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About the POD Model Reduction in Computational
Mechanics for Nonlinear Continuous Dynamical Systems

R. Sampaio1 and C. Soize2

Summary
An analysis of the efficiency of the reduced models constructed using the POD-

basis and the LIN-basis is presented in nonlinear dynamics for continuous elastic
systems discretized by the finite element method. The POD-basis is the basis con-
structed with the POD method while the LIN-basis is the basis derived from the
generalized eigenvalue problem associated with the underlying linear conservative
part of the system and usually called the eigenmodes of vibration. The efficiency
of the POD-basis or the LIN-basis is related to the speed of convergence in the
frequency domain of the solution constructed with the reduced model with respect
to its dimension. A basis will be more efficient than another if it converges more
rapidly than the other. An example is presented in order to analyze the efficiency
of the POD-and LIN-bases. It is concluded that the POD-basis is not more efficient
than the LIN-basis for the example treated in nonlinear elastodynamics.

Introduction
The number of papers dealing with Proper Orthogonal Decomposition (POD)

[1], [2] (also known as Karhunen-Loève basis (KL)) to construct reduced mod-
els has increased a lot in diverse fields. The objective of this paper is to compare
the efficiency of the reduced model constructed with the POD-basis with the one
constructed with the LIN-basis for nonlinear dynamics of continuous elastic sys-
tems discretized by the finite element method. We mean by POD-basis the basis
constructed with the POD method. LIN-basis means the basis derived from the
generalized eigenvalue problem associated with the underlying linear part of the
nonlinear system and is usually called the eigenmodes of vibration. We mean by
efficiency of the POD-basis or the LIN-basis the speed of convergence in the fre-
quency domain of the solution constructed with the reduced model with respect to
its dimension. In this paper we are not interested in constructing a reduced model
adapted to a given excitation, which is the case if one uses the POD-basis. We are
interested in constructing a reduced model as a predictive model for any excitation,
which is the case if one uses the LIN-basis. In linear and nonlinear elastodynam-
ics it is usual to use the LIN-basis to construct the reduced model to predict the
response to any excitation. It should be noted that the POD-basis strongly depends
on the excitation of the system while the LIN-basis does not depend and gives a
reduced model valid for all excitations. Nevertheless in this paper the comparison
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of the efficiency of the two bases will be limited to the response to a given excita-
tion. This paper is limited to the presentation of the finite element formulation and
the computational results obtained. All the continuous and theroretical aspects are
developed in [3].

Finite Element Model
We consider a nonlinear continuous dynamical system whose finite element

model is given by the following matrix equation in Rp,

[M] ÿ(t)+[D] ẏ(t)+[K]y(t)+ fNL(y(t), ẏ(t)) = f (t) , ∀t ∈ R (1)

in which y(t) is the Rp-vector of the degrees of freedom, ẏ(t) and ÿ(t) are the Rp-
vectors of the velocities and accelerations, and where [M], [D], [K] and fNL(y(t), ẏ(t))
are the mass, damping, stiffness matrices and the nonlinear vector forces. The vec-
tor load is written as f (t)= ag(t) f0, in which a is the amplitude and f0 is a normal-
ized vector describing the spatial distribution of the load. The impulse t �→ g(t) is a
square integrable real-valued function on R whose Fourier Transform ω �→ ĝ(ω) =∫

R e−iωtg(t)dt has a bounded support Be ∪Be with Be = [Ωc −ΔΩ/2,Ωc + ΔΩ/2]
and Be = [−Ωc −ΔΩ/2,−Ωc + ΔΩ/2], in which Ωc is the central frequency and
ΔΩ is the bandwidth. In addition it is assumed that maxω∈B|ĝ(ω)|= 1.

The LIN-basis as the Normal Mode Basis
We introduce the normal modes generalized eigenvalue problem [K] z = μ̂ [M] z

for symmetric matrices related to the underlying linear part of the nonlinear dy-
namical system. The eigenvalues 0 < μ̂1 ≤ μ̂2 ≤ . . . ≤ μ̂p are the square of the
eigenfrequencies and the associated eigenvectors z1, z2, . . . , zp are the eigenmodes.
Let < x,y >= ∑p

j=1 x jy j be the Euclidean inner product of x and y belonging to

Rp. We then have the usual orthogonality properties < [K] zα , zβ >= μ̂α δαβ and
< [M] zα , zβ >= δαβ .

The POD-basis Constructed with the POD Method
The construction of the POD-basis is presented in the deterministic case. The

stochastic case is similar and corresponds to the Karhunen-Loève decomposition,
although the two terminologies are sometimes used in the literature without dis-
crimination between the deterministic and the stochastic cases. It should be noted
that for the linear case, since the mass, damping and stiffness are symmetric positive-
definite matrices, an optimal basis independent of vector load f can be constructed
and allows an optimal reduced model to be constructed for any vector load f (see
[4], [5] ). As proved in these references, this optimal basis does not coincide with
the LIN-basis. For the present nonlinear case, it is important to emphasize that
the POD-basis is well adapted to represent a given response due to a given vector
load. The finite element mesh and the finite elements used for the discretization
of the POD linear operator are the same as the finite element discretization of the
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weak formulation of the nonlinear boundary value problem. The finite element
discretization of the POD eigenvalue problem for the nonlinear boundary value
problem yields [3] the POD generalized eigenvalue problem for matrices which is
written as [A] z = λ̂ [H] z in which [A] =

∫
R[H]y(t) ([H]y(t))T dt where [A] is a pos-

itive symmetric p× p real matrix, y(t) is the unique solution of Eq. (1) and where
[H] is the positive-definite symmetric p× p real matrix corresponding to the finite
element discretization of the inner product in L2 (this matrix can be constructed
as the mass matrix for which the mass density is equal to 1 in all the domain).
The eigenvalues are positive numbers such that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p ≥ 0. The as-
sociated eigenvectors z1, z2, . . . , zp constitute the finite element approximation of
the POD-basis and satisfy the orthogonality properties < [A] zα , zβ >= λ̂α δαβ and
< [H] zα , zβ >= δαβ .

Reduced Model and Observation of the Nonlinear Dynamical System
Let {z1, . . ., zp} be an algebraic basis of Rp. Such a basis can be either the LIN-

basis or the POD-basis. The reduced model is obtained by projection of Eq. (1) on
the subspace VN of Rp spanned by {z1, . . . , zN} with N 
 p. Let [ZN ] be the (p×N)
real matrix whose columns are the vectors {z1, . . ., zN}. The generalized load vec-
tor FN(t) = [ZN ]T f (t) belongs to RN . The generalized mass, damping and stiffness
matrices [MN] = [ZN ]T [M][ZN], [DN ] = [ZN ]T [D][ZN] and [KN ] = [ZN ]T [K][ZN] are
positive-definite symmetric (N×N) real matrices. The reduced model of the fi-
nite element approximation defined by Eq. (1) is written as yN(t) = [ZN ]qN(t) in
which the vector qN(t) ∈ RN of the generalized coordinates verifies the nonlinear
differential equation,

[MN] q̈N(t)+[DN] q̇N(t)+[KN ]qN(t)+FN
NL(qN(t), q̇N(t)) = FN(t) , ∀t ∈ R ,

(2)
where, for all q and p in RN , FNL(q, p) = [ZN ]T fNL([ZN ]q, [ZN] p). It is assumed
that the nonlinearities are such that Eq. (1) has a unique solution such that y and
ẏ are square integrable vector-valued functions on R. Let ŷ(ω) =

∫
R e−iω t y(t)dt

be the Fourier Transform of y. Let h(ω) = (4π)−1{< ω2[M] ŷ(ω) , ŷ(ω) > + <

[K] ŷ(ω) , ŷ(ω) >} be the energy density in the frequency domain where the over-
line denotes the complex conjugate. Using the reduced model and denoting the
Fourier Transform of qN as q̂N , the approximation hN(ω) of h(ω) is written as
hN(ω) = (4π)−1{< ω2[MN] q̂N(ω) , q̂N(ω) > + < [KN ] q̂N(ω) , q̂N(ω) >}.

Numerical Solver
Let B = [−ωmax,ωmax] be the frequency band of analysis such that Be ∪Be ⊂ B

in which ωmax = 2π fmax is such that |∫R‖ŷ(ω)‖2 dω −∫ ωmax
−ωmax

‖ŷ(ω)‖2 dω | ≤ ε with
ε an a priori given precision. The time step is taken as Δt = 1/(2 fmax) and the
time integration is T̂ = ntime Δt with ntime a positive integer. The integration in R is
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approximated by an integration over the finite interval [t0, t1] in which t0 = −T̂ /2
and t1 = T̂/2−Δt. The sampling time points are tk = t0 + k Δt. The frequency
step is Δω = 2ωmax/nfreq with nfreq = ntime. The sampling frequency points are ωk =
−ωmax +k Δω . Equations (1) and (2) are integrated over [t0, t1] using an implicit step
by step time-integration method (Newmark scheme) with zero initial conditions at
t0. At each sampling time point tk the nonlinear algebraic equation deduced from
Eq. (1) or Eq. (2) is solved using an iteration method (fixed point). The matrix [A]
is computed by [A]  Δt ∑ntime−1

k=0 [H]y(tk) ([H]y(tk))T . The eigenvectors z1, . . ., zN

associated with the N largest eigenvalues λ̂1 ≥ . . . ≥ λ̂N of the POD generalized
eigenvalue problem (or associated with the N smallest eigenvalues μ̂1 ≤ . . . ≤ μ̂N

of the normal modes generalized eigenvalue problem) can nowdays be computed
for very large generalized eigenvalue problems using an iterative method based on
the subspace iteration method or the Lanzcos method [6],[7]. Using such iteration
method, a very efficient algorithm can be constructed (see [3]). It should be noted
that the POD generalized eigenvalue problem can also be solved using the snapshot
method (see [8]).

Numerical studies of the efficiency of the POD-basis with respect to the
LIN-basis

In order to define the error functions allowing the efficiency of the two re-
duced models constructed with the LIN-basis and with the POD-basis to be eval-
uated, we denote by hN

LIN(ω) the quantity hN(ω) when the LIN-basis is used and
by hN

POD(ω) when the POD-basis is used. We then defined the following error func-
tions, depending on the dimension N of the reduced model, such that eREF−LIN(N) =
ω̃−1

max

∫ ω̃max
0 (log10 h(ω)− log10 hN

LIN(ω))dω measures the error between the refer-

ence solution and the LIN-basis solution, eREF−POD(N) = ω̃−1
max

∫ ω̃max
0 (log10 h(ω)−

log10 hN
POD(ω))dω measures the error between the reference solution and the POD-

basis solution, eLIN−POD(N) = ω̃−1
max

∫ ω̃max
0 (log10 hN

LIN(ω)−log10 hN
POD(ω))dω measures

the error between the LIN-basis solution and the POD-basis solution.

The continuous elastic system is constituted of two coupled subsystems. The
first subsystem is a linear continuous elastic system constituted of a Timoshenko
beam with added dissipation. The second nonlinear subsystem is constituted of a
nonsymmetric distributed nonlinearities. The geometrical properties of the beam
are: length 1m, width 0.1m, height 0.1m. The boundary conditions are of a
cantilever beam. The beam is homogeneous, isotropic, whose material proper-
ties are: density 7500kg/m3, Young’ s modulus 2.1× 1010 N/m2, Poisson’s co-
efficient 0.3, shearing correction factor 5/6. The damping model is introduced
by the model damping rate which is 0.02 for the first three modes of the uncou-
pled subsystem, 0.01 for the fourth mode and 0.005 for the others. The finite
element model of the cantilever beam is constituted of 100 2-nodes Timoshenko
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beam elements. The first six computed eigenfrequencies of the uncoupled subsys-
tem are 26.9, 162.7, 432.9, 794.1, 1219.2 and 1685.3 Hz. The second subsystem
is constituted of a distributed density of nonsymmetric nonlinear stiffness produc-
ing forces transversally to the beam. At each finite element node of the mesh of
the beam the function fNL is then independent of the velocity and is constructed
using fNL(y) = 0 if y ≤ 0 and fNL(y) = k0 y3 if y > 0, with k0 = 2.9301× 1018

N/m. For the vector load, the amplitude a is equal to 1 and the force is a point
force applied at the free end of the beam. The impulse function is such that
g(t)= (π t)−1{sin(t(Ωc+ΔΩ/2))−sin(t(Ωc−ΔΩ/2))} whose Fourier Transform
is ĝ(ω) = 1Be∪Be(ω), for which the bandwidth Δ f = 1400 Hertz and the central fre-
quency fc = 701 Hertz such that ΔΩ = 2πΔ f and Ωc = 2π fc. Then the frequency
band of excitation contains the first five eigenfrequencies of the first linear subsys-
tem. The value of fmax has been calculated in order to obtain a good accuracy for
the time integration scheme and is 12000 Hz. On the other hand a convergence
analysis has been performed with respect to the time integration T̂ in order that the
coupled system be at rest for t = T̂/2 with a good accuracy. This time integra-
tion is defined by the value of ntime whose necessary value is 32768. Figure 1(left)
displays the graph of the function f �→ log10h(2π f ) over [0,8000] Hz for the refer-
ence solution. Figure 1(right) displays the graph of the function j �→ log10(λ̂ j/λ̂1).
This figure shows the decreasing speed of the eigenvalues which is related to the
convergence speed of the POD-solution with respect to N. For illustrating the
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Figure 1: Left figure: Graph of f �→log10h(2π f ) for the reference solution; horizontal axis
is frequency in Hertz; vertical axis is f �→log10h(2π f ). Right figure: Graph of j �→log10(λ̂ j/λ̂1);
horizontal axis is rank j of the eigenvalue; vertical axis is log10(λ̂ j/λ̂1).

convergence in the frequency domain we show the results for a given N. Figure
2(left) corresponds to N = 5 and shows three curves related to the reference so-
lution (thick solid line), LIN-solution (red thin solid line) and POD-solution (blue
thin solid line). It should be noted that the thin solid lines may be superposed
and hence some of them are not visible. The error functions are computed for
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Figure 2: Left figure: For N=5, graph of f �→log10h(2π f ) for the reference solution (black
line), RML-solution (red line) and RMNL-solution (blue line); horizontal axis is frequency
in Hertz; vertical axis is f �→ log10h(2π f ). Right figure: Efficiency of the LIN-solution
and POD-solution in function of dimension N of the reduced model; graphs of the error
functions versus N: eREF-LIN(N) (triangle down), eREF-POD(N) (triangle up), eLIN-POD(N) (circle).

ω̃max = 2π ×8000 rad/s. Figure 2(right) displays the three error functions allowing
the efficiency of the LIN-solution and the POD-solution in function of dimension
N of the reduced model to be carried out. The analysis of this figure shows that the
LIN-basis and the POD-basis have the same efficiency with respect to the dimen-
sion N of the reduction in the frequency band [0,8000] Hz, the convergence being
reached for N = 20. We mean by the same efficiency the fact that the two bases
need the same value of N to get convergence.

Conclusion
This paper has been devoted to the analysis of the efficiency of the reduced

models constructed using the POD-basis and the LIN-basis in nonlinear dynamics
for continuous elastic systems. The efficiency of the POD-basis or the LIN-basis
is related to the speed of convergence in the frequency domain of the solution con-
structed with the reduced model with respect to its dimension. A basis will be
more efficient than another if it converges more rapidly than the other. It can be
concluded that the POD-basis is not more efficient than the LIN-basis for the ex-
ample treated and also for the six other examples presented in [3].
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