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Elastodynamics with the Cell Method
F. Cosmi1

Summary
The Cell Method is a recently developed numerical method that is giving in-

teresting results in several fields of physics and engineering. In this paper, first a
brief description of the method for elasticity problems is given and successively the
elastodynamics formulation is derived. The method leads to an explicit solution
system, combining the advantages of a diagonal mass matrix and the possibility of
using unstructured meshes.

The convergence rate has been tested in reference to the problem of free har-
monic vibrations in a system with one degree of freedom, showing that the Cell
Method has the same convergence rate of II order Runge Kutta method, but its ac-
curacy is better. The Cell Method results in 2D and 3D have been compared with
those obtained with the commercial codes ANSYS and ABAQUS in the problem
of the longitudinal vibration of a bar with free ends, for which the exact analytic so-
lution is found in literature. The Cell Method results are comparable with or better
than those obtained with FEM, and they are particularly interesting from the point
of view of computation time and memory requirements for very large meshes.

keywords: Numerical method, Cell Method, elasto-dynamics, transient anal-
ysis.

Introduction
The modeling and simulation of systems behavior by means of numerical meth-

ods is a common procedure in the design and development phases of technological
and industrial products. One of the most important aspects in the process of me-
chanical response evaluation consists in a correct estimate of the stress and strain
state in the machine components under transient loading, particularly when discon-
tinuities and stress concentrations are present. The prediction of mechanical com-
ponents behavior by means of numerical simulations, performed on virtual com-
ponents, accelerates the mechanical systems optimization process and results in an
important reduction of experimental tests and project development costs.

A widely used method is the Finite Element Method (FEM), either under the
time domain or the frequency domain approach. In particular, transient analysis
in time domain is computed by means of numerical integration. Two kinds of
numerical integration methods are available: conditionally stable methods and un-
conditionally stable methods.

The first approach requires a small integration step and the answer of the system
at the end of the integration step is computed based on the conditions at the begin-
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ning of the step. These methods, also called explicit methods, are very convenient
from the computational point of view but are only applicable when the mass matrix
is diagonal. The other requirement is that the Courant condition be satisfied: the
integration step must be smaller than the minimum period of time required for a dis-
turbance to travel between two nodes of the mesh, the wave propagation velocity in
the material being known. Unfortunately, the Finite Element Method mass matrix
is in general not diagonal, so that explicit integration methods are not employable.
On the other side, the Finite Differences in Time Domain Method (FDTD) yields
to a diagonal mass matrix and an explicit system but requires the use of structured
meshes that present important drawbacks, for example difficulties in curve shapes
modeling.

Unconditionally stable methods, also called implicit methods, compute the an-
swer of the system at the end of the integration step based on the conditions at the
end of the step. The answer is numerically stable for any integration step, but this
doesn’t mean that any step can be used, because the solution accuracy decreases
when the step becomes larger. The process is very heavy from the computational
point of view, as it requires the solution of an algebraic system at each time step.
The computational burden of a Finite Element dynamic analysis, necessarily higher
than that of a static analysis, can be reduced if the mass matrix is rendered diagonal
(lumping), at the cost of a loss in the solution accuracy.

Therefore, although the Finite Element Method is a very important and widely
used tool, there is a motivation for the development of new numerical methods in
order to improve the analysis results, with regard to both computation speed and
solution accuracy.

The Cell Method (CM) is numerical method recently developed by Tonti (2001a).
In general, the results achievable are similar to those obtainable with the Finite El-
ement Method (FEM), although the two approaches are considerably different, as
will be discussed in the following. CM is currently applied in several fields, as in
heterogeneous materials modelling, biomechanics, diffusion, structural mechanics
problems, etc. A list of works is available at
http://www.dic.units.it/perspage/discretephysics/.

Tonti (2001b) presented a direct discrete formulation of acoustics in fluids, in-
troducing the classification of physical variables into configuration, source and en-
ergy variables and using two cell complexes for both spatial and temporal elements.
A section of the same paper is dedicated to a comparison with the Finite Element
and Finite Volume Methods where the dynamics integration schemes arising from
the different formulations are not discussed.

Marrone, Frasson and Hernàndez-Figueroa (2002) obtained interesting results
by employing the CM for dynamic problems in the electromagnetic field.
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The application of CM to the elastic analysis of components under dynamic
loading is the object of this work. In this paper, it will be shown that for dynamic
problems the Cell Method is able to combine the advantages of the Finite Element
and of the Finite Differences in Time Domain Methods, since the CM formulation
gives a diagonal mass matrix and an explicit system, though it can employ also
unstructured meshes.

The object of the next section is a brief account of the basis of the method with
reference to elastostatics, preliminary to the development of the elastodynamics
formulation that will be presented in the third section. Results of simulations and
comparison with commercial FEM codes will be discussed in the fourth and fifth
section.

The Cell Method for elastostatics
Numerical methods such as Finite Element Method, Finite Difference Method,

Boundary Method and Finite Volume Method are all based on differential formu-
lations, in fact they write balance laws by introducing differential relations among
the variables of the approximated field. The numerical solution is then obtained by
the discretization of differential equations. Several such discretizations are possi-
ble, and different methods lead to different set of algebraic equations for the same
mesh.

Although widely used, this two-step process of differentiation followed by dis-
cretization brings some drawback with it. Let’s use the term local variable to indi-
cate those variables that can be regarded as densities, as opposed to global variable.
Pressure and strains are examples of local variables, while forces, relative displace-
ments and displacements are examples of global variables. It can be seen that while
local variables are properties of points, global variables are always associated with
space elements: displacements are properties of points, relative displacements can
be associated to lines, and forces are applied to surfaces or volumes. When a dif-
ferential formulation is used, everything is reduced to the point, the geometrical
information is lost and part of the physics of the problem somehow vanishes in the
formulation of the numerical problem. For example, the requirements for deriv-
ability impose restrictions on the field equations, although such restrictions are not
related to the physics of the problem being examined. A proper discretization of
the problem should instead retain the geometrical properties of the variables. Tonti
(2001) has recently proposed the Cell Method with the aim of introducing a direct
discrete formulation of field laws that satisfies this requirement. CM is therefore
applicable whenever variables cannot be differentiated, for example when the dis-
placement field undergoes large variations, i.e. when the size of the heterogeneities
coincides with the scale of the discretization (Cosmi and Di Marino (2001), Cosmi
(2004)).



198 Copyright c© 2007 ICCES ICCES, vol.3, no.4, pp.195-210, 2007

A classification of physical variables is at the basis of the Cell Method. The
variables involved in a field problem can be classified in one of three classes: con-
figuration, source and energy variables. This classification is general and can be
adopted in any field problem, although in this paper reference will be limited to
solid mechanics.

A collection of diagrams showing the configuration variables, the source vari-
ables and the relations between them for several physical theories can be down-
loaded from the web site http://www.dic.units.it/perspage/discretephysics/.

Configuration variables describe the geometry and the kinematics of the sys-
tem. Source variables describe the source of the field. Nodal displacements and
strain tensor are examples of configuration variables, while forces, momenta and
stress tensors are source variables used in mechanics. Energy variables derive from
the product of a configuration variable by a source variable, and will not be used in
the following.

In the Finite Element Method formulation, a unique mesh is defined and a
differential formulation is used to establish the balance relations for a point – the
node.

With the Cell Method two staggered meshes are used: besides a primal mesh
defining the nodes as in FEM, a second complex of cells is created in a dual corre-
spondence with the first one, so that each node of the primal complex falls inside a
cell of the dual complex.

The dual cell thus constitutes an influence region for the node inside. The
configuration variables are linked to the nodes of the primal complex, while the
source variables are associated to the dual complex. Several choices are possible
for the dual complex.

In this work only simplicial (triangles and tetrahedra) primal cells have been
adopted, while the dual complexes have been always obtained by connecting the
barycentres of the primal cells and of their sides and edges. Examples of such
primal and dual complexes in 1D, 2D and 3D are shown in Fig.1.

Further considerations and a more detailed description of the geometrical and
topological aspects of the Cell Method can be found in Tonti (2001).

In both CM and FEM, the displacement field inside a primal cell is approxi-
mated by means of an appropriate function of the nodal displacements that con-
stitute the fundamental unknowns of the problem. In this paper an affine (linear
function) interpolation is assumed, but higher order interpolations can be used as
well, as shown by Zovatto (2000) and Cosmi (2001). With this assumption, strain
components {ε}c are uniform inside the primal cell and are given by the symmetric
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(a) 

(b) 

(c) 

Figure 1: (a), (b), (c): Respectively: primal, dual complexes of cells and their
ensemble in 1D, 2D and 3D.

part of the displacement gradient:

{ε}c = [B]c {u}c (1)

where {u} collects the nodal displacements. It can be easily verified that with this
choice of interpolation function the matrix [B]c is the same as in FEM.

The stress tensor components can then be expressed by introducing the con-
stitutive matrix. Assuming a linear-elastic isotropic behavior of the material, the
constitutive equation can be written

{σ}c = [D]c{ε}c = [D]c [B]c {u}c (2)

where {σ}c collects the stress components and [D]c represents the Hooke’s law for
the primal cell.

Here the similarities with FEM end. In fact, as already mentioned, CM directly
writes the equilibrium equations for the discrete volume constituted by the dual
cell, using global (integral) variables, thus obtaining a direct discrete formulation
of physical laws.

The forces to be considered for balance are:

• the surface forces Th acting on the sides of the influence region of node h;
• the resultant of the volume force acting on the influence region and the ex-

ternal forces applied on the influence region through its boundary, Fh.

The surface forces Th acting on the sides of the influence region of node h can be
easily obtained by integration of the stress components:
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• 1D: Th = Acσc

• 2D: {Th}c = 1
2

[
Ahx 0 Ahy

0 Ahy Ahx

]
{σ}c, and, for the three nodes of the pri-

mal cell,
{T}c = −tAc [B]Tc [D]c [B]c {u}c

• 3D: {Th}c = 1
3

⎡
⎣ Ahx 0 0 Ahy 0 Ahz

0 Ahy 0 Ahx Ahz 0
0 0 Ahz 0 Ahy Ahx

⎤
⎦{σ}c and, for the four

nodes of the primal cell,

{T}c = −Vc [B]Tc [D]c [B]c {u}c

where: Ac is the area andt the thickness of the primal cell,Vc its volume and
the meaning of Ai j is shown in Fig.2.

The equilibrium condition for the dual cell, influence region of the node inside, can
be written as

Th +Fh = 0 (3)

for each of the N influence regions of the N nodes.
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Figure 2: Geometrical quantities.

The system (1) constitutes a set of linear equations that can also be expressed
in the form

{F} = −{T}= [K]{u} (4)

and solved with the usual methods.

The stiffness matrix [K], which has the same meaning and properties of the
FEM one, depends on the choice of the dual complex. With the assumptions stated
in this paper (linear interpolation function of nodal displacement and barycentric
dual complex), the FEM and CM stiffness matrixes are coincident, while in general
the force vectors {F} will be different for the two methods.



Elastodynamics with the Cell Method 201

Opposite to the Finite Element Method, that has a differential formulation at
its basis, the Cell Method can be regarded as a direct discrete method that only
uses global (integral) variables to write equilibrium. This deep difference between
the two methods brings some advantages when the CM is used. For example, the
constitutive matrix can be different from one cell to the neighbor, so that the hetero-
geneities characteristic length can be comparable with the mesh size. Moreover, the
CM solution is directly obtained in the nodes, while with FEM codes the solution
is computed in the superconvergent points and then moved to nodal locations by
extrapolation (Cosmi (2001)). A further characteristic of the Cell Method is that no
locking occurs: the solution error will not increase even for very small mesh sizes,
being constant at the worst Zovatto (2000). This feature makes CM particularly
suitable for a local evaluation of stress and strain, as in stress concentration or hot
spots.

For static problems, both in the elastic and plastic field, it has been shown in
previous works that the accuracy and convergence rate obtainable with the CM
are comparable with, and in some cases better than, those achieved with the FEM
(Cosmi (2001), Nappi A., Rajgelj S. and Zaccaria D. (2001)).

The Cell Method for elastodynamics
When CM is applied to dynamic problems, the two cell complexes used in

elastostatics are used again. Moreover, the use of a dual complex is not limited
to the discretization of space, but can be extended to the time variable. As shown
in Fig.3, the time step is constant and indicated by τ . It is the same for both time
complexes, which are staggered of τ/2.

n-1 n n+1

n-1/2 n+1/2

(a)

(b) 

t

t

Figure 3: Primal and dual complexes for the time variable.

Displacements of a node are computed at instants belonging to the primal time
complex. Let un−1

k and un
k be the node h displacements respectively at instant n-1

and n. The velocity of node h is defined by the cinematic equation

vn−1/2
h =

1
τ

(
un

h −un−1
h

)
. (5)



202 Copyright c© 2007 ICCES ICCES, vol.3, no.4, pp.195-210, 2007

Since velocity is computed from the difference between un
h e un−1

h , it is naturally
associated to the central instant of the time interval that is an instant of the dual
time complex.

It has already been noted in statics that the dual cell can be considered as an
influence region for the node that rests inside. The linear momentum pn−1/2

h of the
influence region of node h will be associated to the instant n-1/2 of the dual time
complex and can be computed using the mass mh of the dual cell and the velocity
of node h:

pn−1/2
h =

mh

τ
(
un

h −un−1
h

)
. (6)

This is equivalent to assume that the barycentre of the dual cell coincides with the
node of which the dual cell is the influence region. This condition is approximately
verified for the nodes that don’t rest on the boundary (see Fig.1). It may introduce
a larger error for the boundary nodes, but they are usually a very small percentage
of the total number of nodes.

By definition, the resultant force on the dual cell is the time rate of change of
momentum. Since momenta are computed at instants in the dual time complex, a
difference between momenta is naturally associated with the central instant of the
time interval that in this case is an instant of the primal time complex:

Tn
h +Fn

h =
1
τ

(
pn+1/2

h −pn−1/2
h

)
. (7)

Equations (6) and (7) can be written in form of an explicit system that can be solved
for each time-step:{

{u}n = {u}n−1 +τ
[
1
/

M
] {p}n−1/2

{p}n+1/2 = {p}n−1/2 +τ (− [K]{u}n +{F}n)
(8)

where
[
1
/

M
]
= diag

[
1
/

m1, ...,1
/

mh, ...,1
/

mN
]

It should be noted that the procedure described is not equivalent to a discretiza-
tion of the operators, in fact the system (8) has been directly written in discrete
form.

Convergence and accuracy
The problem of free harmonic vibrations in a system with one degree of free-

dom has been examined (Timoshenko, S.; Young, D.H. (1955)).

Let m be the mass of the body, x(t) the coordinate determining the configura-
tion of the system, k the spring constant, then the well-known balance equation

mẍ(t)+kx(t) = 0 (9)
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leads to the exact solution

x = Asinωt, A = ω
/

ẋ(0). (10)

Equation (9) can be rewritten in the form{
ẋ = p(t)

/
m

ṗ(t) = −kx(t)
(11)

and, in order to test the convergence rate and accuracy of the Cell Method integra-
tion scheme, as {

xn = xn−1 +τ pn−1/2
/

m
pn+1/2 = pn−1/2−τ kxn (12)

Figure 4 shows the result of the comparison of the maximum errors obtained with
the Cell Method and with II and IV order Runge Kutta methods, assumed m=1 kg,
k= 4000N/m, A=10 s/m.

It can be seen that the Cell Method has the same convergence rate of II order
Runge Kutta method, but its accuracy is better.
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Figure 4: Results: CM = Cell Method, RK_II and RK_IV = Runge Kutta method,
II and IV order respectively.

Comparison with FEM codes
A case for which the exact analytic solution is found in literature (Timoshenko,

S.; Young, D.H. (1955) is given by the longitudinal vibration of a bar with free ends
(Figure 5) produced by a longitudinal force P suddenly applied at the end x = l.

After a period of time t, the displacement of the end of the bar to which the
force P is applied is given by

(u)x=l =
t2P

2ρ lA
+

2lP
π2a2ρ A ∑

i=1,3,5,...

1
i2

(
1−cos

iπat
2l

)
, (13)
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where ρ is the mass density of the bar material, l and A are respectively the length

and the cross-sectional area of the bar and a =
√

E
/

ρ is the velocity of sound in
the bar.

P(t)

t

l
P(t
)

x0

P(t)

Figure 5: Bar with free ends.

Equation (13) shows that all modes of vibration of the bar are produced. The
displacement of the end of the bar when t = l/a (half the fundamental period of
vibration) is

(u)x=l =
Pl

2AE
+

4Pl
π2AE

(
1+

1
9

+
1
25

+ ...

)
=

Pl
AE

(14)

and equals the extension produced in the bar by the action of the uniform tensile
load P.

This case has been used in order to compare the Cell Method results with those
obtainable with the commercial FEM codes ANSYS and ABAQUS.

Models in 1D, 2D and 3D have been considered. The parameters of the simu-
lations are shown in Table 1.

Table 1: Parameters of the simulations.
Material Geometry Load
elastic modula
E = 210 GPa
ν = 0.3

length of the bar
l = 21 m

P = 840 kN

density
ρ = 7600 kg/m3

cross-sectional area
A = 0.7 m2

1D model
For the 1D simulation, the bar has been divided in 16 primal cells/elements (17

nodes). Table 2 shows the displacement of end of the bar where the load is applied
(x = l, node 17) when t = l/a= 4 ms. The integration time step was Δt = 0.2, 20
steps.

Table 2: Displacement (mm) of node 17 at t = l/a = 4 ms
Target result ANSYS ABAQUS CM
0.12000 0.11717 0, 11982 0.12006
error -2.35 % - 0.15 % 0.05 %
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In Figure 6, the time history of the displacements computed with the different
methods in three nodes are shown: node 1 is in the free end of the bar (x = 0), node
17 is in the other end ( x = l) and node 9 is the central node (x = l/2).

In order to explain the differences it should be noted that a lumped mass matrix
was used in the ANSYS analysis, while in the ABAQUS analysis the implicit sys-
tem was solved at each time step, and the solution has been obtained interactively
with Newton’s method.

On the contrary, as already mentioned, the solving system obtained with the
Cell Method is an explicit system.
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Figure 6: 1D model, displacements
of node 1(x = 0), node 17 (x = l) and
node 9 (x = l/2).
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Figure 7: 1D model, velocity of node
1, x = 0.
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Figure 8: 1D model, velocity of node
1, x = l/2.
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Figure 9: 1D model, velocity of node
1, x = l.

Moreover, while in ANSYS and ABAQUS the nodal velocity is obtained as nu-
merical derivative of the nodal displacements, with the Cell Method it is explicitly
obtained from the linear momenta of the nodes.

Figures 7, 8 and 9 show the consequent differences arising in the velocity eval-
uation in node 1(x = 0), node 9 (x = l/2) and node 17 (x = l) respectively.



206 Copyright c© 2007 ICCES ICCES, vol.3, no.4, pp.195-210, 2007

2D and 3D models
For the plane analysis, three nodes triangular cells/elements have been used,

while four nodes tetrahedra have been adopted for the 3D analysis.

In Table 3, the main characteristics of the models are summarized.

Table 3: Models.
mesh nodes cells/elements
2D_1 (mapped) 605 960
2D_2 (mapped) 183 240
2D_3 (Delaunay) 186 246
3D_1 (Delaunay) 456 1,051
3D_2 (mapped) 732 2,160
3D_3 (mapped) 190,944 1,031,136

For the 2D and 3D models, only the comparison between Cell Method and
ABAQUS was considered.

The load was applied as a uniform tensile stress applied at the end of the bar,
and the displacement was computed as the average value of the displacements in
the loaded extremity, where x = l. The time step used in these simulations was Δt
= 0.02 ms (200 steps), except for model 3D – 3, where Δt = 0.0025 ms (1600 steps)
was used in order to satisfy Courant condition for the extremely small elements.

The analyses results are summarized in Table 4. It can be seen that the results
are practically independent from the number of nodes used. Moreover, since the
2D and 3D models have comparable element sizes, the solution obtained with the
Cell Method appears to be more stable when changing from 2D to 3D analysis.

Figures 10, 11 and 12 show the different types of 2D mesh used in the simula-
tions. In the same figures the results computed at t= 4ms are shown.

The CM results in the longitudinal x direction are numerically different from
those obtained with ABAQUS, as shown in Table 4, but the pattern is very similar,
as seen in (a) vs. (c).

The results in the y direction show instead a different pattern, the ABAQUS
results displaying some irregularities, as in Figure 11 (b) vs. (d). In general, the
differences between CM and ABAQUS results appear larger when a mesh with a
lower number of elements is used.

In Figure 13, the models used for the 3D simulations are illustrated. The longi-
tudinal displacements computed with CM are also shown in the picture, while the
ABAQUS results are omitted because coincident.

In Figure 14, CM and ABAQUS results in the z transversal direction are com-
pared for mesh 3D_1.The irregularities of the ABAQUS solution do not appear
with CM. Results in the y transversal direction are similar and have not been shown
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Table 4: Results.
mesh target result CM ABAQUS
2D_1 0.12000 0.12011 0.11768
2D_2 0.12000 0.12019 0.11787
2D_3 0.12000 0.12004 0.11793
3D_1 0.12000 0.12018 0.12012
3D_2 0.12000 0.12022 0.12022
3D_3 0.12000 0.12009 –

for brevity.

In order to test the performance of the method, a model with more than 106

elements (mesh 3D – 3) was used. In this mesh the nodes are arranged as in the
3D-2 mesh shown in Figure 13 (b), but the mesh cannot be displayed due to the
extremely small size length of the elements. The computation on a commercial PC
(INTEL PENTIUM IV 3,2 GHZ processor with a 4Gb RAM) required approxi-
mately 30 minutes for the creation of the global stiffness matrix, plus 25 minutes
for the complete solution of the dynamic problem. It was not possible to perform a
comparison with ABAQUS on the same PC, because the simulation aborted due to
higher memory requirements.

Conclusions
In this paper, following a brief description of the Cell Method for elastostatics,

the method has been extended for the solution of elastodynamics problems. The
proposed formulation combines the advantages of FEM and FDTD, leading to a
diagonal mass matrix and an explicit solving system, even if unstructured meshes
are used. The results obtained have the same convergence rate of II order Runge
Kutta method, but the accuracy of the Cell method is better. In the comparison for
both plane an three-dimensional problems, the accuracy of the Cell Method was
comparable or better than that of two widely diffused FEM codes, ABAQUS and
ANSYS.

In the paper, it has been shown that Cell Method results are also very interesting
from the point of view of computation time and memory requirements for very large
meshes.
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Figure 12: Mesh 2D_3, displacements at t= 4ms - (a) CM, ux; (b) CM, uy; (c)
ABAQUS, ux, (d) ABAQUS, uy.
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