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On the efficiency of generic BE substructuring algorithms
based on Krylov solvers

F.C. Araújo1 and L.J. Gray2

Summary
This paper is concerned with the solution of boundary-element models based

on substructuring. Structured matrix-vector products and the matrix-copy option
are proposed to increase the efficiency of algorithms based on Krylov solvers. The
former technique was designed to avoid the excessive number of conditional tests
during solver iterations, and the latter one, to avoid the repeated calculation of
coefficient matrices for identical subregions. Potential applications of the algorithm
to composite materials, and to develop parallel codes, are noted.

Introduction
Mainly in the 90s, iterative Krylov solvers began to be widely considered in

the development of computer codes to solve engineering problems, including those
based on Boundary Element Methods. The major advantage of this kind of solver
is their efficiency for solving large-order systems and their suitableness for de-
veloping parallel codes. In Computational-Fluid-Dynamics (CFD) simulations, for
instance, they have been commonly applied to develop parallel finite-element codes
[1-3].

For Boundary Element Methods, Krylov solvers have also been successfully
applied, in particular for substructuring algorithms [4-5]. In this connection, opti-
mized data structures for a generic number of coupled subdomains, with complete
exclusion of zero blocks, have been proposed [6-9]. This paper considers two fur-
ther improvements to these algorithms: the structuring of matrix-vector products
(SMVP) involved in the iterative solvers and the implementation of the matrix-copy
option (MCO). The first technique was designed to exclude the many conditional
tests, necessary when the matrix-vector products are left unstructured (UNSMVP).
The second technique is designed to avoid calculating and assembling, repeatedly,
the coefficient matrices for identical subregions.

Generic Coupling of BE Models
As an iterative solver does not transform the coefficient matrix, formats can

be devised that reduce memory requirements and solution CPU time. Here, a
subregion-by-subregion data structure, described below, is used.

Generically (for ns subregions), the corresponding subsystems of boundary el-
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ement equations can be written as

i−1

∑
m=1

(Himumi−Gimpim)+Aiixi+
n

∑
m=i+1

(Himuim +Gimpmi) = Biiyi, i = 1,ns, (1)

where, Hi j and Gi j denote the usual BE matrices obtained for source points per-
taining to subregion Ωi and associated respectively with the boundary vectors ui j

and pi j at Γi j . Here Γi j with i �= j is the interface between Ωi and Ω j, and Γii is
the outer boundary of Ωi. In the subregion-by-subregion data structure considered
herein, these subsystems are not explicitly assembled into a global system, but sep-
arately stored. Thus, the many zero blocks, unavoidably present at these systems,
are completely excluded [9]. Moreover, it is assumed that discontinuous bound-
ary elements are employed, so that compatibility and equilibrium conditions at the
interfaces, {

ui j = u ji

pi j =−p ji
at Γi j (2)

only have to be imposed pairwise. This enormously simplify the treatment of
inner edges and corners [8].

The first topic addressed in this work is the structuring of the matrix-vector
products employed by the iterative solver. Herein, the J-BiCG solver [4, 6] is
adopted, and the matrix-vector products are of the form (D−1A)p j and (D−1A)T p∗j ,
where A and D are the global matrix of the coupled system and its correspond-
ing diagonal matrix (Jacobi preconditioning), respectively. In previous versions of
the algorithm [9], unstructured matrix-vector products (UNSMVP) were employed.
This means that no column re-ordering of the subregion matrices were carried out,
and thus, conditional tests to identify the type of boundary condition present at each
degree of freedom (interface or prescribed boundary value) had to be performed at
every iteration of the solver.

By structured matrix-vector products (SMVP) it is meant that the columns of
the matrix of a given subregion, say Ωi, are re-ordered so as to group its coefficients
into separate blocks. Three blocks are adopted: one associated with interfaces Γi j

for which i > j, a second associated with the outer boundary Γii (at which boundary
values are prescribed), and a last one associated with interfaces Γi j for which i < j
(see equation 2). This data structure is precisely that indicated in equation (1).
Thus, matrices A and B for the i-th subregion, after interchanging columns for
introducing the boundary conditions at Γii, have the following generic aspects:

block1←−−−−−−−−−→ block2←−−−→ block3←−−−−−−−−→
Hi = [ Hi,1 · · ·Hi,i−1 Aii Hi,i+1 · · ·Hi,n ]

Gi = [ Gi,1 · · ·Gi,i−1 Bii Hi,i+1 · · ·Hi,n ]

(3)
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In the code, each block is identified by an initial and a final column, calculated
for each subregion matrix.

The second modification is the implementation of the matrix-copy option (MCO).
This will prove useful for problems involving identical subregions. Two examples
are identical inclusions or layers in composite materials (Figure 1). By employing
the matrix-copy option, a matrix for a subdomain only needs to be assembled once
and read from memory when needed. In this way, CPU time and memory may
be saved. Note that for solid mechanics problems, rotation transformation of the
copied matrices may be also necessary.

inclusions

host 
material

Figure 1: Composite material

Results and Discussion
To demonstrate the effectiveness of the techniques, the holed rod shown in Fig-

ure 2 is analyzed. Its length is 1500 mm, and its cross section has width and height
140 mm and 225 mm respectively. The rod-wall thickness is 50 mm. The elasticity
modulus and Poisson’s ratio are E = 205×103 MPa and ν = 0.30 respectively.
The rod is subjected to a normal pressure of 1.0 MPa. In Figure 2(a) and 2(b), the
general aspect of the entire mesh and the coupled subdomains may be seen. In Fig-
ure 2(c), details of each subregion are shown. In sum, the BE model is composed
of six identical subregions, each one with 144 boundary elements and 432 nodes,
corresponding to a total of 1296 degrees of freedom per subregion and of 7776 for
the global system.

For the rod dimensions chosen, the response is well described by one-dimensional
bar theory. The results agree very well with the analytical bar solution, with the er-
ror less than 0.4%, and are not presented here. The number of iterations and CPU
times required for the solution are given in Table 1, where nit denotes the number
of iterations and n the system order. In Table 2, the matrix-assembly CPU times
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(a)

(b)

(c)

Figure 2: BE mesh adopted

using and not using matrix-copy option (MCO) are shown. The solver has been
stopped when ‖δ‖2 /

∥∥D−1b
∥∥

2 < 10−5.

For this single test, a CPU time reduction per iteration of about 15% is obtained
using the SMVP option (see Table 1). The small variation between the number of
iterations using SMVP and UNSMVP can be expected, as the order of

Table 1: Efficiency parameters
nit solver CPU time (s) CPU time/nit nit/n

SMVP 2141 242 0.11 0.275
UNSMVP 2165 290 0.13 0.278

Table 2: Matrix-assembly CPU time (s)
with no MCO with MCO

SMPV 87 18

operations are different in these strategies, and arithmetic properties like the
associativity of addition are not valid. Therefore, to measure the CPU-time per-
formance difference, the relation CPU time

/
nit was adopted. The relations nit

/
n

measured hints the good performance of the J-BiCG solver. As seen, the CPU time
for assembling the global coupled matrix not using MCO (matrix-copy option) is
about five times that using MCO.

Conclusions
For the numerical test, the efficiency of the coupling algorithm improved by

adopting structured matrix-vector products (about 15%). Of course, for larger prob-
lems, this increase in efficiency will be more significant, as more conditional tests
would have to be performed. Concerning the matrix-copy option (MCO), it con-
siderably reduced, as expected, the assembly time of the global system, and will be
likely very useful for modeling composite materials. Furthermore, if the matrix-
copy option is allied with unstructured matrix-vector products, memory space may
be substantially reduced. As a natural consequence of the domain-decomposition
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strategy considered, the algorithm is highly suitable for developing parallel BE
codes.
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