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Summary
Two-dimensional phase field simulations of stress-free ferroelectric nanoparti-

cles with different long-range (LR) electrostatic interactions are conducted based
on the time-dependent Ginzburg-Landau equation. Polarization patterns and the
toroidal moment of polarization are found to be dependent on the LR electrostatic
interaction and the size of the simulated nanoparticle. Phase field simulations
exhibit vortex patterns with purely toroidal moments of polarization and negligi-
ble macroscopic polarization in the stress-free ferroelectric nanoparticles when the
LR electrostatic interaction is fully taken into account. However, a single-domain
structure without any toroidal moment of polarization is formed in small particles if
the LR electrostatic interaction is completed ignored. The result indicates that the
LR electrostatic interaction and the particle size play crucial roles in the formation
of polarization vortices in the ferroelectric nanoparticles.

Introduction
Ferroelectric properties in low dimensional structures, such as, the ferroelec-

tric epitaxial islands1−4 and thin films5−8, ferroelectric nanotubes and nanorods9,10

and ferroelectric particles11,12 have been investigated with a great deal of interest
due to the potential integration of nanoscale ferroelectrics into microelectronics.
Due to the LR electrostatic interaction, the 180o stripe domains are energetically
favorable7 in ferroelectric thin films. The LR electrostatic interaction is also able
to quench spontaneous polarization.13,14 The formation of polarization patterns in
low dimensional ferroelectric structures depends also strongly on the LR elastic
interaction induced by spontaneous strains.14 To reduce elastic interaction energy,
90o multidomains are energetically favorable in constrained ferroelectrics.15 Thus,
the polarization patterns in ferroelectric particles are much complex16, due to the
competition between the LR elastic and electrostatic interactions, and other kinds
of energies.

Previous studies 1−16 about low dimensional ferroelectric structures mainly fo-
cused on the size-dependent polarization and other material properties averaged
over an interested dimension(s). Recently, the toroid moment G of polarization
was found in ferroelectric nanodisks and nanorods from ab initio simulations.17 The
toroid moment, characterized for a clockwise or anti-clockwise vortice, is bistable.
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The toroidal moment can be switched from one stable state to the other by apply-
ing a time-dependent magnetic field. Storing data using a switchable macroscopic
toroidal moment could be superior to using the macroscopic polarization17, because
generating a magnetic field—unlike the generation of electric field—does not re-
quire electrode contact. Fabricating electrode contact could be a challenging issue
in manufacturing nanoscale devices.

Based on the time-dependent Ginzburg-Landau equation, we simulate, in the
present work, the effects of the particle size and the LR electrostatic interaction
on the toroidal moment of polarization in two-dimensional stress-free ferroelectric
nanoparticles. The LR electrostatic interactions are controlled by a weight param-
eter, β , which is assigned to the electrostatic energy in the simulations. We study
two cases (i) β = 1 corresponds to the ideal open-circuit electrical boundary condi-
tion, in which the electrostatic interactions are fully taken into account without any
screening; and (ii) β = 0 corresponds to the ideal short-circuit electrical boundary
condition, in which the electrostatic interactions are completely screened.

Simulation Methodology
In ferroelectric phase-field simulations14−16,18−22, it is usually assumed that

the mechanical and electrical equilibrium is established instantaneously for a given
distribution of spontaneous polarization even that applied mechanical and electric
fields change the distribution of spontaneous polarization. Thus, the spontaneous
polarization P=(P1, P2, P3) is taken as the order parameter and the temporal evo-
lution of the domain structure is calculated from the time-dependent Ginzburg-
Landau equation,

∂Pi(r, t)
∂ t

= −L
δF

δPi(r, t)
(i = 1,2,3), (1)

where L is the kinetic coefficient, r and t denote the spatial vector and time, respec-
tively, and F is the total fee energy. The total free energy of stress-free ferroelectrics
can be expressed as

F =
∫

V ( fLD(Pi)+ fG(Pi, j)+β fDep(Ed
i ,Pi))dV, (2)

in which fLD is the Landau free energy density, which can be expressed by23
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where α1 = (T −T0)/2ε0C0 is the dielectric stiffness, α11, α12α111α112, α123 are
higher order dielectric stiffnesses, T and T0 denote temperature and the Curie-Weiss
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temperature, respectively, C0 is the Curie constant. The term of fG(Pi, j) in Eq.(2)
is gradient energy density15,16 , which has the form as

fG(Pi, j) =
1
2

G11(P2
1,1 +P2

2,2 +P2
3,3)+G12(P1,1P2,2 +P2,2P3,3 +P1,1P3,3)

+
1
2

G44[(P1,2 +P2,1)2 +(P2,3 +P3,2)2 +(P1,3 +P3,1)2]

+
1
2

G
′
44[(P1,2−P2,1)2 +(P2,3 −P3,2)2 +(P1,3 −P3,1)2],

(4)

where G11, G12, G44, and G
′
44 are gradient energy coefficients, and Pi, j denotes the

derivative of the ith component of the polarization vector, Pi, with respect to the jth
coordinate and i, j =1, 2, 3. The last term, fDep, in Eq. (2) is the LR electrostatic
interaction energy density, which is described by24

fDep = −1
2
(Ed

1 P1 +Ed
2 P2 +Ed

3 P3), (5)

where Ed
1 , Ed

2 and Ed
3 are the three components of electrostatic field vector along the

x1, x2 and x3 axes, respectively. In the present study, the method used in Ref.[14]
is adopted here to calculate the electrostatic field, excepting that the weight of β
is assigned to the electrostatic energy term in Eq.(2) to control the magnitude of
the LR electrostatic interaction. The finite difference method for spatial derivatives
and the Runge-Kutta method of order four for temporal derivatives are employed
to solve Eq. (1) in real space with the boundary condition of dPi/dn = −Pi/δ ,
in which n refers unit length in the normal direction of the surface and δ is the
extrapolation length.

Dimensionless variables15 are used in the present simulations. The material
constants adopted in the present simulations are the same as those used in Ref [14],
except that a dimensionless factor, β , zero or one, is assigned to the LR electrostatic
interaction energy. The value of the extrapolation length, δ , is 3 in the present
study.12 We use 20×20 discrete grids to represent a 2D square particle and each
grid has a dimensionless area of a×a. The grid size, a, is assigned different values
to represent different sizes of ferroelectrics. The polarization varies spatially and
is characterized at each grid by a two-component vector, or an electric dipole, of
which the length and direction denote the magnitude and direction of the dipole,
respectively. The time step is set to Δt = 0.004 and the total number of steps in
solving Eq. (1) is 8000, which is sufficient for the simulated system to reach a
steady state15. In the present study, we report simulation results only at the steady
state at room temperature.
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Figure 1: Size dependence of polarization patterns in stress-free 2D ferroelectrics
with β = 1 in (a1)-(a2) and β = 0 in (b1)-(b2).

Simulation Results
Figs.1 (a1 )-(a2) and (b1)-(b2) show the polarization patterns of the stress-free

2D square ferroelectrics with β = 1 and 0, respectively, where Figs. 1(a1) and
(b1) and Figs. 1(a2) and (b2) are for the simulated dimensionless sizes of 22 and
6, respectively, with one unit in the dimensionless size corresponding to 1 nm in
the real size16. The case of β = 1 corresponds to the ideal open-circuit electrical
boundary condition, in which the electrostatic interactions are fully taken into ac-
count. Under the ideal open-circuit electrical boundary condition, the polarizations
form a vortex pattern, as shown in Figs. 1(a1) and (a2), and the macroscopic po-
larization, defined as < P >= (N)−1 ∑k Pk,17 is found to be zero, i.e., < P >= 0,
where N is the number of cells in the simulation. The vortex pattern may also be
regarded as having a domain structure with four domains and four wide 90˚ domain
walls, which is caused by the square shape of the simulated ferroelectrics. When
the particle size is reduced from 22 to 6, the 90˚ domain structure becomes ob-
scure and the vortex pattern is more distinct. The case of β =0 corresponds to ideal
short-circuit electrical boundary condition, in which the electrostatic interactions
are completely screened. When the particle size is 22, the polarizations form two
domains with a 90˚ domain wall. The wall is almost perpendicular to the polar-
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izations in one domain and parallel to the polarizations in the other domain. This
kind of a 90o domain wall is different from the normal 90˚ domain wall induced by
the LR elastic interaction, in which the wall has an angle of 45o with polarizations
in both domains. The two domain structure shown in Fig. (b1) is formed by the
reduction in the Landau free energy. With the size decreasing, the gradient energy
becomes predominate in comparison with the Landau free energy, therefore, the
polarization pattern changes from the multidomain state to a monodomain state.
Fig.1 (b2) shows the monodomain structure with a dimensionless particle size of 6.
The formation of single domain is to reduce the gradient energy. Nevertheless, no
vortex exhibits due to the absence of the LR electrostatic interaction for both sizes,
as shown in Figs. (b1) and (b2).

4 8 12 16 20 24

0

1

2

3

4

0.0

0.2

0.4

0.6

0.8

1.0

 Pm
 <P1>
 <P2>

P
o
la
ri
z
a
ti
o
n

(a)

T
o
ro
id
a
l 
m
o
m
e
n
t 
, 
G

Size

4 8 12 16 20 24

0

1

2

3

4

5

0.0

0.2

0.4

0.6

0.8

1.0

 P
o
la
ri
z
a
ti
o
n

  Pm
  <P1>
  <P2>

P
o
la
ri
z
a
ti
o
n

(b)

T
o
ro
id
a
l 
m
o
m
e
n
t 
, 
G

Size

Figure 2: The polarization moment, G, on the left vertical axis, and the total macro-
scopic polarization components, < P1 > and < P2 >, and the magnitude of the
maximum polarization, Pm, on the right vertical axis, as functions of the simulated
ferroelectrics size with β = 1 in (a) and β = 0 in (b).

Figs. 2(a) and 2(b) illustrate the toroidal moment of polarization, G, the total
macroscopic polarization components, < P1 > and < P2 >, and the magnitude of
the maximum polarization, Pm = max{|Pk|} as a function of the particle size for
β = 1 and 0, respectively. The toroidal moment of polarization, G, is defined as
G = (2N)−1 ∑i Ri × pi, where pi is the local dipole of cell i located at Ri. When
β = 1, both the moment and the magnitude of the maximum polarization decrease
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with the decreases of the particle size and become zero at the size of 4, as shown
in Fig.2 (a). With β = 1, the polarizations form a vortex for all simulated sizes
and the total macroscopic polarization components, < P1 > and < P2 >, are almost
equal to zero, thereby indicating that the vortex pattern does not exhibit any macro-
scopic polarization. The vortex pattern without any macroscopic polarization is
very important for memory nanodevices17. The null macroscopic polarization does
not produce a strong electric field that has a LR character. The vortex structure with
nonzero toroidal moment of polarization in a single nanoparticle can therefore be
switched without disturbing the states of its neighboring particles. Consequently,
the toroidal moment carriers, i.e., the nanoparticles, can thus be packed consid-
erably more densely than the conventional carriers of macroscopic polarizations,
giving rise to a marked improvement in the density of ferroelectric recording. In
the case of β = 0, the polarization pattern changes from the multidomain state to
the monodomain state as the size is reduced to 8, which results in the abrupt disap-
pearance of the toroidal moment of polarization, as shown in Fig. 2(b). The total
net polarizations, Pm and < P2 >, are both nonzero, as shown in Fig. 2(b). Further-
more, the magnitude of the maximum polarization still maintains a high value even
at the size of 4, at which the polarizations are both zeros in the case of β = 1, as
shown in Fig. 2(a).

Conclusions
In summary, the two-dimensional simulations demonstrate that the LR electro-

static interaction has a significant influence on the formation of polarization vortex
with purely toroidal moments and negligible macroscopic polarization in stress-
free ferroelectric nanoparticles. The simulations exhibit vortex patterns with purely
toroidal moments of polarization and negligible macroscopic polarizations when
the LR electrostatic interactions are fully taken into account. However, a single-
domain structure without any toroidal moment of polarization is formed when the
LR electrostatic interaction is completely screened and when the particle size is
smaller than 8 nm.
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