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An immersed boundary technique using semi-structured
grids for computing compressible viscous flows
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Summary
This paper provides a numerical method based on the immersed boundary ap-

proach for computing compressible viscous flows. The efficency of the method
is enhanced by using a flexible local grid refinement technique which is obtained
by coarsening a uniformly fine mesh far from high-gradient flow regions, such as
boundary layers and shocks.

Introduction
The Immersed Boundary (IB) method simplifies the grid generation process for

the simulation of flows with complex and/or moving solid boundaries by avoiding
the need for a body-fitted mesh. The IB technique was originally developed for
incompressible flows [1]-[3] using Cartesian grids. Recently, some of the authors
have extended the IB technique to compressible flows [4] using the preconditioned
Navier–Stokes equations, which allow one to provide accurate and efficient solu-
tions for a wide range of the Mach number. To date, IB methods employ structured
grids, which allow only limited control on the distribution of the grid points in the
computational domain; in fact, clustering of grid points is needed close to solid
boundaries in order to describe its geometry accurately and, since mesh lines run
through the entire computational domain, a high concentration of grid points is ob-
tained also in regions away from the solid walls, where flow gradients are usually
small. In order to cope with this problem, a flexible local grid refinement technique
is to be employed, increasing the mesh resolution near the body.

Governing equations and numerical method
In this work, the Reynolds Averaged Navier–Stokes (RANS) equations, written

in terms of Favre mass-averaged quantities, are solved in conjunction with the low-
Reynolds number k−ω turbulence model [5]. Such equations are given in compact
form as:
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where Q is the conservative variable vector, E, F, G and Ev, Fv, Gv indicate the
inviscid and viscous fluxes, respectively, and D is the vector of the source terms.
A pseudo-time derivative for the primitive variable vector Qv, which is related to
Q by a Jacobian matrix, has been added to the left-hand-side of equation (1) in or-
der to use a time marching approach for both steady and unsteady problems. The
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preconditioning matrix, Γ, proposed in [6] is used to premultiply the pseudo-time
derivative in order to enhance the efficiency of the solution procedure at all val-
ues of the Mach number. Equation (1) is discretized by an Euler implicit scheme
in the pseudo-time and the physical-time derivative is approximated by a second-
order-accurate three-point backward difference. The resulting algebraic system is
diagonalized according to the procedure of Pulliam and Chaussee [7] and solved
by a BiCGStab method [8]. A collocated cell-centred finite volume space dis-
cretization is used. The convective terms are discretized using either an upwind
flux-difference-splitting scheme with first-, second- or third-order accuracy, or a
second-order-accurate centred scheme, for low Reynolds number flows. When
computing flows with shocks, a total variation diminishing approach is employed
using the minmod limiter function and either a second- or a third-order accurate up-
wind scheme. The viscous terms are discretized by second-order-accurate centred
differences.

Data structure and semi-structured grid generation
Local grid refinement allows for efficient clustering of cells close to the im-

mersed boundary. The basic idea was recently introduced by Durbin and Iac-
carino [9] for a finite difference discretization and extended to a finite volume
formulation by Iaccarino et al. [10]. The following description of the algorithm
refers to two dimensions, the extension to three-dimensions being straightforward.
An auxiliary structured grid is employed to handle the data structure of the semi-
structured locally refined grid (shown in figure 1). The auxiliary grid covers the
whole computational domain employing the finest mesh size on the semi-structured
grid. Therefore, each cell of the semi-structured grid is bounded by the lines pass-
ing through the vertices (i, j) and (i + Δi, j + Δ j), see figure 1, where the inde-
ces i = 0, . . .,Ni and j = 0, . . .,Nj refer to the auxiliary (finest) grid and Δi ≥ 1,
Δ j ≥ 1 depend on (i, j). Therefore, having an auxiliary grid with Ni ×Nj cells,
the N < Ni ×Nj cells belonging to the semi-structured grid are defined using the
two couples of indices (i, j) and (Δi,Δ j), with a total memory requirement of 4N
integers. In addition, an array of integers, ID(i, j), is needed to store the corre-
spondence between the cells of the auxiliary and semi-structured grids. All of the
cells of the former grid not employed in the latter one, namely, those included in
the range [i : i+Δi−1] and [ j : j +Δ j−1], are tagged using the same cell number.
The total storage required for allocating ID(i, j) is, therefore, Ni ×Nj integers. The
connectivity information for each cell is retrieved by querying the array ID(i, j).

Within the IB method, the generation of the semi-structured grid is carried out
by firstly creating the auxiliary (fine) grid and coarsening it in the regions away
from the immersed boundary. The advantage of this approach is that all of the
cell-tagging (ray-tracing) needed for using the IB technique can be performed on a
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Figure 1: Locally refined grid showing a cell P and its neighbors.

structured grid, taking full advantage of the alignment of the cell centers and of the
grid nodes. Moreover, it is possible to define regions of the computational domain
to be refined, such as wake and shock regions.

Immersed boundary treatment
The geometry under consideration, which is described by a closed curve in two

dimensions (a closed surface in three dimensions), is overlapped onto a Cartesian
(non uniform) grid. Using the ray tracing technique, the computational cells occu-
pied entirely by the flow are tagged as fluid cells; those whose centres lie within the
immersed body are tagged as solid cells; the remaining ones are finally tagged as
interface cells. The application of the boundary conditions at the immersed surface
is treated explicitly, by assigning the values of the variables at the interface cells.
At solid cells, the flow variable φ (e.g., the velocity components and, in the case of
isothermal surfaces, the temperature) is set to its wall value. At the interface cells,
the nearby wall is modeled with an off-wall boundary condition which consists of
an interpolation of the flow variables, using the computed values of the surrounding
fluid cells and the imposed values at the wall. At each interface cell it is possible
to find Nnbr neighbouring fluid cells and Nib intersections of the faces of each cell
with the immersed boundary, and the following interpolation formula is used:

φint =
Nnbr

∑
i

αi

q
φi +

Nib

∑
j

β j

q
φ j,wall, q =

Nnbr

∑
i

αi +
Nib

∑
j

β j, (2)

where φ j,wall is the value of the flow variable to be imposed at the immersed surface,
αi = 1/di and β j = 1/d j, di and d j being the distances between the surrounding
cell centers and the interface cell center and between the wall intersections and the
interface cell center, respectively. It can be shown that in the one-dimensional case,
this procedure coincides with the linear interpolation scheme used in [2] and [4].
The pressure gradient along the normal to the immersed surface is set to zero by
assigning the corresponding flow field value at the interface cell. In case of an
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adiabatic surface, also the temperature gradient is set to zero.

Results
The unsteady two-dimensional low-Mach-number flow past a heated circular

cylinder has been chosen in order to validate both the unsteady terms and the cor-
rect implementation of the energy equations, since experimental [11] and numeri-
cal [12] investigations indicate that the temperature field has a significant influence
on the flow pattern, expecially when the ratio between the cylinder wall tempera-
ture Tw and the free-stream one T∞, T ∗ = Tw/T∞ exceeds 1.1. It has been found that,
for a given Re∞, the vortex shedding frequency, f , and thus the Strouhal number
St = f D/U∞, decreases for increasing values of T ∗. The computational domain has
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Figure 2: Strouhal number vs Reynolds num-
ber for the flow past a heated circular cylinder.
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Figure 3: Local view of the semi-structured
grid for the flow past the RAE 2822 airfoil.

the inlet and outlet boundaries located at xi =−10D and xo = 40D, and the far-field
boundaries located at yw = ±15D, the origin of the box coinciding with the centre
of the cylinder. Standard characteristic boundary conditions have been imposed
at the inlet and outlet points, whereas free-shear wall boundary conditions are im-
posed at the far-field points. For such a low Re problem, centred differences are
employed also for the advection terms. Computations have been performed using a
semi-structured mesh with 41509 cells and 293647 faces. The grid is highly refined
at the cylinder surface, in order to solve the thermal boundary layer, and inside a
box surrounding the cylinder and the wake, so as to obtain a satisfactory resolution
of the vortex shedding phenomenon. The auxiliary mesh is composed of 796×379
cells. The physical time step has been chosen in order to have about 500 steps
per period; about 250 inner iterations are needed to reduce the unsteady residual to
10−6 at each time step. Figure 2 shows the computed values of the Strouhal number,
St, for Re∞ = 100,120,140 and T ∗ = 1.0,1.1,1.5,1.8, as well as the experimental
results provided by Wang et al. [11] and Sabanca & Durst [12]: a very good agree-
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ment is obtained; moreover the present results are comparable with those obtained
using the uniform auxiliary grid [4], having seven times more cells. The turbulent
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Figure 4: Mach number contours for the flow
past the RAE 2822 airfoil;, ΔM = 0.05.
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Figure 5: Pressure coefficient distributions for
the flow past the RAE 2822 airfoil.

transonic flow past the supercritical RAE 2822-airfoil has finally been computed as
a suitable test case involving shock/boundary layer interaction. The flow-condition
case 10 [13] has been considered with: M∞ = 0.75, Re = 6.2×106 (based on the
far-field conditions and on the chord length, c), incidence angle α = 3.19◦. Such a
test case is particularly severe since a separation bubble occurs close to the shock
location; therefore, the separation length and the position of the shock are highly
sensitive to the flow resolution in the wall region and to the turbulence modeling. To
compare the experimental data with the results of the simulation considering an iso-
lated airfoil, corrections to the tunnel data are required. Here, the flow conditions
used in the EUROVAL project [14] are employed: M∞ = 0.754, Re = 6.2× 106,
α = 2.57◦. The shock location and the pressure distribution, particularly on the
suction side, are influenced by the far-field boundary condition. Therefore, inlet
and outlet boundary planes are located at xi =−20c and xo = 30c, respectively, and
the far-field boundaries are located at y = ±20c, the origin of the box coinciding
with the leading-edge of the profile. Standard characteristic boundary conditions
have been imposed at the far-field boundary. Numerical results are obtained using
the TVD third-order-accurate upwind scheme. Computations have been performed
using a mesh with 169312 cells and 1214772 faces (see figure 3). Mach number
contours are shown in figure 4, whereas the pressure coefficient distribution along
the profile is provided in figure 5 and is in good agreement with the experimental
data.

References

1. C. S. Peskin, J. Comput. Phys. 10 (1972) 252.



156 Copyright c© 2007 ICCES ICCES, vol.3, no.3, pp.151-156, 2007

2. E. A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yosuf, J. Comput. Phys. 161
(2000) 35.

3. R. Mittal, G. Iaccarino, Annu. Rev. Fluid Mech. 37 (2005) 239.

4. P. D. Palma, M. de Tullio, G. Pascazio, M. Napolitano, Comput. Fluids 35
(2006) 693.

5. D. C. Wilcox, Turbulence models for CFD, 2nd Edition, DCW Industries,
Inc., 1998.

6. C. L. Merkle, in: M. Hafez, K. Oshima (Eds.), Computational Fluid Dynam-
ics Review 1995, John Wiley & Sons, pp. 419–436 (1995).

7. T. H. Pulliam, D. S. Chaussee, J. Comput. Phys. 39 (1981) 347.

8. H. van der Vorst, SIAM J.Sci.Statist.Comput. 13 (1992) 361.

9. P. A. Durbin, G. Iaccarino, J. Comput. Phys. 128 (2002) 110.

10. G. Iaccarino, G. Kalitzin, P. Moin, B. Khalighi, Paper AIAA-2004-0586.
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