Copyright © 2007 ICCES ICCES, vol.3, no.2, pp.113-120, 2007

¢ -matrix preconditioners for saddle-point systems from
meshfree discretization '
Suely Oliveira > and Fang Yang ?

Summary
In this paper we describe and compare preconditioners for saddle-point systems
obtained from meshfree discretizations, using the concepts of hierarchical (or JZ-
)matrices. Previous work by the authors using this approach did not use .77-matrix
techniques throughout, as is done here. Comparison shows the method described
here to be better than the author’s previous method, an AMG method adapted to
saddle point systems, and conventional iterative methods such as JOR.

keywords: Multilevel methods, hierarchical matrices, saddle-point systems,
meshfree method, algebraic multigrid

Introduction

Meshfree methods construct approximate solutions to elliptic partial differen-
tial equations using basis functions constructed based on discrete particles. In this
paper, Reproducing Kernel Particle Methods (RKPM) [5] are used. The Lagrange
Multiplier Method is used to deal with the essential boundary conditions, but it
gives an indefinite system of saddle-point type. In [9] a scheme based on smoothed
Algebraic Multigrid (AMG) is proposed to solve the saddle-point systems from
meshfree methods.

In this paper we present an .7Z-matrix based approach to solve the saddle-
point system. Hierarchical-matrices (.7 -matrices) were introduced in [7] and since
then, much work has been done on the theory and applications of 7Z-matrices
[1,3,4,6]. 77 -matrices provide a cheap but approximate way of carrying out matrix
computations. The basic idea of the .7#-matrix representation is that instead of
representing a matrix exactly, approximations are used to represent a matrix by a
hierarchical block cluster tree. The leaves of the tree represent the matrix blocks
that are not partitioned further, which are represented by low-rank matrices (Rk-
matrix format) or by full matrices (full matrix format). -matrix arithmetic is
developed by adapting conventional matrix operations to the .7-matrix format.
This reduces the required storage for a matrix, and the computational complexity
of operations, such as matrix-vector multiplication, matrix-matrix multiplication,
matrix addition and inversion, are reduced to almost linear complexity (O(nlog* n))
[1,6].

I'This work was supported by NSF ITR grant DMS-0213305.
2Department of Computer Science, University of Iowa, Towa City 52242 (email for contact:
oliveira@cs.uiowa.edu).



114 Copyright © 2007 ICCES ICCES, vol.3, no.2, pp.113-120, 2007

J¢-matrices have solved finite element systems. However, Z-matrix con-
struction [6] relies on the underlying geometric structure of the problem. Recently,
algebraic 7#-matrix construction methods have been developed for sparse matrices
[10,3], which use matrix graphs.

In [10] we presented an approach to solve saddle-point systems which relied
on sparse matrix computations. In this paper we develop a scheme such that all the
subblocks of saddle-point system are represented using only ##-matrices, which
speeds the process of building .7#-matrix preconditioners. The .7#-matrix precon-
ditioners built by the new scheme also show good and stable convergence rates.

In this paper, #A denotes the number of elements in the set A, and S(i) means
the children of the node i.

The model problem and meshfree methods
The model problem is a second-order partial differential equation defined on a

domain Q € R? [9]:

—V2u(x) = f(x), x€Q
u(x) =g(x), x€Tp (1)
(du/dn)(x) =h(x), x€Ty.

where I'p UT'y is the boundary of Q. For our numerical tests we let the domain
Q be (0,1) x (0,1). A Meshfree scheme, based on the Reproducing Kernel Par-
tical Method (RKPM), is used to discretize the continuous problem (1). RKPM a
function u(x) by u'(x) = X u¥i(x), where NP stands for the number of parti-
cles, ‘¥ is the basis function for particle k, and u is its coefficient. ¥y is usually
constructed by the product of a given kernel function ®,(x —x) and a correc-
tion function C(x;x — x;) to ensure that the discrete reproducing kernel condition
is satisfied: x% = Y° Wi (x)x¢ where x* = x{"x3?---xJ¢, and the relationship
holds for all non-negative integer vectors o where |ot| := Z?ZI o; < p for some
pre-determined p. The ®, functions are typically chosen to be tensor products
of B-splines: ®@,(x —x;) = Hf-lzl o ((x; — (x);)/a;) where @ is a standard B-spline
function.

To apply the above RKPM to the model problem (1), two sets of basis functions
are generated separately on the domain € and the boundary I'p. The Lagrange
Multiplier approach is used to handle the essential boundary conditions and the
obtained meshfree linear system Kx = F is of a saddle-point type:

A BT u c
e[ 5 0 )[R @
where A;j = [o (V)T VY;+W,¥)) dx, Bj; = Jr, B ¥;dS, ¢; = [o fPidx+ [r, h¥:dS,
and d; = frD g¥;dS. Note that A is symmetric positive semi-definite, so that K is



J¢ -matrix preconditioners for saddle-point systems from meshfree discretization 115

non-symmetric but semi-definite. Even with this way of representing the problem,
we need to ensure that the “inf-sup” or Ladyzhenskaya—Babuska—Brezzi (LBB)
conditions are satisfied in order to ensure that the results are accurate:

. w, B

1nfsupM > B, where ||z]|4 = v/ (2, Az). 3)
woe [wllllzlla

In order to expect convergence of the discrete approximations (2) we require that

(3) holds with the same B > 0 regardless of how fine the discretization is.

With meshfree basis functions and ¥ ; =¥}, unfortunately, the LBB condition
(3) is rarely satisfied. If the support of a basis function does not intersect the bound-
ary then it causes no problems for the LBB condition. However, if the support of
a basis function intersects the boundary just a little, there are severe problems for
the LBB condition. Unlike standard finite element methods, there is no mesh to
control the supports of the basis functions in meshfree methods, and so this is a
likely occurrence for meshfree methods. Penalty methods in particular are likely to
perform very badly with meshfree methods.

In order to overcome these problems, we use an independently generated set
of basis functions on the boundary [9]. These can also be generated as meshfree
functions, but using an different family of kernel functions @, on the boundary dQ.
The size of the supports of the boundary basis functions v ; should not be small in
comparison with the size of the supports of the basis functions ¥; on €.

¢ -matrices
The concept and properties of .7#-matrices are induced by the index cluster
tree T; and the block cluster tree 77 ;, which we now describe.

An index cluster tree 7; gives a hierarchy of partitions over an index set I =
{0,...,n—1}. Tt has the following properties: the root of 7; is I; any node i € T;
either is a leaf or has children S(i); the parent node i = U cg(;) j and its children are
disjoint (if ji, j» € S(i), then either j; = j, or j; N jo = 0).

A block cluster tree Tj«; is a hierarchical partition tree over the product index
set I x I. Given Ty and admissibility conditions (see [1,6,2]), T« can be constructed
as follows: the root of Ty« =1 x I; if s X t € Ty« satisfies an admissibility condi-
tion, then it is Rk-matrix leaf; else if #s < N or #f < Nj, then it is a full-matrix leaf;
otherwise it will be partitioned further into subblocks on the next level and its chil-
dren (subblocks) are defined as S(s xt) ={ix j|i,j € Trandi € S(s), j € S(t) }.

Admissibility conditions are used to determine whether a block can be approx-
imated by a Rk-matrix, and are important for maintaining the accuracy of the ap-
proximations. Classical .7-matrix admissibility conditions are geometric [1,6,2],
and typically require the support sets to be sufficiently distant from each other.
We will see later that we can develop combinatorial admissibility conditions that



116 Copyright (©) 2007 ICCES ICCES, vol.3, no.2, pp.113-120, 2007

also work well. Usually a block will not been partitioned into very small sub-
blocks. In order to maintain the efficiency of the .7#-matrix arithmetic, a constant
N; € [10,100] is used to control the size of the smallest blocks.

Now we can define an 5#-matrix H induced by T;.; as follows: H shares
the same tree structure with 7;;; the data are stored in the leaves; for each leaf
s X t € Ty, its corresponding block H;., is a Rk-matrix, or a full matrix with
#s < Ny or #t < N;. Fig. 1 shows an example of Tj, T;«; and corresponding 7Z-
matrix. In this example each node in 77 has exact two children or none.

{0123} {0123}x{0123}

{0 13x{0 1} {0 1}x{23}{23}x{0 1} {23}x{23}
0} {

1} {2} {3}  {0}x{0} {O}x{1} {1}x{0} {1}x{1} 3
(a) () (©)

Figure 1: (a) is T, (b) is Tj«; and (c) is corresponding .7#-matrix. The dark blocks
in (c) are Rk-matrix blocks and the white blocks are full matrix blocks.

An algebraic approach for .7Z-matrix construction
In this section we will give a brief review of the algebraic approach to JZ-

matrix construction, which is based on multilevel clustering methods [10].

Multilevel clustering methods are widely used in graph partitioning, which gen-
erate a sequence of coarse graphs and corresponding clusters. Here we adapt multi-
level clustering methods to build a sequence of coarse graphs over the matrix graph,
which is built from a sparse matrix.

Given a symmetric sparse matrix M, its corresponding weighted undirected
graph Gy has the nodes V(Go) =1 :={0,1,...,n — 1}, the matrix index set; there
is an edge ¢;; € E(Gy) if and only if the matrix entry m;; # 0. An algorithm based
on Heavy Edge Matching (HEM) [8] is used to build clusters over the nodes in
G; = (V(G;),E(G;)) and construct a coarser graph Gir1 = (V(Git1),E(Git1))-
The HEM algorithm for the coarsening process is as follows: initially mark all
the nodes as unmatched; randomly pick up an unmatched node s; among the edges
that connect the node s to the other unmatched nodes, choose a node ¢ with the
maximum edge weight; mark both the node s and node ¢ as matched, and create
a cluster k at the current level i, i.e. C,Ei) = {s,t}; if node s is isolated, then mark

it as matched immediately and C,Ei) = {s}. Repeat the above process until all the
nodes are marked as matched. After building the clusters, a coarse graph Gy is
constructed such that for each cluster C,El) C V(G;) there is node k € V(Gj41). The



J¢ -matrix preconditioners for saddle-point systems from meshfree discretization 117

edge weight wy, of an edge e, € E(Gi11) is set to the sum of the weights of all
the edges, which connect the nodes in cluster C,Ei) to the nodes in cluster C,(i) in
the graph G;. Recursively applying the above coarsening process gives a sequence
of coarse graphs Gi,G,...,Gj,. We end this sequence with G, when #V(Gj,) is

sufficiently small.

To build the block cluster tree T« , we first define the admissibility condition
based on the sequence of multilevel graphs Gy, Gy, G3,...,Gy: if the node s, ¢ €
V(G;) are not connected in G; then the block r x s is not partitioned further and
represented by a Rk-matrix. If #s < N; or # < N; where s and ¢ are connected in
G; then we represent the block s x ¢ by a full matrix. Otherwise, s X ¢ is an interior
node in Ty, and its children are u X v where u € Cb(i_l) andv € C,(i_l).

Note that if Gy is the graph of M, then the s x ¢ block will be represented by
an Rk matrix if that block is a zero submatrix of M. In this case the .7#-matrix
approximation is exact.

~¢’-matrix preconditioners for saddle-point systems
The ##-matrix preconditioner for the meshfree system is built using JZ-LU
factorization. We can compute LU factors of K based on the following factorization

process:
A B'] [L1 0 L1t 2’ @
B 0 | [L2 -I3 0 13" |’

where L1,L17 are the Cholesky factors of A. In [10], L1 is obtained by J7-
Cholesky factorization, while L2 is obtained by sparse matrix operators. As the
the size of the problem increases, the time to compute L2 and L3 consists a signif-
icant part of the factorization time. In this paper we present the following scheme
to represent the subblock B in the .7#-matrix representation to speed up the whole
factorization process.

Let I denote the row and column index set of the submatrix A, and J denote the
row index set of B. We build the index cluster trees over / and J separately.

To build 7 over the row index set J of B, we simply use bisection: the root of
Ty is J; J is partitioned evenly into two subsets J; and J;, and set them as the two
children of the root node; continue this process to each node until the size of the set
associated is less than Ny. In this way 7 is a binary tree.

Then the block cluster tree T} is built using the graph of B as a graph joining
nodes in J with nodes in /. Since #J < #[ in our model problems, so in the above
process to build the block cluster tree, we stop partitioning the row index setJ while
continue partitioning the column index set / until it is small enough. In this way
the leaves of T}y, are almost square, which speeds up the computation.



118 Copyright (©) 2007 ICCES ICCES, vol.3, no.2, pp.113-120, 2007

Algebraic multigrid preconditioners
In this section, we review algebraic multigrid methods (AMG) and an adap-

tion of AMG preconditioners [9] to saddle-point problems from meshfree methods,
which is compared with the .7#-matrices preconditioner in the experimental results
section.

The basic idea of AMG is to use all levels in a hierarchy of fine to coarse grids
to eliminate errors. Unlike the classical multigrid methods, the grids used in AMG
are not geometric grids of a problem but the indexes of a matrix. Consider the
following symmetric positive definite system: Au = b, and let ¢ and f denote the
coarse grid and the fine grid. Assume the interpolation operators I{ , the restriction
operators [} and the coarse operator A, are defined. The basic structure of AMG
algorithm of two level grids can be defined as follows: On the fine grid relax A juy =
by using a standard iterative method, then restrict the residual 7 to get r. < I5ry; on

the coarse grid (recursively) approximately solve A.e. = r., and obtain ey « I{ ec;
add ey to the approximate solution uy, and relax the original linear system again.

The key part of AMG is to define the interpolation operator I, since 1§ can be

defined as IS = (ILf Y and A, = I}ACIZ by the Galerkin approach. To define I, first
the coarse grid needs to be constructed. Basically there are two ways to construct
the coarse grid from the fine grid: the coarse grid points are defined as the subset
of the fine grid points; or the coarse grid points are constructed by aggregating the
fine grid points and each coarse grid point represents a cluster over the fine grid
points.

In [12] an aggregation method is introduced for coarse grid construction. Let
{Cy,C1,...,Ci} be the set of clusters built over the fine grid points by aggregation,
an interpolation operator can be defined by (EZ )ij = 1if i € C; and zero otherwise.
This is a simple approach but gives slow convergence. To speedup the convergence,
a variant of the smoothed aggregation method of [12] is implemented in [9]: to
compute each column of the interpolation matrix a local linear system is solved. To
adapt this approach to the saddle-point system (2), the interpolation operator I{ for
the domain € and the the interpolation operator I? for the boundary I'p are built
separately by applying the above smoothed AMG algorithm. Then the coarse grid
matrices are A, = I;A flf ,and B, = T;Bflf where I/ = (I})T is the interpolation
matrix for the column nodes of By.

Experimental results
In this section, we will show the numerical results using the .7#-matrix pre-
conditioners obtained by the process in section 5 to solve the saddle-point system

2).

In our test, the number of the basis functions for the domain Q is No = 1600,



J¢ -matrix preconditioners for saddle-point systems from meshfree discretization 119

6400, 25600, 102400 and the corresponding number of the boundary basis func-
tions is N = 80, 160, 320, 640. Thus the problem sizes are n = 1680, 6560, 25920,
and 103040 respectively.

We use J7-matrix arithmetic with adaptive ranks: the rank of each Rk-matrix
block My, r; approximating a matrix A in a #-matrix satisfies rank(Mp, ) =
min{ k| ox < a0y }, where oy is kth largest singular value of A, and ¢ is a parameter
to control the accuracy which was set to @ = 0.0625. GMRES iteration stops where
the original residuals were reduced by the factor of 10712, We set Ny = 40 in our
test. In the experiments we compare the performance of four preconditioners in
GMRES: JOR, AMG [9], the s -matrix LU factors. The results are plotted in the
log-log scale. All the experiments were performed on a Dell workstation with dual
processor-Xeon 2.4GHz clock speed, and 1GB memory. The Meschach library [11]
is used for the data structures and functions related to full matrices and vectors.

Comparison of the time to solve saddle point systems

10° | = HEM-H-CH
-6~ HEM-HMAT-LU
-8 JOR

- AMG

Comparison of convergence rates
PE—— T
4
ol /

Time(sec.)
Convergence rate

—— HEM-H-CH
-6~ HEM-HMAT-LU
R

-7 AMG

107 m o 1075 m s
10 10° 10° 10 10° 10°
Problem size Problem size

(a) Total time to solve the saddle-point systems (b) Convergence rates of various preconditioner
with various preconditioners per GMRES iteration

Figure 2: Comparison of preconditioners: total time and convergence rates

Fig. 2(a) shows the total time (including the time of building .7#-matrices,
building the preconditioners and GMRES iterations). "THEM-H-CH’ indicates the
factorization method in [10] and "THEM-HMAT-LU’ indicates the factorization scheme
described in this paper. Fig. 2(b) shows the average convergence rates of the vari-
ous preconditioners. As respect to the total running time and the convergence rates,
the J#-matrix based preconditioners give better performance than JOR and AMG.
When the problem size is bigger than 10* the "THEM-H-CH’ time shows a sharp in-
crease because of the sparse matrix blocks of the factors while ' HEM-HMAT-LU’
needs the least time. As the problem size increases to around 103, the convergence
rates of "HEM-H-CH’ and "THEM-HMAT-LU’ become very close.

Overall both .77-matrix based preconditioners outperform JOR and AMG. With



120 Copyright (©) 2007 ICCES ICCES, vol.3, no.2, pp.113-120, 2007

the increase of the problem size "THEM-HMAT-LU’ shows overall better perfor-
mance than "THEM-H-CH’.

References

1. S. Borm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical ma-
trices with applications. EABE, 27:403-564,2003.

2. Sabine Le Borne and Lars Grasedyck. .7#-matrix preconditioners in convection-

dominated problems. SIAM J. Matrix Anal. Appl., 27(4):1172-1183, 2006.

3. Sabine Le Borne and Lars Grasedyck. H preconditioners in convection-
dominated problems. SIAM J. Matrix Anal. Appl., 27(4):1172-1183, 2006.

4. Sabine Le Borne, Lars Grasedyck, and Ronald Kriemann. Domain-decomposition

based H-LU preconditioners. In Proceedings of the 16th International Con-

ference on Domain Decomposition Methods (New York, 2005), LNCSE. Springer,

2006. To appear.

5. J.-S. Chen, C. Pan, C. T.Wu, andW. K. Liu. Reproducing kernel particle
methods for large deformation analysis of non-linear structures. Compt.
Methods Appl. Engrg., 139:195-227, 1996.

6. L.Grasedyck and W. Hackbusch. Construction and arithmetics of .7#’-matrices.
Computing, 70(4):295-334, 2003.

7. W. Hackbusch. A sparse matrix arithmetic based on .7-matrices. part i:
Introduction to Z-matrices. Computing, 62:89-108, 1999.

8. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359-392, 1999.

9. K.H. Leem, S. Oliveira, and D. Stewart. Algebraic multigrid (AMG) for sad-
dle point systems from meshfree discretizations. Numerical Linear Algebra
and Applications, 11(3):293-308, 2004.

10. Suely Oliveira and Fang Yang. An algebraic approach for H-matrix precon-
ditioners. Computing, 2006. Submitted.

11. D. E. Stewart and Z. Leyk. Meschach: Matrix Computations in C, volume
32 of Proceedings of the CMA. The Australian National University, 1994.

12. P. Vanék, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed ag-
gregation for second and fourth order elliptic problems. Computing., pages
179-196, 1996.



