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To the computing of point source-generated potential in
multiply-connected regions of irregular shape

I.K. Lifanov1, Y.A. Melnikov2 and A.S. Nenashev3

Summary
Two different boundary integral equation method-based approaches are de-

veloped for computing potential fields generated by point sources in multiply-
connected regions of irregular configuration. Numerical experiment is conducted
to demonstrate the computational potential of the approaches.

Introduction
Of many areas of computational mechanics, the method of boundary integral

equation could, probably, benefit most from the use of Green’s functions. Compact
and easily computable representations of Green’s functions are known [1, 4, 5]
for only regions of regular shape. The focus in this study is on the development
of effective algorithms for computing Green’s functions for a variety of boundary
value problems for Laplace equation stated in regions of irregular configuration.
Consider the homogeneous boundary value problem for Laplace equation

∇2u(M) = 0, M ∈ Ω (1)

α j
∂u(M)

∂n j
+β ju(M) = 0, M ∈ Γ j, j = 1,m (2)

u(M) = 0, M ∈ Li, i = 1,k (3)

stated in a multiply-connected region Ω which is bounded from outside by a piece-
wise smooth contour Γ=∪m

j−1Γ j and weakened with k apertures whose contours
Li represent smooth closed curves that do not overlap. The parameter n j in (2)
represents the normal to Γ j .

Let G0(M;P) represent the Green’s function to the problem in (1)-(2). We look
for the Green’s function G(M,P) to the problem in eqns (1)-(3) in the form

G(M;P) = G0(M;P)+g(M) (4)

where g(M) represents a harmonic function in Ω that satisfies the boundary condi-
tions in (2) for any fixed location P∗ of the source point P. This requires for g(M)
to compensate the component G0(M;P∗) on the contours Li. In other words, g(M)
ought to be harmonic in Ω and to satisfy the boundary conditions

α j
∂g(M)

∂n j
+β jg(M) = 0, M∈Γ j, j=1,m (5)
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g(M) = −G0(M;P∗), M∈Li, i=1,k (6)

imposed on the outer and inner contours of Ω.

Two different numerical procedures are developed in this study for accurate
computation of the regular component of the Green’s function G(M,P). Both pro-
cedures are based on different boundary integral equation method approaches. In
what follows, we offer sketchy description of these approaches.

Method of hyper-singular integral equations
Within the scope of this approach, let the solution to the problem in eqns (5)-(6)

be expressed as the modified potential

g(M) =
k

∑
i=1

∫
Li

G0(M;Q)μi(Q)dLi(Q), M∈Ω (7)

The choice of G0(M;Q) for the kernel makes g(M) harmonic in Ω and satisfy-
ing the conditions in (5). By satisfying the conditions of eqn (6), we obtain

k

∑
i=1

∫
Li

G0(M;Q)μi(Q)dLi(Q) = −G0(M;P∗), M∈Ls, s=1,k (8)

which is a system of integral equations of the first kind with logarithmic singu-
larity that represents an ill-posed problem. To develop a stable numerical scheme
for its solution, we apply the hyper-singular integral equation method-based algo-
rithm [3]. In doing so, we introduce parametric equations for the curves Lj and
differentiate the system in (8) with respect to the parameter

k

∑
i=1

∫
Li

d
dt

G0(M;Q)μi(Q)dLi(Q)=− d
dt

G0(M;P∗), M∈Ls, s=1,k (9)

This is a system of hyper-singular integral equations whose solution is not
unique. A uniqueness condition that yields such a solution to the above system
that represents the solution for (8) can be obtained by integrating (8) as

k

∑
i=1

∫
Li

∫
Lj

G0(M;Q)dLj(M)μi(Q)dLi(Q)

=−
∫
Lj

G0(M;P∗)dLj(M), M∈Ls, s=1,k (10)
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Table 1: Approximate solution to the validation problem obtained for a concentric
circular ring, where L is a circle of radius a<R

Field Exact value N = 20 N = 100
point, r G(r,0;0.5,0) u(r,0) Abs. Error u(r,0) Abs. Error

1.0 0.199383 0.181690 0.017693 0.196039 0.003344
1.2 0.141219 0.140335 0.000884 0.141219 0.8e-10
1.4 0.096471 0.096407 0.000064 0.096471 0.2e-16
1.6 0.059634 0.059626 0.000008 0.059634 0.1e-16
1.8 0.027994 0.027992 0.000002 0.027994 0.4e-16
2.0 0.000000 0.000000 0.9e-17 0.000000 0.5e-17

Upon approximating the integral operators in (8)-(10) with finite sums, we ob-
tain a well-posed system of linear algebraic equations whose solution gives an ap-
proximate solution to the system in (8).

A validation example was designed to check out the convergence rate of the
algorithm and to estimate the actual accuracy level attained. A Dirichlet problem
is considered of the type in eqns (1)-(3) as stated in a double connected region Ω
whose outer contour Γ is a circle of radius R, while the inner contour L is a smooth
closed curve. The classical Green’s function G0(r,φ ;ρ∗,ψ∗) of the Dirichlet prob-
lem for the disk of radius R could represent the exact solution to this problem if the
trace of G0(r,φ ;ρ∗,ψ∗) on L is imposed as the right-hand side of the condition on
L, while the source point (ρ∗,ψ∗) is arbitrarily fixed in the region bounded with L.

Approximate values of the function u(r,0) are exhibited in Table 1 revealing
high accuracy level and convergence rate that are attained. The parameters in the
setting are chosen as: R = 2, a = 1, ρ∗ = 0.5, and ψ∗ = 0. The integral operators
in (7) and (8) have been approximated with the standard trapezoidal rule where N
represents the uniform partition number on the interval [0,2π ].

Method of functional equations
We revisit now the boundary value problem in eqns (5)-(6), and develop an-

other approach to its solution. Analogously to the procedure in the method of
super-singular integral equations, the solution is expressed in terms of the Green’s
function G0(M;Q) of the boundary value problem in eqn (5). A modified single
layer type potential is written, however, in a form suggested in [2], which is differ-
ent of that in eqn (7). That is

g(M) =
k

∑
i=1

∫
Λi

G0(M;Q)μi(Q)dΛi(Q), M ∈ Ω (11)

where Λi, (i=1,n) represents a fictitious contour embedded in the simply-connected
region bounded with Li. Similarly to the potential in (7), the above representation
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Table 2: Approximate solution obtained for an eccentric circular ring by the method
of functional equations

Field Exact value N = 10 N = 20
point, r G(r,0;1.2,0) u(r,0) Abs. Error u(r,0) Abs. Error

1.5 0.206787 0.206789 0.000001 0.206787 0.1e-07
1.6 0.152074 0.152107 0.000033 0.152082 0.000008
1.7 0.107102 0.107126 0.000024 0.107107 0000005
1.8 0.068030 0.068043 0.000013 0.068032 0.000002
1.9 0.032762 0.032767 0.000005 0.032763 0.000001
2.0 0.000000 0.000000 0.4e-09 0.000000 0.3e-09

is harmonic in Ω and exactly satisfies the conditions in (6). When the boundary
conditions in (6) are satisfied, the following system of functional equations

k

∑
i=1

∫
Λi

G0(M;Q)μi(Q)dΛi(Q) = −G0(M;P∗), M ∈ Ls, s = 1,k (12)

arises in the density functions μi(Q) of the potential in (11).

Since the points M and Q belong to sets that never intersect, the system in
(12) is regular and can, therefore, be directly attacked. One of the key components
in the resolving algorithm is the search for geometric parameters of the fictitious
contours Λi that regularize the solution procedure. A numerical experiment has
been conducted to develop some common recommendations as to the shape and
location of the fictitious contours Λi. A validation problem similar to that of the
previous section was considered. The data in Table 2 reveal the accuracy level and
the convergence rate that have been attained by the method of functional equation.
The region Ω is an eccentric ring whose outer radius R = 2, the circular aperture
of radius a=0.7 is centered at r0 =0.8, φ0 =0, and the source point is placed at
(1.2,0). The standard trapezoidal rule has been used to approximate the integral
operators in eqns (11) and (12), with the number of partitions of the integration line
denoted with N. Note that the procedure appears to be pretty accurate for a limited
number of partitions.

Illustrative Example
Green’s functions for a variety of multiply-connected regions of irregular shape

have been computed. In this section, an illustrative example is presented for the
following mixed boundary value problem(

∂u
∂x

−β u

)
x=0

= u|y=0 =
∂u
∂y

∣∣∣∣
y=b

= 0, |u|x=∞ <∞, β ≥0 (13)

u|L1
= 0,

∂u
∂n

∣∣∣∣
L2

= 0 (14)
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stated for the Laplace equation in the triple connected region Ω representing the
semi-strip {0<x<∞, 0<y<b} weakened with an elliptic L1 and a “fat-circular"
aperture L2 centered at (x10,y10) and (x20,y20), respectively.

The Green’s function to the above problem for a fixed location (ξ ∗,η∗) of the
source point can, similarly to the previous example, be found as of eqn (4) where
the regular component g(x,y) is, in this case, expressed as the modified potential

g(x,y) =
2

∑
k=1

∫
Λk

G0(x,y;ξ ,η)μk(ξ ,η)dΛk(ξ ,η), (x,y)∈Ω (15)

where G0(x,y;ξ ,η) is the Green’s function

G0(x,y;ξ ,η) =
1

2π
ln
|1−ep(z−ζ )||1−ep(z+ζ)|
|1−ep(z−ζ)||1−ep(z+ζ)|

+
1

2π
ln
|1+ep(z+ζ )||1+ep(z−ζ)|
|1+ep(z−ζ )||1+ep(z+ζ)|

−2β
b

∞

∑
n=1

e−ν(x+ξ)

ν(β +ν)
sinνysinνη, p =

π
2b

, ν = (2n−1)p

of the boundary value problem in eqn (13) for Laplace equation on the semi-strip
{0<x<∞, 0<y<b}. The above expression for G0(x,y;ξ ,η) can be found in [4].
The fictitious contours Λ1 and Λ2 are chosen as circles

(x−xk0)2+(y−yk0)2 = a2
k, k = 1,2

concentric with Lk, with ak representing regularizing parameters.

The potential in (15) represents a harmonic function in Ω that satisfies the con-
ditions in (13). By satisfying the conditions in (14) one obtains the system of
regular functional equations

−G0(x,y;ξ ∗,η∗) =
2

∑
k=1

∫
Λk

G0(x,y;ξ ,η)μk(ξ ,η)dΛk(ξ ,η), (x,y)∈L1 (16)

−∂G0(x,y;ξ ∗,η∗)
∂n

=
2

∑
k=1

∫
Λk

∂G0(x,y;ξ ,η)
∂n

μk(ξ ,η)dΛk(ξ ,η), (x,y)∈L2 (17)

in the densities μk(ξ ,η) of the potential in (15). After the system in (16) and (17)
is numerically solved and the densities μk(ξ ,η) are substituted in (15), values of
the Green’s function G(x,y;ξ ∗,η∗) can be computed at any point (x,y) ∈ Ω.
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To illustrate the potential of the approach, we computed a profile of the Green’s
function G(x,y;ξ ∗,η∗) by the algorithm that has just been described. The standard
trapezoidal rule with uniform partition of the contour of integration appeared to be
sufficient for high accuracy level.

A numerical experiment has been conducted to find radii and locations of the
fictitious contours Λ1 and Λ2 for a variety of L1 and L2 shapes as well as optimal
values of other computational parameters in the algorithm. We have experimented,
in particular, with the partition number N. It has been found out that accurate
enough results can potentially be attained with modest values of N ≤10. Note that
elliptic aperture may require different of a circle shape of the fictitious contour Λ1

for “flat" ellipses with big eccentricity. Co-focal to L1 ellipse Λ1 better serves, in
fact, in such cases compared to the circular shape of Λ1.
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