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Shape Sensitivity Analysis of Bioheat Transfer in the
System Blood Vessel - Surrounding Tissue
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Introduction
Thermal processes proceeding in the system blood vessel - biological tissue

are described by the Pennes equation (Poisson-type partial differential equation)
and the equation determining the change of blood temperature along the vessel
[2, 4, 5, 12, 13]. The boundary condition given on the vessel wall constitutes the
coupling element of the model presented.

The steady temperature field in the tissue domain (axially-symmetrical problem
is considered) is described by the equation (Fig. 1)
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where T (r, z) denotes a tissue temperature, λ is a tissue thermal conductivity, cB is
a volumetric specific heat of blood, GB[m3blood/m3tissue] is a perfusion rate, Qm

is a metabolic heat source, Ta(z) is an arterial blood temperature.

In the paper [9] the following equation determining the course of TB(z) is pro-
posed

dTB (z)
dz

+
2α

cBwR1
[TB (z)−T (R1, z)] = 0 (2)

where R1= const is a vessel radius, α is a heat transfer coefficient on a vessel wall,
w is a blood flow velocity. Additionally it is assumed that TB(r, z) = TB(z) and for
z = 0: TB(0) = TB0.

On the vessel wall the Robin condition is given

(r, z) ∈ Γ1 : q(r, z) = −λ ∂T (r,z)
∂r

= α [T (R1, z)−TB (z)] (3)

while for r = R: T = 37oC (Dirichlet condition). The part of boundary for which
the no-flux condition is assumed is marked in Figure 1.

In literature [4, 11] the traversing and supplying vessel models are considered.
In the first case
it is assumed that the temperature Ta(z) in equation (1) is a constant value Ta(z) =
TB0, in the second case Ta(z) = TB(z). In the next chapters the both cases will be
taken into account.
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Shape Sensitivity Analysis
For the needs of further considerations the definition of substantional derivative

is introduced [3, 7]
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where b is a shape parameter (here b = R1), vr, vz is the velocity field associated
with the shape parameter b. Now the basic equations constituting the mathematical
description of the process will be differentiated with respect to the shape parameter
(a direct approach). So
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or (after the rather complex mathematical manipulations [6])
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where U= DT /Db.

The equation concerning a blood vessel is also differentiated with respect to b
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where UB= DTB/Db.

The Robin condition (3) leads to the following formula
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If one assumes that b = R1 then the transformation velocities can be defined as
follows

vr =
{ r

b , 0 ≤ r < R1
R−r
R−b , R1 ≤ r ≤ R

vz = 0
(10)
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For above definition the equations (6), (8) take a form
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and
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while the condition (9)
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After differentiation of the others boundary conditions we obtain for r = R:
U(R, z) =0, while for z= 0 and z = Z: -λ ∂U(r, z)/∂ z= 0.

Results of Computations
The basic problem and additional one connected with the sensitivity analy-

sis have been solved using the hybrid algorithm basing on the boundary element
method [1, 8] (tissue sub-domain) and finite differences method (blood vessel sub-
domain). The details concerning the numerical solution of basic problem can be
found in [9, 10], the sensitivity one is solved in a similar way.

The blood vessel of radius R1= 0.0002 [m] is considered. The external ra-
dius of domain is assumed as R = 10R1, while Z = 0.18 [m]. The following in-
put data are taken into account [6, 11]: λ = 0.5 [W/(mK)], Qm= 25000 [W/m3],
GB =0.002 [1/s], cB= 4.134·106 [J/(m3K)], w= 0.01 [m/s], P/F = 2/R1 [1/m], α =
500 [W/(m2K]. The blood temperature TB0 equals TB0= 37oC, the tissue tempera-
ture T (R, z) equals T (R, z)= 37oC. The value of metabolic heat source assumed
corresponds to the exercise conditions (in the case of rest conditions it is the es-
sentially less value). In this way we obtain the effect of clear-cut changes of tissue
temperature.

Figures 2 and 3 show the temperature profiles the radial direction at different
co-ordinates z for the traversing and supplying vessel cases, respectively. The next
Figures (4 and 5) illustrate the distribution of sensitivity function in a radial direc-
tion and different z.

One can see that the solution concerning the supplying vessel gives more visi-
ble changes of temperature distribution and this fact is confirmed in literature (see:
[4]), the maximum temperature both in the case of supplying and traversing vessels
is located in the same place corresponding to r =5[mm].
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Figure 1: Domain considered Figure 2: Temperature field (sup-
plying vessel)

Figure 3: Temperature field
(traversing vessel)

Figure 4: Sensitivity function
(supplying vessel)

Figure 5: Sensitivity function
(traversing vessel)

Figure 6: Changes of blood
temperature 1 - supplying, 2 -
traversing

The sensitivity distribution shows that the increase of vessel radius causes the
debasement of temperature. It results from the introduction of negative values U
to the Taylor formula. From the physical point of view such effect results from
the better cooling conditions of tissue sub-domain. The zero value of sensitivity
function of the external surface of the system results from the assumed boundary
condition (core temperature). The model of supplying vessel is more sensitive than
a traversing one. Additionally the maximum changes of temperature resulting from
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the increase of vessel radius take place close to the vessel wall (supplying vessel)
or almost directly on the vessel wall surface (traversing vessel).

In Figure 6 the changes of blood temperature along the vessels are shown.
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