
Copyright c© 2007 ICCES ICCES, vol.2, no.1, pp.7-12, 2007

Thermal-Mechanical Buckling Analysis of Laminated
Composite Shells by Finite Element Method
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Summary
This paper presents a finite element scheme to analyze the buckling behavior

of composite shells subjected to thermal and mechanical loads. Firstly, a kind of
multi-layered composite shell element with relative degrees-of-freedom is adopted
to model laminated composite shells. Then the corresponding temperature element
is developed so that the mechanical analysis and the thermal analysis share a com-
mon mesh. Moreover, a new criterion of critical heat flux is proposed in stead of the
traditional criterion of critical temperature. Finally, the advantage of the proposed
scheme is illustrated by calculating the stable region of thermal-mechanical loads
for a honeycomb sandwich composite cylinder.

Introduction
Laminated composites are widely used in modern engineering structures due

to their good specific properties. Sometimes these composites may work in se-
vere conditions, where not only mechanical but also thermal loads are applied.
Consequently, the buckling behavior of these structures under thermal-mechanical
loading has drawn many researchers’ attention. In this paper, a Finite Element (FE)
scheme is presented for this purpose.

The buckling analysis of composite structures has been extensively studied
over years [1, 2]. Many methods are based on layer wise theories [3] or two di-
mensional shell theories. Although these methods can give good solutions to the
global buckling behavior, they still have some shortcomings, such as: difficult to
be connected with solid elements which are necessary to modeling joints, fringes,
etc.; too rigid if using low order shell theories and too complex if using high order
shell theories; difficult to calculate the transverse shear stress accurately if using the
layer wise theories. To overcome these shortcomings, a kind of shell element with
Relative Degrees-of-Freedom (RDOF) and Wilson’s incompatible inner Degrees-
of-Freedom (DOF) was proposed in Ref. [4]. Because it is actually a kind of solid
element, it is easy to be connected with other solid elements. With this element,
the local buckling behavior of honeycomb sandwich shells reinforced by aluminum
frames was successfully simulated in Ref. [4]. Then this element was improved in
Ref. [5] to model multi-layered composites with arbitrary number of laminae and
was used to study the influence of cutouts on the buckling behavior of composite
shells [6]. Owing to the good performance of this element, it is adopted in this
paper.
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In the FE formulation, temperature strains are the direct products of the ther-
mal expansion coefficient and the temperature difference. Because the mechanical
strains are functions of the derivatives of displacements, the order of the displace-
ment shape function should be one times higher than that of the temperature shape
function, so that these two kinds of strains are compatible with each other. In the
present FE scheme, the displacement multi-layered shell elements contain the Wil-
son incompatible inner DOFs, which are not existed in the corresponding temper-
ature shell elements. This automatically satisfies the aforementioned compatibility
requirement.

In the traditional concept of thermal buckling, the temperature is assumed be-
ing uniformly distributed over the whole structure, and the buckling occurs when
the temperature reaches a critical value. However, the uniform distribution of tem-
perature is a strong assumption, which is hard to be satisfied in practice. Therefore,
the critical heat flux is proposed instead of the traditional critical temperature in
this paper.

The Multi-Layered Composite Shell Element
Fig. 1 shows an n-layered shell element,

which is a combination of n layers of 16-noded
incompatible element with RDOF [4]. The
transformations of nodal coordinates and nodal
displacements of the kth layer are defined as:
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Figure 1: Multi-layered shell element with
RDOF{

kx̄i = kxi − kxi+4
kx̄i+4 = kxi+4

{
kūi = kui − kui+4

kūi+4 = kui+4

i = 16(k−1)+ j
j = 1, 2, 3, 4, 9, 10, 11, 12

(1)
where i is the node number; xi is the nodal coordinate vector; ui is the nodal dis-
placement vector; x̄i is the nodal relative coordinate vector and ūi is the nodal
relative displacement vector. The corresponding shape function N̄i is:

N̄i = Ni N̄i+4 = Ni +Ni+4 i = 1, 2, 3, 4, 9, 10, 11, 12 (2)

where Ni is the shape function of ordinary 16-noded brick element [7]. This 16-
noded element is further improved by adding the Wilson’s inner additional DOFs.
Details can be found in Refs. [4-6].

Connecting these 16-noded elements layer by layer obtains the continuous con-
ditions shown in Eq. (3). These conditions can be incorporated into the total po-
tential energy of the system by the Lagrange multiplier method. In this way, the
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redundant DOFs between each layer can be eliminated [5, 6].

k−1ūi = kū j + kū j+4

i = m+5,m+6,m+7,m+8,m+13,m+14,m+15,m+16
k = 2, . . .,n m = 16(k−2) j = i+12

(3)

Based on the same idea, the corresponding temperature element can be constructed
by replacing ui and ūi with the absolute and relative nodal temperature ϕi and ϕ̄i,
respectively, in the above equations. However, the Wilson’s additional inner DOFs
are not used, so that the order of temperature strains and mechanical strains are
compatible with each other.

The above mechanical and temperature elements can be used to analyze com-
posite shells, if the anisotropic material properties are considered. Because these
two kinds of elements share the same mesh, there is no extrapolation errors intro-
duced during the thermal-structural analysis.

The Formulation of Thermal-Mechanical Buckling Analysis
In this paper, the FE formulation of linear-elastic buckling is based on the fol-

lowing assumptions:

1. Thermal and mechanical loads are independent of the structural deformation;
2. The steady incremental temperature ϕ is proportional to the heat flux q, i.e.

KT ϕ = q, where KT is the heat conduction matrix;
3. All material properties are independent of the temperature and time;
4. The structure is linear before buckling.

From assumption (b), the load QT , which is due to thermal expansion εT , is pro-
portional to the heat flux:

QT =
∫

v
BT

L0DεT dV =
∫

v
BT

L0DαdV ϕ =
(∫

v
BT

L0DαdVK−1
T

)
q (4)

where BL0 is the strain matrix; D is the elasticity matrix and α is the thermal ex-
pansion coefficient matrix.

With above assumptions, the Total Lagrange formulation of the large displace-
ment FE equation at iteration time t +Δt is expressed as [7]:

(tKL0 + tKu + tKσ )Δa = t+ΔtQ− t F (5)

where Δa is the incremental displacement vector; tKL0 is the linear-elastic stiffness
matrix; tKu is the linear initial-displacement stiffness matrix; tKσ is the initial-
stress stiffness matrix; t+Δt Q is the load vector at time t + Δt; tF is the load vector
corresponding to the stresses at time t.
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Suppose external loads could be divided into a constant load Qc and a variable
load Qv. Qv is in pattern Q0

v and the critical load Qc
v = λ Q0

v (λ > 1). Here Qc and
Qv could be thermal or mechanical loads or their combinations. From assumption
(d), the following relations read at time t:

tKL0uc = Qc
tKL0λ u0

v = λ Q0
v (6)

At time t +Δt, Qv increases to (λ +Δλ )Q0
v , and Eq. (5) can be rewritten as:

[tKL0 + tKu
(
uc +λ u0

v

)
+ tKσ

(
σc +λ σ0

v

)]
Δa = Qc +(λ +Δλ )Q0

v − t Fc−λ tF0
v

(7)
where σc and σ0

v correspond to Qc and Q0
v , respectively. Because tFc = Qc, tF0

v =
Q0

v and Δλ = 0 at the critical point, the following buckling equation can be obtained
from Eq. (7):

{tKL0 + t Ku (uc)+ t Kσ (σc)+λ
[tKu

(
u0

v

)
+ t Kσ

(
σ0

v

)]}
Δa = 0 (8)

Examples
The validity of the proposed method has been checked

by a simple example in Ref. [8]. However, it is omit-
ted here due to the page limits. The advantage of this
method is illustrated by the example shown Fig. 2. The
thickness of the aluminum honeycomb core is 10 mm,
which is covered by outer and inner Kevlar fiber rein-
forced panels of 0.5 mm in thickness. The outer surface
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Figure 2: Honeycomb sand-
wich composite cylinde

is subjected to lateral heat flux q and mechanical pressure p. The inner surface is
the convection boundary with the convection coefficient of 8.0 W/m2·K. The en-
vironment temperature is 0 oC. The temperature at the bottom of the cylinder is
fixed to 0 oC. The top of the cylinder is adiabatic. Both bottom and top are fixed.
This cylinder is modeled by three-layered shell element presented in the previous
text. There are 36 elements in the axial direction and 200 elements along the cir-
cumference. During the analysis, the material properties were taken from Table
1.

Fig. 3 shows the first buckling modes of the pure mechanical loading and
the pure thermal loading cases, where the critical pressure and heat flux are pc =
4.778×10−2 MPa and qc = 1681 W/m2, respectively. It is observed that the critical
temperature reaches 235 oC, under which the resin may melt. This indicates that
the actual critical heat flux should be lower than the calculated one.

Fig. 4 shows the stable region of combined loading cases. These data were ob-
tained by letting the thermal load be variable while fixing the pressure p at different
levels. It observes that larger the pressure, smaller the critical heat flux. That means
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Table 1: The material properties of the honeycomb sandwich composite cylinder
Mechanical E1 = E2

(GPa)
E3
(GPa)

G12
(GPa)

G23 =
G13

(GPa)

ν12 ν23 ν13

Surface 15.0 1.72 5.37 1.57 0.28 0.034 0.3
Core 2.5×10−4 0.12 0.9×10−4 0.13 0.35 0.3 6.25×10−4

Thermal α1
(10−6/oC)

α2= α3
(10−6/oC)

kx
(W/m·K)

ky
(W/m·K)

kz
(W/m·K)

Surface 10.3 79.0 11.56 11.56 0.78
Core 24.9 24.9 1.13 1.13 1.51

(°C) 

(a) Pure mechanical             (b) Pure thermal                 (c) Critical temperature field 

Figure 3: First buckling modes of unitary loading cases
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Figure 4: Stable region of combined load-
ing cases
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Figure 5: A typical buckling mode

if lateral pressure is added, thermal buckling will happen before the melting point.
The influence of the lateral pressure is also presented by comparing the buckling
modes in Fig. 3(b) and Fig. 5. It seems that adding lateral pressure will change the
distribution of wave numbers in the buckling mode.

Conclusion
With the proposed FE scheme in this paper, it is possible to study the influ-

ence of the combination of thermal and mechanical loads on the structural buck-
ling behaviors. Because RDOF shell elements and a common mesh are used for the
thermal and mechanical analyses, it is easy to model complex structures in practice
with high accuracy. However, further work should be carried out to consider the
temperature dependent material properties.

References
1. Noor, A. K. and Burton W. S. (1990): “Assessment of Computational Models

for Multilayered Composite Shells”, Applied Mechanics Reviews, Vol. 43,



12 Copyright c© 2007 ICCES ICCES, vol.2, no.1, pp.7-12, 2007

pp. 67-97.

2. Idlbi, A., Karama, M. and Touratier, M. (1997): “Comparison of Various
Laminated Plate Theories”, Computers and Structures, Vol. 37, pp. 173-
184.

3. Reddy, J. N. (1993): “An Evaluation of Equivalent Single Layer and Layer-
wise Theories of Composite Laminates”, Computers and Structures, Vol. 25,
pp. 21-58.

4. Xiang, Z. H., Xue M. D. and Cen Z. Z. (2002): “Finite Element Buckling
Analysis of Rotationally Periodic Laminated Composite Shells”, Interna-
tional Journal for Numerical Methods in Engineering, Vol. 53, pp. 959-981.

5. Li, J., Xiang, Z. H. and Xue, M. D. (2005): “Buckling Analysis of Rota-
tionally Periodic Laminated Composite Shells by a new Multilayered Shell
Element”, Composites Structures, Vol. 70, pp. 24-32.

6. Li, J., Xiang, Z. H. and Xue, M. D. (2005): “Three-Dimensional Finite El-
ement Buckling Analysis of Honeycomb Sandwich Composite Shells with
Cutouts”, Computers, Materials & Continua, Vol. 2, pp. 139-150.

7. Bath, K. J. (1996): Finite Element Procedures, Prentice Hall.

8. Huang, N. N., Taucher, T. R. (1990): “Thermal Buckling of Clamped Sym-
metric Laminated Plates”, ASME, Aerospace Division, Vol. 20, pp. 53-59.


