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A meshless method based on Daubechies wavelet for 2-D
elastoplaticity problems
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Summary
In this paper, a Daubechies(DB) wavelet-based meshless method is proposed

to analyze 2-D elastoplasticity problems. Using DB wavelet scaling functions and
wavelet functions as basis functions to approximate the unknown field functions,
there is no need to construct the shape functions costly as done in FEM and con-
ventional meshless methods. Incremental formulations are established for solution
of 2-D elastoplasticity problems. In addition, the property of DB wavelet is used to
make the method concise in formulations, flexible in applications and easy to real-
ize. Due to the lack of Kroneker delta properties in scaling functions and wavelet
functions, the penalty method is used to impose the essential boundary condition
in this work. Numerical examples of two dimensional elastoplasticity problems
illustrate that this method is very efficient and stable.

Introduction
Many numerical methods have been developed and used to solve problems of

computational mechanics. Recently, one of the hottest topics in computational me-
chanics is the meshless or meshfree method. some meshless methods have been
proposed and achieved remarkable progress, such as smooth particle hydrodynam-
ics (SPH) [1], the diffuse element method (DEM) [2], the element-free Galerkin
(EFG) method [3,4], the meshless local Petrov–Galerkin(MLPG) method [5–7],
and so on. In addition, techniques for coupling meshfree methods with other estab-
lished numerical methods have also been proposed, such as the MLPG/FEM/BEM
[8].

In above-mentioned meshless methods, it is key and necessary to construct the
so-called shape function, which is complicated, time-consuming and even hard to
realize in some special cases. Furthermore, the complexity of shape function will
increase the computational cost in total solution process. It is desirable to find a new
method, which is simple and reasonable to construct shape functions in meshless
methods. However, it seems to be a difficult task. So we should resort to some
other mathematics tools.

Wavelet is a powerful mathematics tool in solving many problems in science
and engineering. In recent years, there has been an increasing interest in the
wavelet-based methods in several applications. Some of recent investigations on
the wavelet methods include papers by Amaratunga and Williams [9], Christon and
Roach [10], Kim and Jang [11], Xuefeng Chen[12].
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This paper is aimed at analyzing 2-D elastoplasticityproblems using DB wavelet-
based meshless method. In the approximation, scaling functions and wavelet func-
tions in wavelet analysis are directly employed as basis functions to approximate
the unknown field function. Because of its special property, DB wavelet can de-
scribe details of complicated problems accurately and conveniently. We build
incremental formulations for solution of 2-D elastoplasticity problems using DB
wavelet-based meshless method. Due to the lack of Kroneker delta properties in
scaling functions and wavelet functions, the penalty method is used to impose the
essential boundary condition in this work. The numerical examples illustrate that
the present method is effective for solving 2-D elastoplasticity problems.

Numerical theory
From translation and dilation of basic scaling function h(x), we can obtain the

expression

hi, j(x) = h(2ix− j) (1)

where j and i denote the scale and the place index, respectively, in wavelet space.
According to the DB wavelet theory, the support of the function hk

i, j(x) is

supphk
i, j = [2−i j,2−i( j +2k−1)] (2)

In 2-D problems, the approximation of 2-D field function is relatively complicated.
It is usually used to approximate 2-D function through tensor-product method. To-
ward a 2-D function f (x,y) defined in a finite elastic body, it can be approximated
through using scaling functions of 1-D wavelet. For example, In a rectangular do-
main [l1, l2]× [l3, l4], we have

u(x,y) ≈ ui, j(x,y) =
�l2/2−i�−1

∑
m=−2k+1+�l1/2−i�

�l4/2− j�−1

∑
n=−2k+1+�l3/2− j�

am,nhk
i,m(x)hk

j,n(y) (3)

the symbol
⌈
l/2i

⌉
denotes the smallest integer great than l/2−i. The two dimen-

sional domain that an elastic body occupies is usually irregular. In this case, we
should consider the least rectangular domain which surrounds the original domain
in the total computational process. Because of the limit in length of the article, it
will not be discussed here.

In most cases, the field function in 2-D problems we want to find is compli-
cated. So there will not be enough accuracy only in single scale. In this case, we
should use multiscale method. In this method, the field function ucan be approxi-
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mated below

ui, j(x,y) = ∑
m

∑
n

am,nhi0,m(x)h j0,n(y)+ ∑
m1

∑
n1

i
∑

k=i0
b1

m1.n1hi0,m1(x)gk,n1(y)+

∑
m2

∑
n2

j

∑
l=i0

b2
m2,n2hi0,m2(y)gl,n2(x)+ ∑

m3
∑
n3

i
∑

k=i0

j

∑
l= j0

b3
m3,n3gk,m3(x)gl,n3(y)

(4)

where the choice of the last three wavelet basis functions is related to the re-
quirements in practical computations.

Numerical implementation
We use incremental method to established formulations for 2-D elastoplasticity

problems. The incremental virtual work statement for a system undergoing elasto-
plasticity is written as: if the stress σ t

i j +Δσi j , volume load F̄t
i +ΔF̄i and boundary

load T̄ t
i +ΔT̄i in time t +Δt satisfied the condition of equilibrium, we have

∫
V (σ t

i j +Δσi j)δ (Δεi j)dV −∫
V (F̄t

i +ΔF̄i)δ (Δui)dV
−∫

Sσ
(T̄ t

i +ΔT̄i)δ (Δui)dS = 0
(5)

where δ (Δui) and δ (Δεi j) are respectively the incremental virtual displacement and
strain. Introducing the stress-strain relation into the above equation, the equation
can be eventually expressed as the matrix form

∫
V δ (Δε)T tDepΔεdV −∫

V δ (Δu)T ΔF̄dV −∫
Sσ

δ (Δu)T ΔT̄ dS
= −∫

V δ (Δε)T σ tdV +
∫

V δ (Δu)T F̄tdV+
∫

Sσ
δ (Δu)TT̄ tdS

(6)

We can introduce the new meshless method into the incremental virtual work prin-
ciple. The displacement field functions can be approximated as

Δu = NΔa (7)

At last, we can obtain equations as follows

tKepΔa = ΔQ (8)

wheretKep,Δa,ΔQ are the elastoplastic stiffness matrix, incremental displacement
vector and lopsided force vector, respectively. Due to the lack of Kroneker delta
properties in scaling functions and wavelet functions, the penalty method is used to
impose the essential boundary condition in this work.

Numerical examples
Figure 1 depicts a quarter of panel with a central circular hole of r = 0.25.

The uniform tension p = 150N/m in the horizontal direction is applied on the left
and right edges of the panel. As a plasticity model, the von Mises flow rule is
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Figure 1: A quarter of panel with a central circular hole
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Figure 2: Displacement (ux) distribution along the right edge

used. Young’s modulusE = 2.1× 105MPa, plastic modulusEp = 1.0× 105MPa,
Poisson’s ratiov = 0.3and the initial yield stress σs0 = 280MPa. The calculated
results are respectively obtained from the present method and FEM(ANSYS with
1110 Plain143 elements). Figure 2 shows the comparison of displacement (ux)
along the right edge. Figure 3 shows the comparison of stress (σx) along y axis.
We can see that the results from the present method agree very well with those
generated by the FEM(ANSYS).

Conclusions
In this paper, a Daubechies wavelet-based meshless method is presented to
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Figure 3: Stress (σx) distribution along y axis

analyze 2-D elastoplasticity problems. Incremental formulations are established
for solution of 2-D elastoplasticity problems using this new meshless method. The
property of DB wavelet is used to make the method concise in formulations, flexible
in applications and easy to realize. Due to the lack of Kroneker delta properties in
scaling functions and wavelet functions, the imposition of boundary condition is
also discussed. Numerical examples of two dimensional elastoplasticity problems
illustrate that this method is effective and stable.
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