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On Three-dimensional Effects in Propagation of
Surface-breaking Cracks

E. Schnack1, A. Dimitrov2 and F.-G. Buchholz3

Summary
In fracture mechanics, we have to discuss corner and edge singularities for

two- and three-dimensional problems in isotropic and layered anisotropic con-
tinua. To say something about the behavior of crack propagation starting from
corners and edges, we need the information about stress asymptotics in the vicin-
ity of three-dimensional corner points. Thus, in this paper we can study two as-
pects: the interface crack in layered unisotropic materials with re-entrant corners
and surface cracks for the homogeneous isotropic continua. To study the effect of
geometrical singularities on the stress intensity factors, we have to define gener-
alized stress intensity factors. We are starting with KONDRATIEV´s Lemma and
starting from that, an elliptic boundary value problem with homogeneous DIRICH-
LET/NEUMANN boundary data which produce a singular field in the vicinity of
corner points. In the next step, the weak form for the previous problem is dis-
cretized by using PETROV-GALERKIN finite element method and, as a result, we
are getting a quadratic eigenvalue problem. The quadratic eigenvalue problem is
solved iteratively by the ARNOLDI method, and finite element approximations of
corner singularity exponents λI are computed. These eigenvalues λI are the basis
for the definition of generalized stress intensity factors in the neighborhood of the
corner points. For the a posteriori control on λI , an error estimator is developed on
the basis of ZIEKIEWICZ-ZHU algorithm. The method is tested for some typical
problems in fracture mechanics.

keywords: Fracture mechanics, stress singularities, eigenvalue problems, cor-
ner and edge effects.

Introduction
This paper deals with the computation of three-dimensional singularities in

elasticity. Those singularities we have for non-smooth domains with corners, edges
and cracks and if we have jumps for the material constants from one layer to each
other. To say something about the strength and the life-cycle of materials, we need
parameters like generalized stress intensity factors as parameters from the singular
functions. The numerics behind computing singularities will be influenced by the
regularity of the solution. On the basis of CÉA´S Lemma, the convergence behavior
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of those methods depends on the type of trial and test functions. Classical polyno-
mials can produce problems with the convergence behavior to avoid or reduce those
problems, we can work with adaptive mesh generation or considering the type of
singularity in the trial and test spaces. The type of singularities can be described
for the displacements in the following form:

|x|λ
N

∑
n=0

logn |x| Un(x/|x|). (1)

We understand asymptotic solutions from type (1) for that λ < 1.

The Singularity Problem in Elasticity for R
3

Given is Ω of R
3 as a bounded domain which goes conform with the cone (see

Fig. 1).
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Figure 1: Solid Body with Singular, Conical Point O (a). Cartesian and Spherical
Coordinates at O (b)

We are defining K :

K := {x ∈ R
3 : 0 < |x|< ∞,x/|x| ∈ S } (2)

in an ε-region U ε
O := {x ∈ R3 : 0 < |x|< ε} which has the same coordinate point

O, so that we have

Ωε
O := K ∩U ε

O = Ω∩U ε
O . (3)

On Ω we have the mixed boundary value problem in elasticity

Lu := DT CD u = f on Ω,

u = ū on ∂Ω0,

Tu := t(u) = t̄ on ∂Ω1,

(4)
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We are looking for a solution of an equivalent mixed boundary value problem of
Ωε

O for which the transmission boundary |x| = ε has such DIRICHLET boundary
conditions û that the solution of (4) is identical with the local solution around the
tip. Additionally, we define for |x| < ε only homogeneous boundary conditions.
We are looking for u of the LAMÉ-System:

Lu = f on Ωε
O,

u = û on ΓT ,

u = 0 on Γ0,

Tu = 0 on Γ1.

(5)

For the boundaries for DIRICHLET-, NEUMANN and transmission parts we have
the following:

Γ0 := {x : 0 < |x|< ε , x/|x| ∈ γ0},
Γ1 := {x : 0 < |x|< ε , x/|x| ∈ γ1},
ΓT := ∂Ωε

0\{Γ0 ∪Γ1},
(6)

where γ0∪γ1 = ∂S , γ0∩γ1 = /0 defining ∂S . We are using the disturbance theory
[1], so that we are introducing the scaled coordinates y = x/ε and after ε → 0, the
domain Ωε

0 goes to the unbounded domain K . We can transform the LAMÉ system
to the following:

Lu = 0 on K ,

u = 0 on ∂K0,

Tu = 0 on ∂K1,

(7)

where ∂K0 := {x ∈ ∂K : x/|x| ∈ γ0}, ∂K1 := {x∈ ∂K : x/|x| ∈ γ1} defines the
DIRICHLET- and NEUMANN-part of the boundary ∂K . For the spectral problem
we come now to the following formulation:

u(r,θ ,ϕ) = rλ U(θ ,ϕ), (8)

for which we have to consider the following equation set:

L̂(λ )U = 0 on S ,

U = 0 on γ0,

T̂(λ )U = 0 on γ1,

(9)

where γ0 and γ1 are DIRICHLET- NEUMANN-part of ∂S . The operator in (9) is a
so-called ’operator pencil’ A(λ ) for which we have the following properties (see
proof in [4]):
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1. A(λ ) is a FREDHOLM-operator for all λ ∈ C.
2. The spectrum of A(λ ) consists of isolated eigenvalues with finite algebraic

multiplicity.
3. If λ0 is an eigenvalue of A(λ ), then this is also the case with λ̄0,−1 −

λ0,−1− λ̄0, where the geometrical and algebraic multiplicity of λ0 and −1−
λ̄0 are identical.

We are coming to the kernel theorem formulated by KONDRATIEV [3]. If u ∈
[H1(Ω)]3, we have the following asymptotic series:

u =
I

∑
i=0

k j

∑
k=0

Kik rλi lnk(r) Uik(θ ,ϕ), (10)

where λi are eigenvalues of the operator pencil and are called ’singular exponents’,
Uik are the generalized eigenvectors and Kik are the amplitudes and are called ’gen-
eralized stress intensity factors’. We have to consider that strain energy must be
finite. In the following we are interested only in the singular part of the solution,
thus we restrict ourselves to

−0.5 < Re(λ ) < 1, (11)

where we have the pontency logarithmic shape of the singularities. We understand
asymptotic solutions from type |x|λ ∑N

n=0 logn |x| Un(x/|x|), for that λ < 1 and has
infinite gradients of the displacements.

Weak Formulation of the Problem
We search for a solution for u ∈ [H1(Ωε

0)]
3 so that

B(u,v) = 0, ∀v ∈ [H1
0 (Ωε

O)]3. (12)

We introduce now different trial and test functions which are associated with the
operator pencil A(λ ):

u = rλ U(θ ,ϕ) ∈ [H1(Ωε
O)]3, (13)

v = Φ(r)V(θ ,ϕ)∈ [H1
0 (Ωε

O)]3, (14)

where Φ(r) is a scalar function with a compact support. Thus, we can formulate
the following:

For U ∈ [H1(S )]3 we get:

B̂(U,V;λ )= 0, ∀V ∈ [H1
0 (S )]3, (15)
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where B̂(U,V;λ ) depends polynomially of the operator λ and represens the weak
form of the operator pencil A(λ ). (λi,Uik) are only eigenpairs of A(λ ), if they are
at the same time weak solutions of (15).

The approximation with finite elements leads to: uh ∈ Uh ⊂ [H1(Ωε
0)]

3 so that

B(uh,vh) = 0, ∀vh ∈Vh ⊂ [H1
0 (Ωε

O)]3, (16)

where we have the situation that Uh 	= Vh. Because we are working with different
spaces for the trial and test functions, we are in the scheme GALERKIN-PETROV

method. For the displacements we are formulating the functions in the sector
(r,θ ,ϕ) ∈ [0,ε ]×Δi, where we have the following finite elements initial formu-
lations:

uh
i (r,θ ,ϕ) = rλ N(θ ,ϕ)T−1

d di,

vh
i (r,θ ,ϕ) = Φ(r)N(θ ,ϕ)T−1

d bi,
(17)

We are coming to a non-symmetric stiffness-matrix, from which we are getting our
fundamental equations for solving the eigenvalue problem:

[
(K−D)+λ (DT −D−M)−λ 2(M)

]T
d = 0. (18)

The Solution of the Eigenvalue Problem
We have to solve now the eigenvalue problem:

[
P+ λ̄ Q+ λ̄ 2R

]
d = 0, (19)

with the definitions

P = K+
1
4

M− 1
2

(D+DT ),

Q =
[
DT −D

]T
, (20)

R = −M,

The matrices P,R are now symmetric and Q is skew-symmetric. For applying the
ARNOLDI-method [6, 5] we are doing the following transformation: λ̄ x = λ̄ 2 Rd
so that we get [

P 0
0 I

][
d
x

]
= λ̄

[ −Q −I
R 0

][
d
x

]
, (21)

with I as the identity matrix.
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Since for our fracture mechanics problems we need eigenvalues in the interval
0 < Reλ̄ < 1.5, we do an additional transformation λ̄ = 1/θ so that we get[ −Q −I

R 0

]
︸ ︷︷ ︸

A

[
d
x

]
= θ

[
P 0
0 I

]
︸ ︷︷ ︸

B

[
d
x

]
. (22)

So that we have the standard eigenvalue problem

Xd̂−θ d̂ = 0, (23)

with X = B−1A and d̂ = [d,x]T

Numerical Tests
We will discuss an elasticity problem with edge and corner singularities and

this for homogeneous and inhomogeneous material properties. The singular ex-
ponents will be discussed in dependence of material data. We are working with an
adaptive fine mesh series so that we can have the result for the first nine eigenvalues
for an residumm of 10−4 with one ARNOLDI-step (see Fig. 2).
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Figure 2: Wedge-shaped Crack with Homogeneous (left) and Inhomogeneous Ma-
terial (right). Reference Solution is Given in [2].

We were able to show that we have derived a fast and accurate algorithm for
computing eigenvalues of new questions in fracture mechanics.
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