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Linear coupled thermoelastic analysis for 2-d orthotropic
solids by MLPG
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Summary
In this paper, the Meshless Local Petrov-Galerkin (MLPG) method for two-

dimensional (2-d), linear and transient coupled thermoelastic analysis in orthotropic
solids is presented. To eliminate the time-dependence in the governing equations,
the Laplace-transform technique is used. Local integral equations are derived for
small circular sub-domains which surround nodal points distributed over the ana-
lyzed domain. As for the spatial variations of the displacements and temperature,
they are approximated by the Moving Least-Squares (MLS) scheme.

Introduction
In coupled thermoelasticity, a temperature field arises from the strain rate, i.e.

the thermoelastic dissipation. Several computational methods have been proposed
over the past years to analyze thermoelastic problems, many of which have been
directed to uncoupled problems in heat conduction. There are relatively few in-
vestigations successfully applied to coupled thermoelasticity. Domain-based tech-
niques, such as the finite element method (FEM), have been developed and applied
to thermoelasticity [1,2]. The boundary element method (BEM), a powerful alter-
native numerical tool, has also been successfully applied to coupled thermoelastic
problems [3-6].

Although the FEM and BEM have been established as effective computational
tools for engineering analysis, there is still a growing interest in the development of
new advanced methods. In particular, meshless formulations are becoming popular
due to their high adaptivity and low costs in data preparation. Several meshless
methods have, hitherto, been proposed and some of them have been applied to
thermoelastic problems [7-9].

The meshless local Petrov-Galerkin (MLPG) method is a fundamental base
for the derivation of many meshless formulations, as the trial and test functions
can be chosen from different functional spaces. In this paper, the MLPG method
with a Heaviside step function as the test functions [10-12] is applied to solve two-
dimensional transient coupled thermoelasticity problems. An inertial term exists
in the equations of motion for transient thermoelasticity, and the second govern-
ing equation derived from energy balance has a diffusion character. To eliminate
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the time-dependence in both governing partial differential equations, the Laplace-
transform technique is applied such that they are satisfied in the transformed do-
main in a weak-form on small arbitrary subdomains. Nodal points are introduced
and distributed over the analyzed domain; each of them is surrounded by a small
circle for simplicity, but without loss of generality. The resulting integral equations
have a very simple nonsingular form. The spatial variations of the displacements
and temperature are approximated by the Moving Least-Squares (MLS) scheme
[10].

Local boundary integral equations and their numerical solution
Consider a homogeneous orthotropic solid. Equilibrium and thermal balance

equations in transient coupled thermoelasticity [13] can be written as

σi j, j(x,τ)−ρ üi(x,τ)+Xi(x,τ) = 0, (1)

[ki j(x)θ, j(x,τ)],i −ρcθ̇ (x,τ)− γi jθ0u̇i, j(x,τ)+Q(x,τ)= 0, (2)

where σi j , τ , θ ,θ0,ui,Xi and Q are the stresses, time, temperature difference, refer-
ence temperature, displacements, density of body force vector and density of heat
sources, respectively. Also, ρ , ki j, c and γi j are the mass density, thermal conduc-
tivity tensor, specific heat and stress-temperature modulus, respectively.

The relation between the stresses σi j and the strains εi j, when temperature
changes are considered, is given by Duhamel-Neumann law as follows

σi j(x,τ) = ci jklεkl(x,τ)− γi jθ (x,τ), (3)

where ci jklare the material stiffness coefficients. The stress-temperature modulus
can be expressed through the stiffness coefficients and the coefficients of linear
expansion αkl

γi j = ci jklαkl . (4)

For 2-d plane problems, equation (3) is frequently written in terms of the second-
order tensor of elastic constants [14]. Under plane-strain condition, it has the fol-
lowing form
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The MLPG method constructs weak-forms of the above governing equations
over the local arbitrary sub-domains such as Ωs, which is a small region taken



Linear coupled thermoelastic analysis 89

for each node inside the global domain [10]. In the Laplace-transformed domain,
these equations can be converted to the following local boundary-domain integral
equations [12]

∫

Ls+Γsu

t̄i(x, p)dΓ−
∫

Ωs

ρ p2ūi(x, p)dΩ = −
∫

Γst

˜̄ti(x, p)dΓ−
∫

Ωs

F̄i(x, p)dΩ, (6)

where F̄i(x, p) is the re-defined body force and p is the Laplace-transform parame-
ter.

Similarly, the local integral equation for equation (2) can be obtained as
∫

Ls+Γsp

q̄(x, p)dΓ−
∫

Ωs

ρcpθ̄(x, p)dΩ−
∫

Ωs

γi jθ0 pūi, j(x, p)dΩ = −
∫

Γsq

˜̄q(x, p)dΓ−
∫

Ωs

R̄(x, p)dΩ. (7)

In equations (6) and (7), Γu,Γt ,Γpand Γq are the parts of the global boundary
with prescribed displacements ũi(x,τ), tractions t̃i(x,τ), temperature θ̃(x,τ) and
heat flux q̃(x,τ), respectively. The trial functions are approximated by the Moving
Least-Squares (MLS) method [10].

The Laplace-transforms of the displacements and the temperature can be writ-
ten as

ūh(x, p) = T (x) · û(p) =
n

∑
a=1

φ a(x)ûa(p),

θ̄ h(x, p) =
n

∑
a=1

φ a(x)θ̂ a(p), (8)

where the nodal values ûa(p) and θ̂ a(p) are the fictitious parameters for the dis-
placements and the temperature, respectively, and φ a(x) is the shape function. The
traction vector t̄i(x, p) at a boundary point x ∈ ∂Ωs is approximated in terms of the
same nodal values ûa(p) and θ̂ a(p) as

t̄h(x, p) = N(x)C
n

∑
a=1

Ba(x)ûa(p)−N(x)γ
n

∑
a=1

φ a(x)θ̂ a(p), (9)

where the matrix N(x) is related to the normal vector n(x) on ∂Ωs and the matrix
Ba is represented by the gradients of the shape functions. Similarly, the heat flux
q̄(x, p) can be approximated by

q̄h(x, p) = ki jni

n

∑
a=1

φ a
, j(x)θ̂ a(p). (10)

The MLS-approximations (9) and (10) are substituted into the local boundary-
domain integral equations (6) and (7). This results in the discretized forms as given
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below; together with the boundary conditions, they represent the complete system
of linear algebraic equations of the unknown nodal values of the displacements and
temperature.

n
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∫

Ωs
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(12)

Numerical results
A unit square isotropic panel under a sudden heating on the top side is first

analyzed (Fig. 1) with the following material constants are used: k = 1, ρ = 1, c =
1, thermal expansion coefficient α = 0.02, Young’s modulus E = 1 and Poisson’s
ratio ν = 0.3.

The thermoelastic coupling parameter [3]

δ =
(1+ν)α2Eθ0

(1−ν)(1−2ν)ρc
= 0.186

is considered; this corresponds to θ0 = 100 and the above-mentioned material con-
stants. Plane strain conditions are assumed.

The coupling effect on the temperature at x2 = 0 is shown in Fig. 2. It can be

seen that the influence of the coupling
on the temperature is weaker for small
and large time instants. The strongest
influence is at about τ = 0.8 for the ma-
terial constants considered. A similar
characteristic has also been observed for
a suddenly heated half-space analyzed
by Chen and Dargush [4].

Next, an orthotropic square panel is
analyzed. The boundary conditions are
the same as those shown in Fig.1. The
following material constants are consid- Figure 1: A suddenly heated unit square panel
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ered: k = 1, ρ = 1, c = 1, α = 0.02,
Young’s modulii E1 = 1, E2 = 2E1 and Poisson’s ratio ν = 0.3. The stress com-
ponent σ11 at the mid-side of the panel, x2 = 0.5, is shown in Fig. 3. Here, σ11

is higher for the orthotropic panel than for the isotropic one. The influence of the
coupling on σ11 due to the orthotropy of the material is evidently weak. The influ-
ence of the orthotropic mechanical properties on the mechanical stresses is much
stronger than the mechanical-thermal coupling, at least in the cases considered here.
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Figure 2: Coupling effect on the temporal
variation of the temperature at x2 = 0
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Figure 3: Temporal variation of the stress
σ11 in the orthotropic square panel at x2 =
0.5
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