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Wave propagation in the presence of empty cracks in
elastic slabs – TBEM and MFS Formulations
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Summary
This paper evaluates the 3D wave propagation in an elastic slab containing

cracks whose geometry does not change along the direction parallel to the forma-
tion surfaces. Two different formulations are used and compared: the Traction
Boundary Element Method (TBEM) and the Method of Fundamental Solutions
(MFS). Both approaches are developed in the frequency domain and surmount the
thin-body difficulty posed by the classical Boundary Element Method (BEM).

The TBEM models the crack as a single line. The resulting hypersingular in-
tegrals are evaluated analytically. For the MFS, the solution is approximated in
terms of a linear combination of fundamental solutions, generated by a set of virtual
sources that simulate the scattered field produced by the crack. A domain decom-
position technique avoids the use of any enriched function to model displacement
jumps across the crack.

Introduction
The use of the TBEM solution overcomes the difficulties posed by the classical

BEM when solving very thin bodies or cracks [1]. In the case of a dimension-
less empty crack, the problem can be solved using only a single line of boundary
elements loaded with dipole loads [2]. The resulting hypersingular integrals can
be computed analytically by defining the dynamic equilibrium of semi-cylinders
above the boundary elements discretizing the crack [3].

This paper addresses the problem of wave propagation in the vicinity of 2D
empty cracks, placed in a free elastic slab and subject to a point blast load. The
use of appropriate Green’s functions renders the discretization of the slab surfaces
unnecessary. However, this model leads to high computational costs.

To mitigate some of these difficulties, the MFS can be an alternative option.
The solution is obtained by a linear combination of fundamental solutions (Green’s
functions), generated by a set of virtual sources which, in the context of the present
problem, can simulate the scattered field produced by the empty crack, using a
domain decomposition technique. To avoid singularities, the fictitious sources are
not placed along the crack boundary. The use of fundamental solutions allows the
final solution to verify the unbounded boundary conditions automatically.

Some authors have proposed the use of enrichment functions to model torsional
problems, including cracks [4]. Alternatively, a domain decomposition technique
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can be used, adopting two elastic domains defined by a closed line that incorporates
the crack surface. Along the crack, null stresses are imposed, while along the
remaining part of that closed line, i.e. the virtual interface, continuity of stresses
and displacements is prescribed.

Next, the problem, the TBEM and MFS formulations are established. The
performance of the proposed models is compared. Finally, the applicability of
the MFS is illustrated by computing (in the time domain) the scattered wavefield
produced by an empty S-shaped crack embedded in an elastic slab.

Problem definition
An empty 2D crack aligned along the z axis is buried in a solid layer with

thickness h (density ρ , shear wave velocity β and dilatational wave velocity α).
This system is excited by a harmonic cylindrical line source at (xs, ys), oscillating
with angular frequency ω and spatially varying along the z direction. The direct
incident field is given by a dilatational potential φ̂ ,

φ̂inc (ω ,x,y,kz) =
−iA

2
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(
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√
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)
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where A is the amplitude, Hn () are second Hankel functions of order n, kα =√
ω2/α2 −k2

z with Im(kα) < 0, kz is the axial wavenumber and i =
√−1.

Traction Boundary Element Formulation (TBEM)
The TBEM formulation is expressed by the following equation:

a ui (x0,ω) = −
∫
S

u j (x,ω) Hi j (x,nn,x0,ω) ds+uinc
i (xs,x0,nn,ω) . (2)

In the equation, i, j = 1, 2 correspond to the normal and tangential directions rel-
ative to the inclusion’s surface, respectively, while i, j = 3 correspond to the z di-
rection. u j (x,ω) corresponds to displacements in direction j at x. The coefficient
a is null for piecewise straight boundary elements [1]. Hi j (x,nn,x0,ω) is obtained
after applying the traction operator to Hi j (x,nn,x0,ω), which defines the tractions
in direction j at x (on the boundary S), due to a unit point force in the direction i
at x0 (a collocation point). nn = (cos θn, sin θn) defines the unit outward normal
relative to the boundary element, at x. Performing the equilibrium of stresses, the
following equations can be written along x, y and z, caused by loads also applied
along the same x, y and z directions:
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where n0 = (cos θ0, sin θ0) defines the unit outward normal at x0, H̄tr = H̄tr (x,nn,x0,ω),
Htr = Htr (x,nn,x0,ω), with r, t = x, y, z and μ = ρ β 2. The tractions Htr (x,nn,x0,ω)
are obtained by derivatives of the Green’s functions for the elastic slab [6]. Simi-
larly, the incident field components in terms of stresses (uinc

r = uinc
r (xs,x0,nn,ω))

can also be evaluated by means of derivatives of the displacement incident field at
x0, generated by a source placed in that medium at xs (uinc

r = uinc
r (xs,x0,ω)).

After the discretization of the boundary, the resulting hypersingular integrals
can be evaluated analytically [3]. After the nodal displacement unknowns have
been obtained, the response at any point inside the domain, xrec, can be computed
by solving the classical boundary integral equation.

Meshless Solution - The MFS Formulation
The solution is approximated in terms of a linear combination of fundamental

solutions, generated by a set of virtual sources that simulate the scattered field
generated by the inclusion (see Figure 1). In order to avoid singularities, these
fictitious sources are placed outside the physical domain of the stated problem [7].
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Figure 1: Schematic representation of the MFS model.

Two sets of NS virtual loads are distributed along the inclusion interface at dis-
tances δ from that boundary towards the interior and exterior of the inclusion. For
each position, the loads are applied in the x, y, and z directions. Sources inside the
inclusion have unknown amplitudes a(1)

rn , while those placed outside the inclusion
have unknown amplitudes a(2)

rn . n is the subscript that denotes the load order num-
ber, and r the direction in which the load is applied. In each medium, the reflected
displacements are given by

u(m)
t (x,ω) =

NS

∑
n=1

[
3

∑
r=1

[
a(m)

rn G(m)
rt (x,xn,ω)

]]
(4)
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where G(m)
rt (x,xn,ω) is the fundamental solution which represents the displacement

at point x = (x,y), in medium m (1,2), in the direction t generated by a load acting
along r at position xn = (xn,yn).

To determine the unknown amplitude loads, it is necessary to impose the bound-
ary conditions of continuity of tangential and normal displacements and stresses
along the virtual boundary not coinciding with the crack and null stresses along the
crack surface. After solving the resulting system of equations, the displacements in
the solid domains can be determined.

Performance of the MFS algorithm
A C-shaped empty crack, embedded in a solid free layer, illustrated above in

Figure 1, is used to verify the MFS’s performance. The properties of the slab’s
elastic material are α = 2696.5 m/s, β = 1451.7 m/s and ρ = 2140 kg/m3. The
crack, with a radius of R = 0.05 m, is centered at (0m,0.175 m) and the spatially
sinusoidal harmonic line load is placed at S (0m,0.175 m).

The frequency of f = 10000 Hz, with kz = 25 rad/m, is selected to illustrate the
main conclusions. The results are evaluated over a grid of receivers placed around
the crack. The crack is discretized using 200 boundary elements to ensure the
accurate response of the TBEM model. Figure 2 shows the amplitude differences
in the responses, between the TBEM and MFS solutions, along x, y and z, when
NS = 40 and δ

/
R = 0.4.
ux uy uz

Figure 2: Amplitude differences between the TBEM and MFS solutions.

Analyzing all the computed results, a general trend is observed: the MFS per-
formance is poor, no matter how many virtual sources are used, when they are
placed very close to the crack. The minimum errors obtained seem to occur for
intermediate values of distances δ

/
R (0.10 and 0.20).

Numerical Example
The 2D wave propagation near a null-thickness S-shaped crack (see Figure 3),

with the properties defined above, is modeled. The domain decomposition tech-
nique described above is used with NS = 600 and δ

/
R = 0.20. A dilatational line

load (kz = 0.0 rad/m), placed at S, disturbs the elastic layer, where displacements
(ux and uy) are registered at a grid of receivers. The computations were performed
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in the range of [2000 Hz, 256000 Hz]. Time results were determined modeling a
Ricker incident pulse with a characteristic frequency of 75000 Hz.
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Figure 3: Geometry of S-shaped crack in the elastic slab.

The numerical results obtained are illustrated using snapshots at t = 0.07 ms
and t = 0.11 ms, displaying the displacement fields in the x and y directions (Figure
4). These displacement fields correspond to the direct incident fields produced by
the line source added to the surface terms and the scattered fields generated by the
irregular crack.

ux uy

t = 0.07 ms

t = 0.11 ms
Figure 4: Elastic scattering by an S-shaped crack in an elastic slab.

Conclusions
The TBEM and MFS formulations have been successfully implemented to ad-

dress the wave propagation in the vicinity of null-thickness empty cracks placed
in a slab. The TBEM has been adopted to discretize cracks with an open line
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of boundary elements, while the proposed MFS solution has been able to solve
the problem without having to use an enriched function to model the displacement
jumps across the crack. These formulations were found to produce results that were
in close agreement. The MFS was found to be efficient and was able to capture all
the elastic wave phenomena involved. However, the definition of the number and
placement of the virtual sources to be used needs further research, since this plays
an important role in the accuracy of the results.
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