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Summary
This paper presents multi-component mode methodology applicable to biomolec-

ular structures for understanding the dynamics of proteins. Even though the con-
ventional normal mode analysis has been contributed for analyzing the dynamics
and thermal fluctuations of proteins, it frequently encounters with the computa-
tional prohibition for large proteins due to memory requirement. To overcome
the conventional computational limitations, the drawback motivates one to develop
various model reduction methods, which reduces the degrees of freedom of the
full model so as to decrease the computational expense, while the computational
accuracy is maintained. Our results demonstrate that the multi-component modal
analysis applied to the biomolecular structures predicts the dominant eigenmodes
and fluctuation of proteins accurately with reducing the computational cost enor-
mously.

Introduction
It is well known that the normal mode analysis (NMA) has been widely em-

ployed with great success to gain insights into biological functions of proteins [1].
In general, the protein performs the biological functions through the molecular
structural change, which may be described by the low-frequency modes [2-3]. The
structural change of proteins is known to be related to the molecular vibration in-
duced by the thermal energy [2-3]. For understanding the low-frequency modes
driven by the thermal energy, the NMA has been an effective computational method
in computational molecular modeling community, because the NMA has allowed
one to interpret the molecular structural change, which may not be analyzed by
the Molecular Dynamics (MD) simulation [4] due to the necessity of large mem-
ory requirements to save the trajectories and the large number of computation for
calculation of the inter-atomic forces from anharmonic potential field.

The basic principle of NMA is to solve the eigenvalue problem for the protein
molecular structure. Unlike the structural dynamics problem, the protein exhibits
the very complicated potential field consisting of energies representing the stretch
of chemical bonds, the bending of chemical bonds, the torsion of chemical bonds,
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Van der Waal’s interactions (non-bonded interactions), electrostatic interactions,
and other physical molecular interaction terms depending on the problem [4]. The
computational inefficiency is ascribed to the complicated potential such that it re-
quires the high computing expense for the large proteins in calculating the equi-
librium position and stiffness matrix. In this sense, Ma employed the Substructure
Synthesis Model (SSM), developed by Meirovitch etc. [5] for solving the structural
dynamic problem in aerospace engineering, for molecular vibration of proteins [6].

In the present paper, multi-component modal analysis is applied for a valida-
tion of obtaining reliable equilibrium fluctuation, global large amplitude motions,
reducing the degrees of freedom in the large molecular structure while keeping the
computational accuracy and for investigating the dynamic motion of biostructure,
with treating the global motions of a structure as a collection of an assembling of
substructures.

Multi-Component Modal Analysis
Let us assume that the particular structure consists of an assemblage of sub-

structures. We will consider a given substructure s and write the total displacement
vector us (x,y, z, t) of an arbitrary point P(x,y, z) on the substructure. The kinetic
energy associated with the substructure s has the general expression

Ts =
1
2

∫

Ds

msu̇T
s u̇sdDs (1)

us can be written as
us (x,y, z, t) = Φs (x,y, z)ζs (t) (2)

Introducing Eq. (2) into (1), we obtain

Ts = 1
2

·
ζ T

s Ms

·
ζs (3)

where
Ms =

∫

Ds

msΦT
s ΦsdDs (4)

is the mass matrix for the corresponding substructure. Similarly, the potential en-
ergy can be written in general form as

Vs = 1
2 [us,us] (5)

Substitution of Eq. (2) into (5) gives us

Vs = 1
2 ζ T

s Ksζs (6)
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where
Ks = [Φs,Φs] (7)

is the substructure K matrix..

Considering the original structure containing m substructures, s=1,2,. . . .,m we
need to introduce the following NxN block diagonal matrices in order to integrate
individual substructures into assembled structure

Md = block−diag[Ms] Kd = block−diag[Ks] (8)

Herein we have disjoint vector

ζd (t) =
[
ζ T

1 (t)ζ T
2 (t) · · ·ζ T

m (t)
]T

(9)

assuming this vector has dimension m and there are c constraints, that the number
of independent generalized coordinates is n = m − c, where n is the number of
degree of freedom of the system. Denoting ζ (t) the n-dimensional independent
generalized coordinate vector, we can write the relation between ζd (t) and ζ (t) in
the matrix form

ζd (t) = Cζ (t) (10)

where C is an m× n transformation matrix, depending on the nature of the con-
straints. With Eq.(10), we can write Rayleigh quotient

R = ζ T Kζ/ζ T Mζ (11)

where
K = CT KdC, M = CT MdC (12)

are the n×n stiffness and mass matrices for the assembled structure.

From the Rayleigh-Ritz principle (11), rendering R stationary leads to an eigen-
value problem

KU = MUA (13)

where U is an n×n modal matrix, and A is the diagonal matrix of the eigenvalue
for the assembled structure. By using U ′ = ΦdCU , where Φd is defined in similar
way with Eq. (9) we can obtain U ′, whose column vectors give the atomic dis-
placements in the corresponding modes of the assembled structure. These atomic
displacements can be compared with the eigenvectors from NMA of the assembled
structure.

For a simple one dimensional example illustrating multi-component modal
analysis (MCMA), 400-mass point chain is shown in Fig. 1. The figure represents
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Figure 1: 400-mass point chain connected by springs

atom chains connected by spring on straight line in the equilibrium configuration
with same distance apart.

The eigenvalues obtained from standard NMA in original 400-mass point was
compared with results using multi-component modal analysis in Fig. 2. The multi-
component modal analysis at present performed two different configuration mode
synthesis after fusing two substructures; one is each with 200 modes(200/200) and
the other is 219 modes in total with two different mode synthesis (200/20). The
eigenvalues from multi-component modal analysis fusing each with 200-mass point
match those from obtained using NMA with full 400-mass chain. Fig. 3 displays
enlarged plot only with first 40 modes. Both synthesis methods have excellent
results for the lowest frequency modes before first 40modes.
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Figure 2: Eigenvalues for the fused two different synthesis

Results
We consider hemoglobin (Hb) for modeling protein structure using mechanical

mass-spring model of which number of dominant atoms called Cα is 574. The
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Figure 3: Enlarged version of first 40 modes

schematic diagram of hemoglobin is shown in Fig. 4. Specifically, Hb is known to
have collective motion of 4 domains (monomers) of hemoglobin [7]. That is, the
monomer 1 (residue number: 1-141) and monomer 2 (residue number: 142-286),
referred to as substructure A, exhibit the correlated motion, and also the monomer
3 (residue number: 287-427) and monomer 4 (428-572), referred to as substructure
B, have the correlated motion.

 

Figure 4: Structure of hemoglobin

From the given structure, the Hb may be considered either two substructures
or four substructures in order to simulate two different synthesis based on multi-
component modal analysis. We draw the similar conclusions in the protein structure
as the previous sample problem (mass chain) concerning eigenvalues both in Figs.
5 and 6. Results presented in Fig. 7 show that the MCMA exhibits the similar
characteristics of fluctuation for collective or similar motions to that of original full
model.
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Figure 5: Eigenvalues for the two different synthesis
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Figure 6: Eigenvalues obtained using low frequency modes
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Figure 7: Comparisons of mean square fluctuations of protein (Hb) generated by
full model and multi-component modal analysis
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