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Optimal 4-node shell and 3d-shell finite elements for
nonlinear analysis
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Summary
First we shortly present several low-order (4-node) shell finite element formu-

lations (based on Reissner-Mindlin kinematics) that allow for accurate and effi-
cient (with coarse and distorted meshes) analysis of shell-like structures subjected
to large deformations and rotations. The formulations are based on mixed varia-
tional principle, enhanced assumed strain (EAS) method (based on Green-Lagrange
strains) and assumed natural strain (ANS) method. The EAS method is used in all
formulations in order to improve both membrane and bending behavior of the 4-
node element (the formulations differ from one another by the number of assumed
EAS parameters), and the ANS method is used to avoid shear locking. An optimal
number of membrane/bending EAS parameters is then identified by comparing re-
sults of a set of characteristic numerical examples (in this paper we only present
results of two illustrative examples). Thus an optimal 4-node EAS/ANS nonlinear
shell element is derived. In the second part of the paper we shortly present en-
hancement of the previously derived optimal shell element leading to an optimal
low-order (4-node) nonlinear 3d-shell element; i.e. an element that accounts for
through-the-thickness stretching. The enhancement, which introduces incompati-
ble Green-Lagrange strains in the through-the-thickness direction, is based on EAS
method. The derived 3d-shell element looks as a surface (with extensible directors)
from the outside but it can build fully 3d stress and 3d strain states. Finally, we
present a numerical example, which illustrates performance of an optimal 4-node
EAS/ANS 3d-shell element.

Introduction
The enhanced assumed strain (EAS) method, introduced by Simo and Rifai [1]

and Simo and Armero [2], has been accepted as a relatively simple and efficient tool
for performance enhancement of lower order finite elements for linear/nonlinear
analysis of solids and structures. Since the initial works many finite elements based
on the EAS method have been developed. As concerning shell formulations, the
EAS method has been used in two different manners: (i) to obtain 3d-shell and
solid-shell formulations that account for through-the-thickness stretching, and (ii)
to obtain shell, 3d-shell and solid shell elements with improved membrane perfor-
mance. Linear/nonlinear EAS shell formulations (elements) have been presented
e.g. by Bischoff and Ramm [3], Vu-Quoc and Tan [4], Brank, Korelc and Ibrahim-
begovic [5], Sansour and Kollmann [6], among others. In this paper we first study
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two questions: (i) which is an optimal numer of EAS parameters for enhancement
of membrane/bending strains for 4-node nonlinear geometrically exact shell ele-
ment, and (ii) does EAS enhancement of bending strains improve performance of
an element. We answer both questions by comparing results of two characteris-
tic numerical examples for several membrane/bending EAS formulations. In such
a way an optimal number of EAS parameters is found. In the second part of the
paper we extend the optimal shell formulation by including through-the-thickness
stretching in order to obtain an optimal 3d-shell nonlinear 4-node finite element.

Shell element formulations
Let the position vector in a shell reference configuration be defined as X

(
ξ 1,ξ 2,ξ 3

)
= Φ

(
ξ 1,ξ 2

)
+ξ 3T

(
ξ 1,ξ 2

)
, where ξ i are material (convected) coordinates,

∣∣T(
ξ 1,ξ 2

)∣∣ =
1, ξ 3 ∈ [−h0/2,h0/2], and h0 is initial shell thickness. The position vector in the de-
formed shell configuration is assumed as x

(
ξ 1,ξ 2,ξ 3

)
= φ

(
ξ 1,ξ 2

)
+ξ 3t

(
ξ 1,ξ 2

)
,

where |t| = 1 and t = RT, where R is constrained rotation. Defining u = φ −Φ,

Aα = ∂Φ/∂ξ α and Aα ·Aβ = δ β
α the Green-Lagrange strains can be given as

Eu =
(

Eu,m
αβ +ξ 3Eu,b

αβ

)
Aα ⊗Aβ +Eu

α3Aα ⊗T+Eu
3α T⊗Aα +0T⊗T (1)

We further make the enhancement of membrane and bending strains: E = Eu + Ẽ

where Ẽ =
(

Ẽm
αβ +ξ 3Ẽu

αβ

)
Aα ⊗Aβ , so that total strains are Em

αβ = Eu,m
αβ + Ẽm

αβ

and Eb
αβ = Eu,b

αβ + Ẽb
αβ . By introducing the above strain enhancement into the Hu-

Washizu functional for shells one can obtain the following mixed functional

Π
(

u, t, Ẽm
αβ , Ẽb

αβ ,nαβ ,mαβ
)

=
∫
A

Ws

(
Eu (t,u)+ Ẽ

(
Ẽm

αβ , Ẽb
αβ

))
dA

−∫
A

nαβ
(

Eu,m
αβ (u)−Em

αβ

(
u, Ẽm

αβ

))
dA−∫

A
mαβ

(
Eu,b

αβ (u, t)−Eb
αβ

(
u, t, Ẽb

αβ

))
dA

+Πext (u, t)
(2)

where nαβ and mαβ are the 2nd Piola-Kirchhoff membrane forces and bending
moments, n = nαβ A⊗

α Aβ , m = mαβ A⊗
α Aβ . The strain energy of a hyperelastic shell

is Ws

(
Em

αβ ,2Eα3,Eb
αβ

)
=W m

(
Em

αβ

)
+W s (2Eα3)+W b

(
Eb

αβ

)
. The finite element

approximation of (2) is carried out by 4-node isoparametric finite elements. The
enhanced strains and the stress resultants are approximated such that the following
orthogonality conditions hold∫

A

nαβ Ẽm
αβ dA = 0

∫

A

mαβ Ẽb
αβ dA = 0 (3)

The enhancement of membrane and bending strains in the element isoparamet-
ric space (ξ ,η) ∈ [−1,1]× [−1,1] is performed as Ξ̃m =

(
Ξ̃m

11 Ξ̃m
22 2Ξ̃m

12

)T =
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Γmαm
e and Ξ̃b =

(
Ξ̃b

11 Ξ̃b
22 2Ξ̃b

12

)T = Γbαb
e , where the above matrices are hav-

ing one of the following forms (A = |A1 ×A2|)

Γm = Γb =
1√
A

⎡
⎣ ξ 0 0 0

0 η 0 0
0 0 ξ η

⎤
⎦ ,

αm,T
e = (α1,α2,α3,α4)

αb,T
e = (β1,β2,β3,β4)

Γm = Γb =
1√
A

⎡
⎣ ξ 0 0 0 0

0 η 0 0 0
0 0 ξ η ξη

⎤
⎦ ,

αm,T
e = (α1,α2,α3,α4,α5)

αb,T
e = (β1,β2,β3,β4,β5)

(4)

Γm = Γb =
1√
A

⎡
⎣ ξ 0 0 0 ξη 0 0

0 η 0 0 0 ξη 0
0 0 ξ η 0 0 ξη

⎤
⎦ ,

αm,T
e = (α1,α2,α3,α4,α5,α6,α7)

αb,T
e = (β1,β2,β3,β4,β5,β6,β7)

The strains Ξ̃m = Ξ̃m
αβ Aα

0 ⊗ Aβ
0 and Ξ̃b = Ξ̃b

αβ Aα
0 ⊗Aβ

0 are referred to the con-
travariant basis of the centre of the element Aα

0 = Aα (ξ = 0,η = 0). The strains
Ẽm

e,αβ and Ẽb
e,αβ , which are referred to the basis Aα (ξ ,η), are obtained by trans-

formation Ẽm
e,αβ =

(
Aα ·Aγ

0

)
Ξ̃m

γδ
(
Aβ ·Aδ

0

)
, Ẽb

e,αβ =
(
Aα ·Aγ

0

)
Ξ̃b

γδ
(
Aβ ·Aδ

0

)
. For

constant membrane forces and constant bending moments conditions (3) are

1∫

−1

1∫

−1

Γm
√

Adξdη = 0

1∫

−1

1∫

−1

Γb
√

Adξdη = 0 (5)

The orthogonality conditions (3) thus hold at least for constant membrane forces
and bending moments, and the elements with enhanced strains pass the patch test.

Table 1: Derived EAS/ANS shell elements.
Element No. of EAS parameters

for membrane strains
No. of EAS parameters
for bending strains

ANS concept

M4 4 0 Yes
M4B4 4 4 Yes
M5 5 0 Yes
M5B5 5 5 Yes
M7 7 0 Yes
M7B7 7 7 Yes
ANS 0 0 Yes

Assesment of optimal number of EAS parameters through numerical
examples

The derived EAS/ANS shell elements are summarized in Table 1. The problem
data of two examples is presented in Figure 1. Other data for example (a) is r=10,
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Figure 1: (a) Mesh of one quarter of a pinched half-sphere with an 180 hole. (b)
Mesh of one quarter of a pinched cylinder with free ends.
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Figure 2: Top: Load-displacement curves for example (a). Bottom: Load-
displacement curves for example (b).
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h=0.04, E=6.825 107, ν = 0.3, and for example (b) is r=4.953, h=0.094, L=10.35,
E=1.05 104, ν = 0.3125. The results are presented in Figure 2. It can be seen
for example (a) that M4 gives only slight improvement with respect to ANS and
that M5 and M7 give almost identical results. It can be seen for example (b) that
membrane and bending enhancement M5B5 gives only slightly different results
than membrane enhancement M5. The optimal 4-node element is therefore M5.
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Figure 3: Left: Mesh of one quarter of a pinched clamped half-sphere. Right:
Thickness change under the force with respect to normalized displacement under
the force.

3d-shell element formulation
The above described optimal shell element M5 can be extended to take into

account the through-the-thickness stretching; we refer to Brank et al. [5] for de-
tails on 3d-shell formulations. In the present case refinement of kinematics in the
through-the-thickness direction is made by using EAS method. The resulting 3d-
shell 4-node finite element is capable to reproduce behavior of M5 shell element
for thin shells and can provide 3d stress and strain state for thicker shells (as a good
approximation of complete 3d solution). Here we present an example computed by
M5 element with through-the-thickness stretching. The data and results are given
in Figure 3.
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