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Bridging Domain Multiscale Method
S.P. Xiao1

Summary
A bridging domain method for coupling continuum models with molecular

models is described. In this method, the continuum and molecular domains are
overlapped in a bridging subdomain, where the Hamiltonian is taken to be a lin-
ear combination of the continuum and molecular Hamiltonians. We enforce the
compatibility in the bridging domain by Lagrange multipliers or by the augmented
Lagrangian method. An explicit algorithm for dynamic solutions is developed. In
this paper, the bridging domain multiscale method is employed to study nanotube-
based composites.

Introduction
Concurrent methods for coupling molecular dynamics models with continuum

or quasicontinuum models are useful for studying local phenomena such as frac-
ture. They permit the use of far fewer equations than in strict molecular dynamics
models, since the resolution in the subdomain modeled by continuum mechanics
can be far coarser than in the molecular dynamics model. In these coupled models,
the continuum subdomain serves primarily as a boundary model that provides the
low frequency impedance and a sink for the energy associated with outgoing waves
of the molecular dynamics model. Such models are often called multiscale because
the spectra (and the resolution) of the continuum model have much smaller cutoff
frequencies than the molecular dynamics model.

Abraham et al. [1], in a pioneering work, developed a methodology that cou-
ples a tight-binding quantum mechanics approximation with molecular dynamics
and in turn with a finite element continuum model. The molecular dynamics model
was coupled with the continuum model in a “handshake” domain in which the two
Hamiltonians were averaged. To reduce spurious reflections into the molecular dy-
namics domain, damping was used in the handshake region, although the damping
was not based on any rigorous theory. In most cases, it appears that the finite ele-
ment continuum model had to be nearly of the scale of interatomic distances at the
atomistic/continuum interface to perform well.

A coupling method called the bridging domain method is developed in this
paper. In this method, the molecular model and continuum model overlap at their
junctions in a bridging domain. This method can avoid spurious wave reflection
without any additional filtering or damping. In effect, the method projects the fine
scale solution onto the coarse scale solution in the bridging domain at each time
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step. Thus it filters the high frequency components at the interface. Furthermore,
since the method is not based on linearization, it was surmised that it would apply
to nonlinear problems. Based on the test problems we have studied so far, this
appears to be the case.

Bridging Domain Multiscale Method
In an isolated system of atoms or molecules, the total energy, the sum of the

kinetic and potential energies of the molecules, is constant in time and identified as
the Hamiltonian HM, which is given by

HM
(

x(
It),pM

I (t)
)

= ∑
I

1
2mI

pM
I ·pM

I +W M (xI(t)) = constant (1)

where mI is the mass of atom I, xI is the position of atom I and xI = XI + dI

(XI is the original position of atom I and dI is the displacement of atom I); pM
I is

the momentum and defined by pM
I = mI ẋI = mI ḋI . W M (x) is the potential function

which is the sum of the energies due to any force fields, such as pair-wise interaction
of the atoms, three-body potentials or others. The total potential is

W M = −W ext
M +W int

M = −∑
I

fext
I dI + ∑

I,J>I

wM (xI ,xJ) (2)

The well known Hamiltonian canonical equations of motion are

ṗM
I = −∂H

∂xI
= −∂W M

∂xI
, ẋI = ḋI =

∂H

∂pM
I

=
pM

I

mI
(3)

Eq. (3) can be combined to yield

mI d̈I = −∂W M

∂xI
=

∂W ext
M

∂dI
− ∂W int

M

∂dI
= fext

I − fint
I (4)

where fint
I = ∂W int

M /∂dI .

In the continuum domain, the Hamiltonian is given by

HC = KC +WC =
∫

ΩC
0

1
2

ρvT vdΩC
0 +WC (5)

WC = −W ext
C +W int

C = −∑
I

fextC
I uI +

∫
ΩC

0

ρ0wC (F)dΩC
0 (6)

Note that we use the same symbol for the nodal forces for the continuum model
once it is discretized by a finite element method.
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The model for the bridging domain coupling method is shown in Figure 1.
The complete domain in the initial configuration is denoted by Ω0. The domain
is subdivided into two subdomains: the molecular subdomain denoted by ΩM

0 , and
the continuum subdomain, denoted by ΩC

0 . The overlap of these two domains is
denoted by Ωint

0 in the initial configuration; Ωint
0 is called the bridging domain and

it corresponds to the overlap of the two subdomains; Γα
0 denotes the edges of the

continuum subdomains and Γα
1 denotes the edges of the molecular subdomain.

Figure 1: Bridging domain model for a nanotube; finite elements are indicated by
lines that connect continuum nodes

In the bridging domain method, the total energy is taken to be a linear combina-
tion of the molecular and continuum energies. A scaling parameter α is introduced
in the bridging subdomain, i.e. the overlapping subdomain. The parameter α is
defined as α = l (X)

/
l0 where l (X) is the orthogonal projection of X onto Γα

0 and
l0 is the length of this orthogonal projection to Γα

1 . The Hamiltonian for the com-
plete domain is taken to be a linear combination of the molecular and continuum
Hamiltonians

H = (1−α )HM +αHC

= ∑
I

(1−α (XI))
pM

I ·pM
I

2mI
+(1−α)W M +∑

I

α (XI)
pC

I ·pC
I

2MI
+αWC (7)

The two models are constrained on the overlapping subdomain Ωint
0 by

gI = {giI} = {ui (XI)−diI}=

{
∑
J

NJ (XI)uiJ −diI

}
= 0 (8)

i.e. the atomic displacements are required to conform to the continuum displace-
ments at the positions of the atoms. The constraints are applied to all components
of the displacements. In the Lagrange multiplier method [2], the total Hamiltonian
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is written as:
HL = H +λ T g = H +∑

I

λ T
I gI (9)

where λI = {λiI} is a vector of Lagrange multipliers whose components correspond
to the components of the displacement of atom I. Note that the Lagrange multipliers
are assigned to the discrete positions of atoms.

The equations of motion for the Lagrange multiplier method are

α (XI) ṗC
I = −∂HL

∂uI
, α (XI) u̇=

I
∂HL

∂pC
I

in ΩC
0 (10)

(1−α (XI)) ṗM
I = −∂HL

∂dI
, (1−α (XI)) ḋ=

I
∂HL

∂pM
I

in ΩM
0 (11)

These can be combined to yield

M̄IüI = fextC
I − fintC

I − fLC
I

m̄Id̈I = fext
I − fint

I − fL
I

in ΩC
0

in ΩM
0

(12)

where M̄I = α (XI)MI , m̄I = (1−α (XI))mI

The internal forces are

fintC
I =

∫
ΩC

0

α (X)ρ0
∂wC (F)

∂uI
dΩC

0 , fint
I = (1−α (XI)) ∑

I,J>I

∂wM (xI,xJ)
∂dI

(13)

The forces fLC
I and fL

I are due to the constraints enforced by the Lagrange multipliers
and they are:

fLC
I = ∑

J

λ T
J

∂gJ

∂uI
= ∑

J

λ T
J GC

JI fL
I = ∑

J

λ T
J

∂gJ

∂dI
= ∑

J

λ T
J GM

JI (14)

where NIJ = NI (XJ) and GC
JI =

[
∂gJ
∂uI

]
= [NJII], GM

JI =
[

∂gJ
∂dI

]
= [−δIJI]

Explicit Algorithm
The Verlet algorithm is used here for time-integration of above equations of

motion. the accelerations are obtained from Eq. (12) without considering the forces
due to the constraints, so

üI(n+1) = 1
M̄I

[
fextC
I(n+1)− fintC

I(n+1)

]
in ΩC

0

d̈I(n+1) = 1
m̄I

[
fext
I(n+1)− fint

I(n+1)

]
in ΩM

0

(15)
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We then obtain the trial velocities:

u̇∗
I(n+1) = u̇I(n) + 1

2

[
üI(n) + üI(n+1)

]
Δt in ΩC

0

ḋ∗
I(n+1) = ḋI(n) + 1

2

[
d̈I(n) + d̈I(n+1)

]
Δt in ΩM

0
(16)

The velocities at time step n+1 can be alternatively expressed as:

u̇I(n+1) = u̇∗
I(n+1)−M̄−1

I Δt ∑
J

GC
JI λJ (17)

ḋI(n+1) = ḋ∗
I(n+1)− m̄−1

I Δt ∑
J

GM
JIλI (18)

The above velocities must satisfy the constraints (their time derivatives). There-
fore, the unknown Lagrange multipliers can be obtained by solving the following
equations:

∑
L

AILλL = g∗I (19)

where AIL = ΔtM̄−1
I ∑

J
NJI GC

LJ −Δtm̄−1
I GM

LI and g∗I = ∑
J

NJI u̇∗
J − ḋ∗

I . To reduce the

computational cost, the matrix A consisting of submatrices AIL is diagonalized as
a diagonal matrix. Once the lagrange multipliers is calculated, they are substituted
into Eqs. (17) and (18) to update the velocities of nodes/atoms in the bridging
domain.

Verification of Multiscale Method

Figure 2: Numerical models of an Al crystalline bar

We consider an Aluminum (Al) crystalline bar with the following dimensions:
the length of 5.6 nm, the width of 1.6 nm, and the thickness of 1.6 nm. There
are 2025 atoms in this bar. Figure 2 illustrates the molecular and bridging domain
multiscale models of this Al crystalline bar. In the multiscale model, there are 1377
atoms and 55 finite elements. The calculated stress-strain evolution at the room
temperature is illustrated in Figure 3 when the bar is under uniaxial tension or
compression. The stress-strain relation is almost linear and the calculated Young’s
modulus is around 74 GPa. It can be seen that the multiscale simulation gives the
same results as molecular dynamics.
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Figure 3: Comparison of stress-strain evolutions at the room temperature

Multiscale Modeling and Simulation of Nanocomposites
We employ the bridging domain coupling method to study the failure behavior

of fracture mode I for nanotube-based aluminum composites, shown in Figure 4.
Figure 5 illustrates that when even 2% pristine nanotubes are embedded into the
aluminum matrix, the strength of nanocomposites can be improved by two times.

Figure 4: Coupling model of
nanocomposites. Figure 5: The effect of the volume of

embedded nanotubes on strength.
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