisely manage
software bugs,” J. King Saud Univ.-Comput. Inf. Sci., vol. 35, no. 1, pp. 483–498, Jan. 2023. doi:
10.1016/j.jksuci.2022.12.017.

[37] O. S. Contiki, “Cooja simulator IoT simulation,” Network Simulation Tools, Jan. 14, 2023. Accessed:
Dec. 13, 2024. [Online]. Available: https://networksimulationtools.com/contiki-os-cooja-simulator-iot-
simulation.

https://doi.org/10.26833/ijeg.587023
https://doi.org/10.1109/cloud55607.2022.00049
https://doi.org/10.3390/su12124970
https://doi.org/10.5573/IEIESPC.2023.12.1.9
https://doi.org/10.1016/j.compind.2024.104101
https://doi.org/10.3390/app12010493
https://doi.org/10.1016/j.jksuci.2022.12.017
https://networksimulationtools.com/contiki-os-cooja-simulator-iot-simulation
https://networksimulationtools.com/contiki-os-cooja-simulator-iot-simulation

	Internet of Things Software Engineering Model Validation Using Knowledge-Based Semantic Learning
	1 Introduction
	2 Related Works
	3 Semantic Interfacing Obscuration Model SIOM for Software Engineering Model Validation
	4 Results and Discussion
	5 Conclusions
	References


