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Summary
In this paper, we apply the coupling of natural boundary element method and

finite element method to solve a three-dimensional nonlinear interface problem.
Two equations are coupled by interface conditions on the interface boundary. A
spherical surface as the artificial boundary is introduced. The equivalent coupled
variational problem is described. The existence and uniqueness of the solution of
concerned problem as well as the estimates of its approximate solution are obtained.
Some numerical examples are presented to demonstrate the effectiveness of this
method.
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Introduction
We consider a nonlinear elliptic differential equation in a bounded Lipschitz

domain Ω ⊂ R
3 and a linear elliptic differential equation in Ωc := R

3\Ω and their
solutions are connected by conditions on the interface boundary Γ0 = ∂Ω. For given
f ∈ L2(Ω),u0 ∈ H1/2(Γ0), t0 ∈ H−1/2(Γ0) , the interface problem reads: find u1 ∈
H1(Ω), u2 ∈ H1

loc(Ωc) such that

−div(p(|∇u1|) ·∇u1)+u1 = f in Ω, (1)

−Δu2 = 0 in Ωc, (2)

with

u1 = u2 +u0, p(|∇u1|)∂u1

∂n
=

∂u2

∂n
+ t0 on Γ0, (3)

and the radiation condition at infinity

u2(x) = O(
1
|x|) f or |x| → ∞, (4)

where p(t) ∈ C1({0}∪R
+) satisfies the condition p0 ≤ p(t) ≤ p1 < ∞ and α ≤

p(t)+ t p′(t) ≤ β for constants p0, p1,α ,β > 0 (see [3]) and n denotes the unit
normal on Γ0 defined almost everywhere pointing from Ω into Ωc.
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The interface problems widely occur in fluid mechanics and elasticity. The
standard techniques to deal with the interface problems such as the finite element
method will meet some difficulty, the computing costs could be very high for un-
bounded problems. The coupling methods of boundary element method and finite
element method permit us to combine the advantages of boundary elements for
treating domains extended to infinity with those of finite elements in treating the
nonhomogeneity and nonlinearity of equations in some bounded domains. The
standard procedure of coupling finite element and boundary element method is de-
scribed as follows. First, the domain is divided into two subregions, a bounded
inner region and an unbounded outer one, by introducing an auxiliary common
boundary. Next, the problem is reduced to an equivalent one in the bounded region.
There are many different ways of the boundary reduction (see [4][5]).

The natural boundary integral method and its coupling with the finite element
method, which is also known as the exact artificial boundary condition method,
are suggested and developed by K. Feng, D. Yu and H. Han. And a very similar
method, so-called DtN method, has also been devised by J.B. Keller and D. Givoli.
The idea of the natural boundary reduction, i.e., the DtN map is described as fol-
lows. By using the exact artificial boundary condition, we reduce the problem in
unbounded domain into an bounded problem with a hyper-singular integral equa-
tion on the artificial boundary. It is fully compatible with the variational principle
in the domain, which will avoid to directly calculate the singular integration when
we choose some special auxiliary boundary (e.g., circle, ellipse, spherical surface
or ellipsoid surface, etc), and the boundary elements are also fully compatible with
the domain elements. This coupling is natural and direct. It is highly flexible and
good for complex and large-scale problems. The theory and some fast numerical
methods are developed.

In this paper, we apply the coupling of natural boundary element method and fi-
nite element method to solve a three-dimensional nonlinear interface problem. The
two equations are coupled by interface conditions on interface boundary. In Sect.2,
we introduce a spherical surface as the auxiliary boundary, describe the equiva-
lent coupled variational problem, obtain existence and uniqueness of the solution.
In Sect.3 we discuss the well-posedness of the solution of the concerned discrete
problem and obtain the error estimate of its approximate solution. Two numerical
examples are presented to demonstrate the effectiveness of this method.

Variational formulation and well-posedness
Let Hs(Ω),Hs(Γ0) and H−1/2(Γ0) denote the usual Sobolev spaces and

H1
loc(Ωc) = {v : v|O ∈ H1(O) for any O = Ωc ∩B with Ω ⊂⊂ B ⊂⊂ R

3},
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where B is any ball. Define the set of admissible functions

Ĉ := {(v1,v2) ∈ H1(Ω)×H1
loc(Ωc) : v1|Γ0 = v2|Γ0 +u0, and v2 satisfies (4)}. (5)

and the set of trial functions

Ĉ∗ := {(v1,v2) ∈ H1(Ω)×H1
loc(Ωc) : v1|Γ0 = v2|Γ0, and v2 satisfies (4)}. (6)

Obviously, Ĉ is a nonempty convex set.

The weak form of problem (1)-(4) is to find u = (u1,u2) ∈ Ĉ such that

∫
Ω

(p(|∇u1|)∇u1 ·∇v1 +u1v1)dx+
∫

Ωc
∇u2 ·∇v2dx = L(v), ∀v = (v1,v2) ∈ Ĉ∗,

(7)
where L : H1(Ω)×H1

loc(Ωc) → R is the bounded linear functional

L(v) :=
∫

Ω
f v1dx+

∫
Γ0

t0v2ds, ∀v = (v1,v2) ∈ Ĉ∗. (8)

Let Γ := {(r,θ ,ϕ) : r = R,θ ∈ [0,π ],ϕ ∈ [0,2π)} such that the ball Ω0 :=
{(r,θ ,ϕ) : r < R,θ ∈ [0,π ],ϕ ∈ [0,2π)} ⊃ Ω. Set Ω1 = Ωc ∩Ω0, Ω2 = R

2\Ω0,
and u21 = u2|Ω1, u22 = u2|Ω2. According to natural boundary reduction principle
[1], if u2 ∈ D1 := {v ∈ H1

loc(Ω2) : v satisfy (4)}, we have

K (u2) = −∂u2

∂ r
|Γ =

∞

∑
n=0

n

∑
m=−n

(n+1)
R

UnmYnm(θ ,ϕ), (9)

< K (u2),v >Γ=
∫

Ω2

∇u2 ·∇vdx = R
∞

∑
n=0

n

∑
m=−n

(n+1)UnmV ∗
nm, ∀v ∈ D1, (10)

where the operator K : H
1
2 (Γ) → H− 1

2 (Γ) (so-called DtN map) is linear, coercive
and continuous,Unm =

∫ π
0

∫ 2π
0 u2|ΓY ∗

nm(θ ,ϕ) sinθdθdϕ , V ∗
nm =

∫ π
0

∫ 2π
0 v|ΓYnm(θ ,ϕ) sinθdθdϕ ,

Ynm is spherical harmonic functions and Y ∗
nm is the conjugate complex of Ynm.

Let
V = {(v1,v2) ∈ H1(Ω)×H1(Ω1) : v1 = v2 +u0 on Γ0}

and
V ∗ = {(v1,v2) ∈ H1(Ω)×H1(Ω1) : v1 = v2 on Γ0}.

We define the norm

‖v‖V =
(
‖v1‖2

H1(Ω) +‖v2‖2
H1(Ω1)

) 1
2
, ∀v = (v1,v2) ∈ H1(Ω)×H1(Ω1).
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Then the variational form (7) is equivalent to the following variational form: find
u = (u1,u2) ∈V such that

B(u;v) = L(v), ∀v = (v1,v2) ∈V ∗, (11)

where B(u;v) =
∫

Ω (p(|∇u1|)∇u1 ·∇v1 +u1v1)dx +
∫

Ω1
∇u2 · ∇v2dx+ < K (u2),

v2 >Γ.

In order to derive existence and uniqueness of solution of the original interface
problem, we must find a functional whose variational form gives (11). Define Φ :
V → R by

Φ(u) :=
∫

Ω
(g(|∇u1|)+

1
2
|u1|2)dx+

1
2

∫
Ω1

|∇u2|2dx+
1
2

< K (u2),u2 >Γ −L(u),

(12)
where the functional g(t) is given by p(t) through

g : [0,∞)→ [0,∞), t �−→ g(t) =
∫ t

0
sp(s)ds.

The coupled minimization problem is to find u = (u1,u2) ∈V such that

Φ(u) = inf
v∈V

Φ(v). (13)

Lemma 1 For any u ∈ V and v ∈ V ∗, the following conclusions hold.
1). The Gateaux derivative of Φ is

DΦ(u;v) = B(u;v)−L(v). (14)

2). DΦ is strongly monotone and Lipschitz-continuous for bounded arguments with
respect to the norm ‖ · ‖V .
3). The weak form of the Euler equation to the variational problem of Φ coincides
with the weak form (11).

Theorem 1 The functional Φ has a unique minimizer u on V and u is also a unique
solution of the variational problem (11).

Discrete problem and error estimate
To describe a discrete form of (13), we divide Ω and Ω1 into some regular qua-

siuniform triangles with diameter h, such that the nodes on Γ0 are matching (i.e.,
coincident) and these triangles nearby Γ are curved. The conforming linear finite
element spaces associated with Ω and Ω1 are denoted by Vh(Ω) and Vh(Ω1) respec-
tively. Usually, the curved triangles are approximated by the straight edge triangles
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which have the same nodes with the curved triangles. This method generates only
small error. Letting Nh denote the set of nodes in the space Vh(Ω)×Vh(Ω1), we let

Uh = {vh = (vh
1,vh

2)∈Vh(Ω)×Vh(Ω1) :∀b∈Nh∩Γ0,vh
1(b)= vh

2(b)+u0(b)}, (15)

U∗
h = {vh = (vh

1,vh
2) ∈Vh(Ω)×Vh(Ω1) : ∀b ∈ Nh ∩Γ0,vh

1(b) = vh
2(b)}. (16)

Then U∗
h ⊂V ∗. The discrete variational problem is to find uh = (uh

1,uh
2) ∈Uh such

that
Φ(uh

1,uh
2) = inf

vh∈Uh

Φ(vh). (17)

Theorem 2 The minimization problem (17) has one and only one solution. Its
solution uh = (uh

1,uh
2) ∈Uh is also the unique solution of the variational equation

B(uh;vh) = L(vh),∀vh ∈U∗
h . (18)

Theorem 3 Let there be given a family of linear finite element spaces and the in-
terpolation error be

|v−Πhv|H1(Ω) ≤ Ch|v|H2(Ω), ∀v ∈ H2(Ω),

and
|v−Πhv|H1(Ω1) ≤Ch|v|H2(Ω1), ∀v ∈ H2(Ω1).

Then, if the solution u = (u1,u2) ∈ V of the minimization problem (13) is in the
space H2(Ω)×H2(Ω1), there is a positive constant C independent of h such that

‖u−uh‖V ≤Ch‖u‖H2(Ω)×H2(Ω1). (19)

Numerical Examples
In practical computation, we first do harmonic extension of uh

0 to Ω1. Let vh
0 ∈

Vh(Ω1) be the weak solution of the following problem

⎧⎨
⎩

Δvh
0 = 0, in Ω1,

vh
0 = u0, on Γ0,

vh
0 = 0, on Γ.

Set vh = uh
2 +vh

0 and define

L̃(vh) = L(vh)+
∫

Ω1

(∇vh
2) ·∇vh

0dx.
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Obviously, L̃(vh) is still a linear bounded functional on U∗
h . Then, the functional Φ

may be written in the form

Ψ(uh) :=
∫

Ω

[
g(|∇uh

1|)+
1
2
|uh

1|2
]

dx+
1
2

∫
Ω1

|∇uh
2|2dx+

1
2

< K (uh
2),uh

2 >Γ

+
1
2

∫
Ω1

|∇vh
0|2dx+

∫
Γ0

t0vh
0ds− L̃(uh).

Let

Ψ0(uh) :=
∫

Ω

[
g(|∇uh

1|)+
1
2
|uh

1|2
]

dx+
1
2

∫
Ω1

|∇uh
2|2dx+

1
2

< K (uh
2),uh

2 >Γ −L̃(uh).

The coupled minimization problem is to find uh = (uh
1,wh) ∈U∗

h such that

Ψ0(uh) = inf
vh∈U∗

h

Ψ0(vh). (20)

Thus, uh = (uh
1,uh

2) ∈ Uh minimizes Φ in Uh if only if (uh
1,uh

2 + vh
0) minimizes Ψ0

in U∗
h .

To solve the nonlinear problem (20), we apply Newton iterations. The series
∑∞

n=0 ∑n
m=−n in (10) is usually replaced with ∑N

n=0 ∑n
m=−n. In practical computa-

tion, N is very small. Let e1(h,N) = ‖uh
N −u‖H1(Ω) , e0(h,N) = ‖uh

N −u‖L2(Ω) and
e∞(h,N) = ‖uh

N − u‖L∞(Ω) where uh
N is approximate solution after truncating the

infinite series of (10). iters is the times of Newton iterations.

Example 1 Let Ω = {(x1,x2,x3) ∈R
3 : |xi|< 1, i = 1,2,3}, the auxiliary boundary

Γ = {(x1,x2,x3) ∈ R
3 : r =

√
x2

1 +x2
2 +x2

3 = 2}. p(t) = 1 + e−t2
, f = e−r2

(2r2 −
3)−3+ r2/2, u0 = r2/2−1/r and

t0 =

⎧⎪⎨
⎪⎩

|x1|(1+e−r2
+1/r3), |x1|= 1,

|x2|(1+e−r2
+1/r3), |x2|= 1,

|x3|(1+e−r2
+1/r3), |x3|= 1.

Then the exact solution of problem (1)-(4) is u = (r2/2,1/r).

In Table 1, we present experimental rates of convergence for the L2-errors and
H1-errors in the relevant domains. The numerical results are in agreement with
theoretical analysis and the numbers of iterations of Newton method are very small.



Coupling of Natural Boundary Element Method and Finite Element Method 73

Table 1: N=20, h1 = 0.0208, h2 = 0.0111
mesh size domain node e1(h,N) ratio e0(h,N) ratio e∞(h,N) iters

h Ω 125 2.3313e-1 – 4.4980e-2 – 5.6569e-2 4
h1/2 Ω 729 1.1038e-1 2.1121 1.5017e-2 2.9952 2.9795e-2 5
h1/4 Ω 4913 4.8815e-2 2.2614 4.6182e-3 3.2517 1.7115e-2 5

h1 Ω1 490 1.9565e-1 – 4.9411e-2 – 4.6950e-2 4
h2/2 Ω1 3474 9.7283e-2 2.0111 1.5609e-2 3.1656 2.9795e-2 5
h2/4 Ω1 26146 4.7756e-2 2.0371 5.6206e-3 2.7771 1.7115e-2 5
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