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Summary
This work presents an interface treatment method based on localized Lagrange

Multipliers (LLM) to solve frictional contact problems between two 3D elastic bod-
ies. The connection between the solids is done using a displacement frame inter-
calated between the interfaces meshes, and the LLM are collocated at the interface
nodes. The Boundary Elements Method (BEM) is used to compute the influence
coefficients of the surface points involved, and contact conditions are imposed us-
ing projection functions. The LLM provides a partitioned formulation which pre-
serves software modularity, facilitates non-matching meshes treatment and passes
the contact patch test [4].

Introduction
In the present work, a new methodology for solving 3D frictional contact inter-

facing based on localize Lagrange Multipliers [3-5] is presented. The formulation
is based on the methodology proposed by Rebel et al. [5] and extended by J. A.
González et al. [7] for solving the contact problem of two surfaces, introducing an
intermediate contact frame with independents degrees of freedom and treated with
a BEM discretization. The LLM connect the frame with the contacting bodies.

As we use the BEM for solid modelling, we will work under the small displace-
ments assumption. This fact simplify the jacobian matrix expressions presented in
[5] and [7]. Another new feature presented is the way of finding the contact state;
in the present work contact conditions are imposed mathematically using the aug-
mented Lagrangian formulation and projection functions developed by the authors
in [6].

The contact frame
Let consider two sub-structures, Ω1 and Ω2, in contact. The formulation of the

contact problem considers a contact frame between the two bodies and reformulates
the problem in terms of the frame using LLM.

Contact tractions coming from each sub-domain and acting on the frame are
represented by λ and λ̄ . These tractions are expressed using two locally orthonor-
mal base system connected to the frame: Bp = [a1|a2|n] which is used to describe
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λ , and B̄p = [ā1|ā2|n̄] which is used for λ̄ , where a1 and a2 are the orthogonal
vectors contained in the frame tangent plane at the considered point, and the vector
n points outside the solid Ω1. The base system Bp in the same position, opposite
to B̄p.

The motion of the two solids is described by the small displacements field u
and ū , respectively. The displacements are added to the referent configuration X
and X̄, so the current configuration of each sub-structure is

x = X+u ; x̄ = X̄+ ū (1)

The motion of the contact frame is described using its small displacements v from
its initial configuration Y, providing the current position:

y = Y+v (2)

This motion will be restricted to maintain the frame just in the middle between the
two contact interfaces. To do that we define the relative slip of each body regarding
to the frame, expressed in a frame system of reference.

k = BT
p (x−y) ; k̄ = B̄T

p (x̄−y) ; k = k̄ (3)

The above definition is based on [3-5] and [7-8], and says when a point is in contact
kn = 0, and how is the tangential slip kt .

Contact interface restrictions
The contact conditions can be summarised in the no penetration condition and

the Coulomb law. To formulate these restriction the augmented Lagrange multi-
plier variable λ (r) = λ + rk with a penalty parameter r > 0 , is introduced. The
restrictions are applied by the following projection functions:

Pℜ−(x) = min(x,0) ; PCR(x,y) =

{
[x,y]T i f x2 +y2 ≤ R2

R [x,y]T√
x2+y2

i f x2 +y2 > R2

}
(4)

In the equation (4a) we are projecting on the negative real set. The equation
(4b) projects one point in 2-D inside a disk of radius g. So the no penetration
condition and the Coulomb law are expressed respectively as

λn = Pℜ−(λn + rnkn) ; λt = Pμλn
(λt + rtkt) (5)

Weak formulation
Let consider each sub-structure independent. Using the variational formulation

proposed by Park and Felippa [3], we can derive the equilibrium equations of our
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constrained system adding the contributions of each sub-structure (treated as if they
were entirely free), Ω1 and Ω2, to the interface constraint functional associated with
the contact phenomena

δΠtotal = δΠ1 +δΠ2 +δΠc (6)

The contact interface potential δΠc can be expressed as the sum of each body
contribution to the contact frame,

δΠc = δΠi +δΠ̄i (7)

each one containing the following two terms:

δΠi =
∫

Γc
δ

{
λ T

[
BT

p (x−y)−k
]}

dΓ +
∫

Γc
δkT

P(λ (r))dΓ (8)

The first term in (8) is related with the kinematic positioning of the frame, equation
(3) that is enforced in a weak sense using the variational form. The second one
represents the virtual work of the contact forces. Assuming small displacements,
the derivation of the expression (8) takes the form

δΠi =
∫

Γc
δλ T

{
BT

p (X−Y)−k
}

dΓ +∫
Γc

(δuT −δvT ){Bpλ}dΓ +
∫

Γc
δkT {−λ +P(λ (r))}dΓ (9)

Frame functional discretization
The discretization of the contact problem will be defined in terms of couples

formed by a set of interface nodes and its associated frame element. Those couples
are calculated for every interface node belongs to contact potential zone, and consist
of the node and its projection over the frame. The fields involved in the problem
are interpolated in the following way:

ui = N(ξ )ui ; ūi = N(ξ )ūi ; vi = Nv(ξ )vi ; ki = Nk(ξ )ki (10)

where the variables: ui, ūi, vi and ki, on the right side of equations (10), express
the nodal values in the component i. The interpolation of the slip vector can use a
different frame discretization, that is the reason why Nv and Nk are diferent.

The localized Lagrange multipliers are collocated in the contacting interfaces
nodes using Dirac’s delta functions:

λi = δ (ξ −ξ
p
)λp (11)

with ξ = (ξ1,ξ2) and ξ
p

frame coordinates of the sub-structure over the frame.

Using this discretization, the integral in where are involved λ become an evaluation
of the functions on ξp. So, the equation (9) becomes in the matrix expression:

δ Πi = δ λ T{BT (X−Y)+BT (u−C f v)−Csk}+δ uT{Bλ}−δ vT{CT
f λ}−δ kT{CT

s λ}
(12)
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where:

C f =
∫

Γc
δ (ξ −ξ

p
)NvdΓ = Nv(ξ

p
)

Cs =
∫

Γc
δ (ξ −ξ

p
)NkdΓ = Nk(ξ

p
)

; B =
∑np

p=1 L T
upBpLλ p (13)

being L�p the Boolean finite element operator who extract the variable associated
with the contact interface node p from the global � unknowns vector.

Boundary elements discrete equations
The discrete Boundary Element equations for a continua are well known and

can be found in many classical texts like [2].

Hu−Gp = b (14)

where the vector b contain the applied boundary conditions. Using BEM, our vari-
ables will be displacements and tractions instead of displacement and forces, so the
application of the LLM requires the "lumping" of the tractions over each interface
in the contact region. This can be done satisfying the energy equivalence between
the tractions acting on the boundary elements belong to the contact zone, pc, and
the localize multipliers, λ , acting on its nodes as [8]. So the expressions are

δΠlump1 = δuT {Mp−Eλ} ; δΠlump2 = δ ūT
{

M̄p̄− Ēλ̄
}

(15)

in which the matrix M, M̄, E and Ē, are

E =
∑np

i=1 L T
ui BiLλ i ; M =

∑np
i=1

∑np
j=1 L T

ui Mi jLp j ; Mi j =
∫

Γc
NiNjdΓ

(16)

Non-linear equations system
Substituting all the virtual work expressions on the equation (6) and carrying

out the variations, the nonlinear equation set is achieved imposing the stationary
point of the total virtual work and adding the boundary elements terms outside the
potential contact zone, obtaining the following equilibrium equation set:

Θ(w)=

⎡
⎢⎢⎢⎢⎢⎢⎣

H 0 −G 0 0 0
0 H̄ 0 −Ḡ 0 0

BT 0 0 0 −BT C f −Cs

0 B̄T 0 0 −B̄T C̄ f −C̄s

0 0 CT
f M C̄T

f M̄ 0 0
0 0 Pλ P̄λ 0 Pk

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u
ū
p
p̄
v
k

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
−

⎡
⎢⎢⎢⎢⎢⎢⎣

b
b̄

−BT (X−Y)
−B̄T (X̄−Y)

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0

(17)
The first two matrix rows, in the expression above, are the BE elastic equations of

each free solid. The next two are the kinematics positioning of the frame reference
to each solid. The following is the equilibrium over the frame, and the last one is
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the contact restrictions. The energy equivalence between the tractions acting on the
boundary elements belong to the contact zone (pc) and the localize multipliers (λ )
acting on its nodes, have been condensed statically.

The expressions for the contact restrictions are: Pλ =
∑np

p=1 L T
kpPλ pLλ p

P̄λ =
∑np

p=1 L T
kpP̄λ pLλ p ; Pk =

∑np
p=1 L T

kpPkpLkp +
∑np

p=1 L T
kpP̄kpLkp

(18)
where the matrix: Pλ p and Pkp associated with the point p, take the values presented
in [7] according to its contact situation, and considering the simplification in the
projection function presented in [6].

Solving the non-linear system
The system (17) can be expressed in a general way as Θ(w)= Aw− f. To solve

this nonlinear system the Generalized Newton’s Method with line search (GNMLS)
formulated by Pang [1] has been used. The jacobian matrix A(k) takes different
values according to the contact state in the iteration (k). The next contact state
w(k+1) is found by the line search process which stars from the current position
w(k) and uses the vector Δw(k) weighted by the parameter α (k) ( w(k+1) = w(k) +
α (k)Δw(k)).

If we define the variable: tentative solution w̃(k+1), as the next contact state
in the case α = 1, the system of equation we have to solve during each iteration,
can be written as A(k)w̃(k+1)− f = 0. Known w̃(k+1), the solution for the next step
is computed using the following expression: w(k+1) = (1−α (k))w(k) + α (k)w̃(k+1)

where the parameter α (k) is modified until we satisfy the inequality: Ψ(w(k+1)) ≤
(1−2σα (k))Ψ(w(k)). Ψ(w) is an error function defined as: Ψ(w) = 1

2Θ(w)T Θ(w).
The solution is achieved when Ψ(w(k+1))≤ TOL, so the Newton resolution finish.

Applications
The problems considered are two. The first one is the contact between two

2x2x2mm cubes. Their material properties are E1 = E2 = 104 MPa (Young mod-
ulus) and ν1 = ν2 = 0.3 (Poisson ratio), and subjected to the boundary conditions:
null displacements in the lower face of the lower cube, null displacements in x-y di-
rection and 0.04mm in z direction in the upper face of the other cube. In the second
problem the boundary conditions are the same, but the upper cube has a different
Young modulus E2 = 108 MPa. In both cases the Coulomb friction coefficient is
μ = 0.1, and the common interfaces are non-matching meshes.

Each case is an example of similar and dissimilar contact problem, respectively.
In the figure (1a) we can see the displacements uy of each solid and how there’s no
slip between the two solids. But the different tangential displacements uy of each
body, showed in figure (1b), reveals the slip produced in the second problem.
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Figure 1: Solids displacements uy in the cases of similar (a) and dissimilar (b)
contact.

Conclusions
This paper presents an interface treatment method based on LLM to solve fric-

tional contact problems between two 3D elastic bodies, using the BEM for solid
modeling. The formulation proposed is an extension of the methodology developed
by the authors in previous works, and provides a partitioned formulation which
preserves software modularity, facilitates non-matching mesh treatment, passes the
contact patch test, and facilitate the connection between different numerical tech-
niques like the BEM and the FEM.
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